Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Dynamics of metatranscription in the inflammatory bowel disease gut microbiome

Abstract

Inflammatory bowel disease (IBD) is a group of chronic diseases of the digestive tract that affects millions of people worldwide. Genetic, environmental and microbial factors have been implicated in the onset and exacerbation of IBD. However, the mechanisms associating gut microbial dysbioses and aberrant immune responses remain largely unknown. The integrative Human Microbiome Project seeks to close these gaps by examining the dynamics of microbiome functionality in disease by profiling the gut microbiomes of >100 individuals sampled over a 1-year period. Here, we present the first results based on 78 paired faecal metagenomes and metatranscriptomes, and 222 additional metagenomes from 59 patients with Crohn’s disease, 34 with ulcerative colitis and 24 non-IBD control patients. We demonstrate several cases in which measures of microbial gene expression in the inflamed gut can be informative relative to metagenomic profiles of functional potential. First, although many microbial organisms exhibited concordant DNA and RNA abundances, we also detected species-specific biases in transcriptional activity, revealing predominant transcription of pathways by individual microorganisms per host (for example, by Faecalibacterium prausnitzii). Thus, a loss of these organisms in disease may have more far-reaching consequences than suggested by their genomic abundances. Furthermore, we identified organisms that were metagenomically abundant but inactive or dormant in the gut with little or no expression (for example, Dialister invisus). Last, certain disease-specific microbial characteristics were more pronounced or only detectable at the transcript level, such as pathways that were predominantly expressed by different organisms in patients with IBD (for example, Bacteroides vulgatus and Alistipes putredinis). This provides potential insights into gut microbial pathway transcription that can vary over time, inducing phenotypical changes that are complementary to those linked to metagenomic abundances. The study’s results highlight the strength of analysing both the activity and the presence of gut microorganisms to provide insight into the role of the microbiome in IBD.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Longitudinal metagenomes and metatranscriptomes in IBD.
Fig. 2: Metatranscriptomic activities assigned to specific microorganisms and disease phenotypes.
Fig. 3: Comparing species-specific metagenomic functional potential with metatranscriptomic functional activity.
Fig. 4: Dynamic changes in IBD-specific metatranscription over time.

Similar content being viewed by others

References

  1. Burisch, J., Jess, T., Martinato, M. & Lakatos, P. L. The burden of inflammatory bowel disease in Europe. J. Crohns Colitis 7, 322–337 (2013).

    Article  PubMed  Google Scholar 

  2. IBD Working Group of the European Society for Paediatric Gastroenterology, Hepatology and Nutrition. Inflammatory bowel disease in children and adolescents: recommendations for diagnosis—the Porto criteria. J. Pediatr. Gastr. Nutr. 41, 1–7 (2005).

  3. Kaplan, G. G. The global burden of IBD: from 2015 to 2025. Nat. Rev. Gastro. Hepat. 12, 720–727 (2015).

    Article  PubMed  Google Scholar 

  4. Fava, F. & Danese, S. Intestinal microbiota in inflammatory bowel disease: friend of foe? World J. Gastroentero. 17, 557–566 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hold, G. L. et al. Role of the gut microbiota in inflammatory bowel disease pathogenesis: what have we learnt in the past 10 years? World J. Gastroentero. 20, 1192–1210 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Morgan, X. C. et al. Dysfunction of the intestinal microbiome in inflammatory bowel disease and treatment. Genome Biol. 13, R79 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gevers, D. et al. The treatment-naive microbiome in new-onset Crohn’s disease. Cell Host Microbe 15, 382–392 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lupp, C. et al. Host-mediated inflammation disrupts the intestinal microbiota and promotes the overgrowth of Enterobacteriaceae. Cell Host Microbe 2, 119–129 (2007).

    Article  CAS  PubMed  Google Scholar 

  9. Frank, D. N. et al. Disease phenotype and genotype are associated with shifts in intestinal-associated microbiota in inflammatory bowel diseases. Inflamm. Bowel Dis. 17, 179–184 (2011).

