Abstract
Inflammatory bowel disease (IBD) is a group of chronic diseases of the digestive tract that affects millions of people worldwide. Genetic, environmental and microbial factors have been implicated in the onset and exacerbation of IBD. However, the mechanisms associating gut microbial dysbioses and aberrant immune responses remain largely unknown. The integrative Human Microbiome Project seeks to close these gaps by examining the dynamics of microbiome functionality in disease by profiling the gut microbiomes of >100 individuals sampled over a 1-year period. Here, we present the first results based on 78 paired faecal metagenomes and metatranscriptomes, and 222 additional metagenomes from 59 patients with Crohnâs disease, 34 with ulcerative colitis and 24 non-IBD control patients. We demonstrate several cases in which measures of microbial gene expression in the inflamed gut can be informative relative to metagenomic profiles of functional potential. First, although many microbial organisms exhibited concordant DNA and RNA abundances, we also detected species-specific biases in transcriptional activity, revealing predominant transcription of pathways by individual microorganisms per host (for example, by Faecalibacterium prausnitzii). Thus, a loss of these organisms in disease may have more far-reaching consequences than suggested by their genomic abundances. Furthermore, we identified organisms that were metagenomically abundant but inactive or dormant in the gut with little or no expression (for example, Dialister invisus). Last, certain disease-specific microbial characteristics were more pronounced or only detectable at the transcript level, such as pathways that were predominantly expressed by different organisms in patients with IBD (for example, Bacteroides vulgatus and Alistipes putredinis). This provides potential insights into gut microbial pathway transcription that can vary over time, inducing phenotypical changes that are complementary to those linked to metagenomic abundances. The studyâs results highlight the strength of analysing both the activity and the presence of gut microorganisms to provide insight into the role of the microbiome in IBD.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 /Â 30Â days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout




Similar content being viewed by others
References
Burisch, J., Jess, T., Martinato, M. & Lakatos, P. L. The burden of inflammatory bowel disease in Europe. J. Crohns Colitis 7, 322â337 (2013).
IBD Working Group of the European Society for Paediatric Gastroenterology, Hepatology and Nutrition. Inflammatory bowel disease in children and adolescents: recommendations for diagnosisâthe Porto criteria. J. Pediatr. Gastr. Nutr. 41, 1â7 (2005).
Kaplan, G. G. The global burden of IBD: from 2015 to 2025. Nat. Rev. Gastro. Hepat. 12, 720â727 (2015).
Fava, F. & Danese, S. Intestinal microbiota in inflammatory bowel disease: friend of foe? World J. Gastroentero. 17, 557â566 (2011).
Hold, G. L. et al. Role of the gut microbiota in inflammatory bowel disease pathogenesis: what have we learnt in the past 10 years? World J. Gastroentero. 20, 1192â1210 (2014).
Morgan, X. C. et al. Dysfunction of the intestinal microbiome in inflammatory bowel disease and treatment. Genome Biol. 13, R79 (2012).
Gevers, D. et al. The treatment-naive microbiome in new-onset Crohnâs disease. Cell Host Microbe 15, 382â392 (2014).
Lupp, C. et al. Host-mediated inflammation disrupts the intestinal microbiota and promotes the overgrowth of Enterobacteriaceae. Cell Host Microbe 2, 119â129 (2007).
Frank, D. N. et al. Disease phenotype and genotype are associated with shifts in intestinal-associated microbiota in inflammatory bowel diseases. Inflamm. Bowel Dis. 17, 179â184 (2011).
Kostic, A. D., Xavier, R. J. & Gevers, D. The microbiome in inflammatory bowel disease: current status and the future ahead. Gastroenterology 146, 1489â1499 (2014).
Llopis, M. et al. Lactobacillus casei downregulates commensalsâ inflammatory signals in Crohnâs disease mucosa. Inflamm. Bowel Dis. 15, 275â283 (2009).
Sokol, H. et al. Low counts of Faecalibacterium prausnitzii in colitis microbiota. Inflamm. Bowel Dis. 15, 1183â1189 (2009).
Sokol, H. et al. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc. Natl Acad. Sci. USA 105, 16731â16736 (2008).
Halfvarson, J. et al. Dynamics of the human gut microbiome in inflammatory bowel disease. Nat. Microbiol. 2, 17004 (2017).
Lewis, J. D. et al. Inflammation, antibiotics, and diet as environmental stressors of the gut microbiome in pediatric Crohnâs disease. Cell Host Microbe 18, 489â500 (2015).
Zhernakova, A. et al. Population-based metagenomics analysis reveals markers for gut microbiome composition and diversity. Science 352, 565â569 (2016).
Machiels, K. et al. A decrease of the butyrate-producing species Roseburia hominis and Faecalibacterium prausnitzii defines dysbiosis in patients with ulcerative colitis. Gut 63, 1275â1283 (2014).
Nagao-Kitamoto, H. & Kamada, N. Hostâmicrobial cross-talk in inflammatory bowel disease. Immune Netw. 17, 1â12 (2017).