    Article  PubMed  Google Scholar 

  10. Kostic, A. D., Xavier, R. J. & Gevers, D. The microbiome in inflammatory bowel disease: current status and the future ahead. Gastroenterology 146, 1489–1499 (2014).

    Article  CAS  PubMed  Google Scholar 

  11. Llopis, M. et al. Lactobacillus casei downregulates commensals’ inflammatory signals in Crohn’s disease mucosa. Inflamm. Bowel Dis. 15, 275–283 (2009).

    Article  PubMed  Google Scholar 

  12. Sokol, H. et al. Low counts of Faecalibacterium prausnitzii in colitis microbiota. Inflamm. Bowel Dis. 15, 1183–1189 (2009).

    Article  CAS  PubMed  Google Scholar 

  13. Sokol, H. et al. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc. Natl Acad. Sci. USA 105, 16731–16736 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Halfvarson, J. et al. Dynamics of the human gut microbiome in inflammatory bowel disease. Nat. Microbiol. 2, 17004 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lewis, J. D. et al. Inflammation, antibiotics, and diet as environmental stressors of the gut microbiome in pediatric Crohn’s disease. Cell Host Microbe 18, 489–500 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhernakova, A. et al. Population-based metagenomics analysis reveals markers for gut microbiome composition and diversity. Science 352, 565–569 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Machiels, K. et al. A decrease of the butyrate-producing species Roseburia hominis and Faecalibacterium prausnitzii defines dysbiosis in patients with ulcerative colitis. Gut 63, 1275–1283 (2014).

    Article  CAS  PubMed  Google Scholar 

  18. Nagao-Kitamoto, H. & Kamada, N. Host–microbial cross-talk in inflammatory bowel disease. Immune Netw. 17, 1–12 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Rehman, A. et al. Transcriptional activity of the dominant gut mucosal microbiota in chronic inflammatory bowel disease patients. J. Med. Microbiol. 59, 1114–1122 (2010).

    Article  CAS  PubMed  Google Scholar 

  20. Dorffel, Y., Swidsinski, A., Loening-Baucke, V., Wiedenmann, B. & Pavel, M. Common biostructure of the colonic microbiota in neuroendocrine tumors and Crohn’s disease and the effect of therapy. Inflamm. Bowel Dis. 18, 1663–1671 (2012).

    Article  PubMed  Google Scholar 

  21. Bloom, S. M. et al. Commensal Bacteroides species induce colitis in host-genotype-specific fashion in a mouse model of inflammatory bowel disease. Cell Host Microbe 9, 390–403 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Joossens, M. et al. Dysbiosis of the faecal microbiota in patients with Crohn’s disease and their unaffected relatives. Gut 60, 631–637 (2011).

    Article  PubMed  Google Scholar 

  23. Hoffmann, T. W. et al. Microorganisms linked to inflammatory bowel disease-associated dysbiosis differentially impact host physiology in gnotobiotic mice. ISME J. 10, 460–477 (2016).

    Article  CAS  PubMed  Google Scholar 

  24. Abubucker, S. et al. Metabolic reconstruction for metagenomic data and its application to the human microbiome. PLoS Comput. Biol. 8, e1002358 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Feng, Q. et al. Gut microbiome development along the colorectal adenoma-carcinoma sequence. Nat. Commun. 6, 6528 (2015).

    Article  CAS  PubMed  Google Scholar 

  26. Zitomersky, N. L. et al. Characterization of adherent bacteroidales from intestinal biopsies of children and young adults with inflammatory bowel disease. PLoS ONE 8, e63686 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Downes, J., Munson, M. & Wade, W. G. Dialister invisus sp. nov., isolated from the human oral cavity. Int. J. Syst. Evol. Micr. 53, 1937–1940 (2003).

    Article  CAS  PubMed  Google Scholar 

  28. Maffeis, C. et al. Association between intestinal permeability and faecal microbiota composition in Italian children with beta cell autoimmunity at risk for type 1 diabetes. Diabetes Metab. Res. Rev. 32, 700–709 (2016).

    Article  CAS  PubMed  Google Scholar 

  29. Ye, J. H. & Rajendran, V. M. Adenosine: an immune modulator of inflammatory bowel diseases. World J. Gastroentero. 15, 4491–4498 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Antonioli, L., Blandizzi, C., Pacher, P. & Hasko, G. Immunity, inflammation and cancer: a leading role for adenosine. Nat. Rev. Cancer 13, 842–857 (2013).

    Article  CAS  PubMed  Google Scholar 

  31. Bellaver, B. et al. Guanosine inhibits LPS-induced pro-inflammatory response and oxidative stress in hippocampal astrocytes through the heme oxygenase-1 pathway. Purinergic Signal. 11, 571–580 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Pier, G. B. Pseudomonas aeruginosa lipopolysaccharide: a major virulence factor, initiator of inflammation and target for effective immunity. Int. J. Med. Microbiol. 297, 277–295 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Santos, M. F. et al. Lipopolysaccharide as an antigen target for the formulation of a universal vaccine against Escherichia coli O111 strains. Clin. Vaccine Immunol. 17, 1772–1780 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wang, L., Wang, Q. & Reeves, P. R. The variation of O antigens in Gram-negative bacteria. Subcell. Biochem. 53, 123–152 (2010).

    Article  CAS  PubMed  Google Scholar 

  35. Kintz, E. et al. Salmonella enterica Serovar Typhi lipopolysaccharide O-antigen modification impact on serum resistance and antibody recognition. Infect. Immun. 85, e01021-16 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Aguirre-Ramirez, M., Medina, G., Gonzalez-Valdez, A., Grosso-Becerra, V. & Soberon-Chavez, G. The Pseudomonas aeruginosa rmlBDAC operon, encoding dTDP-l-rhamnose biosynthetic enzymes, is regulated by the quorum-sensing transcriptional regulator RhlR and the alternative sigma factor σS. Microbiology 158, 908–916 (2012).

    Article  CAS  PubMed  Google Scholar 

  37. Feurle, J. et al. Escherichia coli produces phosphoantigens activating human γδ T cells. J. Biol. Chem. 277, 148–154 (2002).

    Article  CAS  PubMed  Google Scholar 

  38. Bang, S., Yoo, S., Yang, T. J., Cho, H. & Hwang, S. W. Nociceptive and pro-inflammatory effects of dimethylallyl pyrophosphate via TRPV4 activation. Br. J. Pharmacol. 166, 1433–1443 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Naughton, J., Duggan, G., Bourke, B. & Clyne, M. Interaction of microbes with mucus and mucins: recent developments. Gut Microbes 5, 48–52 (2014).

    Article  PubMed  Google Scholar 

  40. Skoog, E. C. et al. Human gastric mucins differently regulate Helicobacter pylori proliferation, gene expression and interactions with host cells. PLoS ONE 7, e36378 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Tu, Q. V., McGuckin, M. A. & Mendz, G. L. Campylobacter jejuni response to human mucin MUC2: modulation of colonization and pathogenicity determinants. J. Med. Microbiol. 57, 795–802 (2008).

    Article  CAS  PubMed  Google Scholar 

  42. Albenberg, L. et al. Correlation between intraluminal oxygen gradient and radial partitioning of intestinal microbiota. Gastroenterology 147, 1055–1063 (2014).

    Article  PubMed  Google Scholar 

  43. LaFayette, S. L. et al. Cystic fibrosis-adapted Pseudomonas aeruginosa quorum sensing lasR mutants cause hyperinflammatory responses. Sci. Adv. 1, e1500199 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Glucksam-Galnoy, Y. et al. The bacterial quorum-sensing signal molecule N-3-oxo-dodecanoyl-l-homoserine lactone reciprocally modulates pro- and anti-inflammatory cytokines in activated macrophages. J. Immunol. 191, 337–344 (2013).

    Article  CAS  PubMed  Google Scholar 

  45. Yao, Y. et al. Characterization of the Staphylococcus epidermidis accessory-gene regulator response: quorum-sensing regulation of resistance to human innate host defense. J. Infect. Dis. 193, 841–848 (2006).