Rehman, A. et al. Transcriptional activity of the dominant gut mucosal microbiota in chronic inflammatory bowel disease patients. J. Med. Microbiol. 59, 1114â1122 (2010).
Dorffel, Y., Swidsinski, A., Loening-Baucke, V., Wiedenmann, B. & Pavel, M. Common biostructure of the colonic microbiota in neuroendocrine tumors and Crohnâs disease and the effect of therapy. Inflamm. Bowel Dis. 18, 1663â1671 (2012).
Bloom, S. M. et al. Commensal Bacteroides species induce colitis in host-genotype-specific fashion in a mouse model of inflammatory bowel disease. Cell Host Microbe 9, 390â403 (2011).
Joossens, M. et al. Dysbiosis of the faecal microbiota in patients with Crohnâs disease and their unaffected relatives. Gut 60, 631â637 (2011).
Hoffmann, T. W. et al. Microorganisms linked to inflammatory bowel disease-associated dysbiosis differentially impact host physiology in gnotobiotic mice. ISME J. 10, 460â477 (2016).
Abubucker, S. et al. Metabolic reconstruction for metagenomic data and its application to the human microbiome. PLoS Comput. Biol. 8, e1002358 (2012).
Feng, Q. et al. Gut microbiome development along the colorectal adenoma-carcinoma sequence. Nat. Commun. 6, 6528 (2015).
Zitomersky, N. L. et al. Characterization of adherent bacteroidales from intestinal biopsies of children and young adults with inflammatory bowel disease. PLoS ONE 8, e63686 (2013).
Downes, J., Munson, M. & Wade, W. G. Dialister invisus sp. nov., isolated from the human oral cavity. Int. J. Syst. Evol. Micr. 53, 1937â1940 (2003).
Maffeis, C. et al. Association between intestinal permeability and faecal microbiota composition in Italian children with beta cell autoimmunity at risk for type 1 diabetes. Diabetes Metab. Res. Rev. 32, 700â709 (2016).
Ye, J. H. & Rajendran, V. M. Adenosine: an immune modulator of inflammatory bowel diseases. World J. Gastroentero. 15, 4491â4498 (2009).
Antonioli, L., Blandizzi, C., Pacher, P. & Hasko, G. Immunity, inflammation and cancer: a leading role for adenosine. Nat. Rev. Cancer 13, 842â857 (2013).
Bellaver, B. et al. Guanosine inhibits LPS-induced pro-inflammatory response and oxidative stress in hippocampal astrocytes through the heme oxygenase-1 pathway. Purinergic Signal. 11, 571â580 (2015).
Pier, G. B. Pseudomonas aeruginosa lipopolysaccharide: a major virulence factor, initiator of inflammation and target for effective immunity. Int. J. Med. Microbiol. 297, 277â295 (2007).
Santos, M. F. et al. Lipopolysaccharide as an antigen target for the formulation of a universal vaccine against Escherichia coli O111 strains. Clin. Vaccine Immunol. 17, 1772â1780 (2010).
Wang, L., Wang, Q. & Reeves, P. R. The variation of O antigens in Gram-negative bacteria. Subcell. Biochem. 53, 123â152 (2010).
Kintz, E. et al. Salmonella enterica Serovar Typhi lipopolysaccharide O-antigen modification impact on serum resistance and antibody recognition. Infect. Immun. 85, e01021-16 (2017).
Aguirre-Ramirez, M., Medina, G., Gonzalez-Valdez, A., Grosso-Becerra, V. & Soberon-Chavez, G. The Pseudomonas aeruginosa rmlBDAC operon, encoding dTDP-l-rhamnose biosynthetic enzymes, is regulated by the quorum-sensing transcriptional regulator RhlR and the alternative sigma factor ÏS. Microbiology 158, 908â916 (2012).
Feurle, J. et al. Escherichia coli produces phosphoantigens activating human γδ T cells. J. Biol. Chem. 277, 148â154 (2002).
Bang, S., Yoo, S., Yang, T. J., Cho, H. & Hwang, S. W. Nociceptive and pro-inflammatory effects of dimethylallyl pyrophosphate via TRPV4 activation. Br. J. Pharmacol. 166, 1433â1443 (2012).
Naughton, J., Duggan, G., Bourke, B. & Clyne, M. Interaction of microbes with mucus and mucins: recent developments. Gut Microbes 5, 48â52 (2014).
Skoog, E. C. et al. Human gastric mucins differently regulate Helicobacter pylori proliferation, gene expression and interactions with host cells. PLoS ONE 7, e36378 (2012).
Tu, Q. V., McGuckin, M. A. & Mendz, G. L. Campylobacter jejuni response to human mucin MUC2: modulation of colonization and pathogenicity determinants. J. Med. Microbiol. 57, 795â802 (2008).
Albenberg, L. et al. Correlation between intraluminal oxygen gradient and radial partitioning of intestinal microbiota. Gastroenterology 147, 1055â1063 (2014).
LaFayette, S. L. et al. Cystic fibrosis-adapted Pseudomonas aeruginosa quorum sensing lasR mutants cause hyperinflammatory responses. Sci. Adv. 1, e1500199 (2015).
Glucksam-Galnoy, Y. et al. The bacterial quorum-sensing signal molecule N-3-oxo-dodecanoyl-l-homoserine lactone reciprocally modulates pro- and anti-inflammatory cytokines in activated macrophages. J. Immunol. 191, 337â344 (2013).
Yao, Y. et al. Characterization of the Staphylococcus epidermidis accessory-gene regulator response: quorum-sensing regulation of resistance to human innate host defense. J. Infect. Dis. 193, 841â848 (2006).
Thompson, J. A., Oliveira, R. A., Djukovic, A., Ubeda, C. & Xavier, K. B. Manipulation of the quorum sensing signal AI-2 affects the antibiotic-treated gut microbiota. Cell Rep. 10, 1861â1871 (2015).
Franzosa, E. A. et al. Relating the metatranscriptome and metagenome of the human gut. Proc. Natl Acad. Sci. USA 111, E2329âE2338 (2014).
Harvey, R. F. & Bradshaw, J. M. A simple index of Crohnâs-disease activity. Lancet 1, 514 (1980).
Walmsley, R. S., Ayres, R. C., Pounder, R. E. & Allan, R. N. A simple clinical colitis activity index. Gut 43, 29â32 (1998).
Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114â2120 (2014).
Human Microbiome Project Consortium. A framework for human microbiome research. Nature 486, 215â221 (2012).
Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590âD596 (2013).
Truong, D. T. et al. MetaPhlAn2 for enhanced metagenomic taxonomic profiling. Nat. Methods 12, 902â903 (2015).
Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357â359 (2012).
Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 12, 59â60 (2015).
Suzek, B. E., Huang, H., McGarvey, P., Mazumder, R. & Wu, C. H. UniRef: comprehensive and non-redundant UniProt reference clusters. Bioinformatics 23, 1282â1288 (2007).
Caspi, R. et al. The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. Nucleic Acids Res. 40, D742âD753 (2012).
Ye, Y. & Doak, T. G. A parsimony approach to biological pathway reconstruction/inference for genomes and metagenomes. PLoS Comput. Biol. 5, e1000465 (2009).
Acknowledgements
We thank the participants from Massachusetts General Hospital, Emory University, Cedars-Sinai IBD Center and Cincinnati Childrenâs Hospital Medical Center, who made this study possible. Furthermore, we acknowledge B. Sayoldin for making the data available through the Sequence Read Archive and our collaborators throughout the Integrative Human Microbiome Consortium. This work was supported by the US National Institutes of Health (NIH) grants U54DK102557 (C.H. and R.J.X.), STARR Cancer Consortium (C.H.), CCFA 20144126 (R.J.X.) and R01DK92405 (R.J.X.), U01DK062413 (D.P.B.M.), P01DK046763 (D.P.B.M.), UL1TR001881 (J.B.), and The Leona M. and Harry B. Helmsley Charitable Trust (D.P.B.M.).
Author information
Authors and Affiliations
Contributions
M.S., C.H., R.J.X. and H.V. conceived and designed the experiments. A.N.A., E.A., G.B., K.L., M.P., J.S., B.S. and R.G.W. performed the experiments. M.S., C.H. and E.A.F. analysed the data. M.S., C.H., E.A.F., J.L.-P., L.J.M., R.S., T.W.P., E.A., J.B., L.A.D., S.K. and D.P.B.M. contributed materials/analysis tools. M.S., C.H., R.J.X., J.L.-P. and H.V. wrote the paper.
Corresponding authors
Ethics declarations
Competing interests
D.P.B.M. is consulting for Cidara. The authors declare no other competing financial interests.
Additional information
Publisherâs note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Supplementary Figures 1â6, Supplementary Table 1.
Supplementary Table 2
Description of pathways.
Rights and permissions
About this article
Cite this article
Schirmer, M., Franzosa, E.A., Lloyd-Price, J. et al. Dynamics of metatranscription in the inflammatory bowel disease gut microbiome. Nat Microbiol 3, 337â346 (2018). https://doi.org/10.1038/s41564-017-0089-z
Received:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/s41564-017-0089-z
This article is cited by
-
Cross-validation for training and testing co-occurrence network inference algorithms
BMC Bioinformatics (2025)
-
Unveiling the diagnostic and pro-inflammatory role of crohnâs disease: insights from 16Â S-guided discovery and species-specific validation
BMC Gastroenterology (2025)
-
Oral administration of Momordica charantia-derived extracellular vesicles alleviates ulcerative colitis through comprehensive renovation of the intestinal microenvironment
Journal of Nanobiotechnology (2025)
-
Faecalibacterium prausnitzii-derived outer membrane vesicles reprogram gut microbiota metabolism to alleviate Porcine Epidemic Diarrhea Virus infection
Microbiome (2025)
-
Functional regimes define soil microbiome response to environmental change
Nature (2025)