    Article  PubMed  Google Scholar 

  46. Thompson, J. A., Oliveira, R. A., Djukovic, A., Ubeda, C. & Xavier, K. B. Manipulation of the quorum sensing signal AI-2 affects the antibiotic-treated gut microbiota. Cell Rep. 10, 1861–1871 (2015).

    Article  CAS  PubMed  Google Scholar 

  47. Franzosa, E. A. et al. Relating the metatranscriptome and metagenome of the human gut. Proc. Natl Acad. Sci. USA 111, E2329–E2338 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Harvey, R. F. & Bradshaw, J. M. A simple index of Crohn’s-disease activity. Lancet 1, 514 (1980).

    Article  CAS  PubMed  Google Scholar 

  49. Walmsley, R. S., Ayres, R. C., Pounder, R. E. & Allan, R. N. A simple clinical colitis activity index. Gut 43, 29–32 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Human Microbiome Project Consortium. A framework for human microbiome research. Nature 486, 215–221 (2012).

  52. Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2013).

    Article  CAS  PubMed  Google Scholar 

  53. Truong, D. T. et al. MetaPhlAn2 for enhanced metagenomic taxonomic profiling. Nat. Methods 12, 902–903 (2015).

    Article  CAS  PubMed  Google Scholar 

  54. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 12, 59–60 (2015).

    Article  CAS  PubMed  Google Scholar 

  56. Suzek, B. E., Huang, H., McGarvey, P., Mazumder, R. & Wu, C. H. UniRef: comprehensive and non-redundant UniProt reference clusters. Bioinformatics 23, 1282–1288 (2007).

    Article  CAS  PubMed  Google Scholar 

  57. Caspi, R. et al. The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. Nucleic Acids Res. 40, D742–D753 (2012).

    Article  CAS  PubMed  Google Scholar 

  58. Ye, Y. & Doak, T. G. A parsimony approach to biological pathway reconstruction/inference for genomes and metagenomes. PLoS Comput. Biol. 5, e1000465 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the participants from Massachusetts General Hospital, Emory University, Cedars-Sinai IBD Center and Cincinnati Children’s Hospital Medical Center, who made this study possible. Furthermore, we acknowledge B. Sayoldin for making the data available through the Sequence Read Archive and our collaborators throughout the Integrative Human Microbiome Consortium. This work was supported by the US National Institutes of Health (NIH) grants U54DK102557 (C.H. and R.J.X.), STARR Cancer Consortium (C.H.), CCFA 20144126 (R.J.X.) and R01DK92405 (R.J.X.), U01DK062413 (D.P.B.M.), P01DK046763 (D.P.B.M.), UL1TR001881 (J.B.), and The Leona M. and Harry B. Helmsley Charitable Trust (D.P.B.M.).

Author information

Authors and Affiliations

Authors

Contributions

M.S., C.H., R.J.X. and H.V. conceived and designed the experiments. A.N.A., E.A., G.B., K.L., M.P., J.S., B.S. and R.G.W. performed the experiments. M.S., C.H. and E.A.F. analysed the data. M.S., C.H., E.A.F., J.L.-P., L.J.M., R.S., T.W.P., E.A., J.B., L.A.D., S.K. and D.P.B.M. contributed materials/analysis tools. M.S., C.H., R.J.X., J.L.-P. and H.V. wrote the paper.

Corresponding authors

Correspondence to Ramnik J. Xavier or Curtis Huttenhower.

Ethics declarations

Competing interests

D.P.B.M. is consulting for Cidara. The authors declare no other competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–6, Supplementary Table 1.

Life Sciences Reporting Summary

Supplementary Table 2

Description of pathways.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schirmer, M., Franzosa, E.A., Lloyd-Price, J. et al. Dynamics of metatranscription in the inflammatory bowel disease gut microbiome. Nat Microbiol 3, 337–346 (2018). https://doi.org/10.1038/s41564-017-0089-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41564-017-0089-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing