Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Poly(ADP-ribose) polymerase and the therapeutic effects of its inhibitors

Key Points

  • Poly(ADP-ribose) polymerases (PARPs) are involved a number of cellular processes, including DNA repair, the regulation of transcription, apoptosis and necrosis.

  • PARP activation initiates an energy-consuming inefficient cellular metabolic cycle; this leads to cellular and mitochondrial dysfunction, and promotes the functional impairment of the affected cells, which culminates in cell necrosis.

  • PARP activation is involved in a range of disorders, including various forms of reperfusion injury, inflammation and cardiovascular diseases. PARP inhibitors have been tested in disease models for these conditions, and also investigated for their ability to suppress DNA repair and to promote apoptosis in cells that are treated with certain anticancer agents.

  • Many classes of compounds have been shown to inhibit the catalytic activity of PARP. Moreover, some of these compounds have now successfully progressed through the preclinical efficacy and safety stages of drug development, and have entered human clinical testing.

Abstract

Poly(ADP-ribose) polymerases (PARPs) are involved in the regulation of many cellular functions. Three consequences of the activation of PARP1, which is the main isoform of the PARP family, are particularly important for drug development: first, its role in DNA repair; second, its capacity to deplete cellular energetic pools, which culminates in cell dysfunction and necrosis; and third, its capacity to promote the transcription of pro-inflammatory genes. Consequently, pharmacological inhibitors of PARP have the potential to enhance the cytotoxicity of certain DNA-damaging anticancer drugs, reduce parenchymal cell necrosis (for example, in stroke or myocardial infarction) and downregulate multiple simultaneous pathways of inflammation and tissue injury (for example, in circulatory shock, colitis or diabetic complications). The first ultrapotent novel PARP inhibitors have now entered human clinical trials. This article presents an overview of the principal pathophysiological pathways and mechanisms that are governed by PARP, followed by the main structures and therapeutic actions of various classes of novel PARP inhibitors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of poly(ADP-ribose) polymerase-1 (PARP1).
Figure 2: Activation and inactivation of poly(ADP-ribose) polymerase (PARP): interactions with specific signal-transduction pathways.
Figure 3: Pathways involved in promoting cellular necrosis in response to massive poly(ADP-ribose) polymerase (PARP) activation in oxidatively/nitrosatively injured cells.
Figure 4: Poly (ADP-ribose) polymerase (PARP) and myocardial infarction.
Figure 5: Intensity of DNA-damaging stimuli determines the fate of cells: survival, apoptosis or necrosis.
Figure 6: Pathophysiological triggers of poly(ADP-ribose) polymerase (PARP) activation and interacting pathways of injury.
Figure 7: Schematic representation of the binding of NAD+ to poly(ADP-ribose) polymerase (PARP) protein and the catalytic mechanism of PARP1.
Figure 8: Structures of representative classes of poly(ADP-ribose) polymerase (PARP) inhibitors derived from the classical PARP scaffolds (benzamide or cyclic lactams).
Figure 9: Further poly(ADP-ribose) polymerase (PARP) inhibitors.
Figure 10: PARP inhibition restores tumour-cell sensitivity to temozolomide.

Similar content being viewed by others

References

  1. Chambon, P., Weil, J. D. & Mandel, P. NAD activation of a new DNA-dependent polyadenylic acid synthesizing nuclear enzyme. Biochem. Biophys. Res. Comm. 11, 39–45 (1963). This was the first report on PARP.

    Article  CAS  PubMed  Google Scholar 

  2. Ame, J. C., Spenlehauer, C. & de Murcia, G. The PARP superfamily. Bioessays 26, 882–893 (2004). A recent and comprehensive review on the various PARP isoforms.

    Article  CAS  PubMed  Google Scholar 

  3. Nguewa, P. A., Fuertes, M. A., Valladares, B., Alonso, C. & Perez, J. M. Poly(ADP-ribose) polymerases: homology, structural domains and functions. Novel therapeutical applications. Prog. Biophys. Mol. Biol. 88, 143–172 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. Virág, L. & Szabó, C. The therapeutic potential of poly(ADP-ribose) polymerase inhibitors. Pharmacol. Rev. 54, 375–429 (2002). A comprehensive review on the role of PARP in various disease conditions.

    Article  PubMed  Google Scholar 

  5. Davidovic, L., Vodenicharov, M., Affar, E. B. & Poirier, G. G. Importance of poly(ADP-ribose) glycohydrolase in the control of poly(ADP-ribose) metabolism. Exp. Cell Res. 268, 7–13 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Pillai, J. B., Russell, H. M., Raman, J. S., Jeevanandam, V. & Gupta, M. P. Increased expression of poly (ADP) ribose polymerase-1 contributes to caspase-independent myocyte cell death during heart failure. Am. J. Physiol. Heart Circ. Physiol. 288, H486–H496 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Bauer, P. I. et al. Inhibition of DNA binding by the phosphorylation of poly ADP-ribose polymerase protein catalysed by protein kinase C. Biochem. Biophys. Res. Commun. 187, 730–736 (1992).

    Article  CAS  PubMed  Google Scholar 

  8. Homburg, S. et al. A fast signal-induced activation of poly(ADP-ribose) polymerase: a novel downstream target of phospholipase C. J. Cell Biol. 150, 293–307 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sastry, S. S. & Kun, E. The interaction of adenosine diphosphoribosyl transferase (ADPRT) with a cruciform DNA. Biochem. Biophys. Res. Commun. 167, 842–847 (1990).

    Article  CAS  PubMed  Google Scholar 

  10. Wallace, D. C. A mitochondrial paradigm for degenerative diseases and ageing. Novartis Found Symp. 235, 247–263 (2001).

    CAS  PubMed  Google Scholar 

  11. Bouchard, V. J., Rouleau, M. & Poirier, G. G. PARP-1, a determinant of cell survival in response to DNA damage. Exp. Hematol. 31, 446–454 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. Huber, A., Bai, P., de Murcia, J. M. & de Murcia, G. PARP-1, PARP-2 and ATM in the DNA damage response: functional synergy in mouse development. DNA Repair (Amst.) 3, 1103–1108 (2004).

    Article  CAS  Google Scholar 

  13. de Murcia, J. M. et al. Requirement of poly(ADP-ribose) polymerase in recovery from DNA damage in mice and in cells. Proc. Natl Acad. Sci. USA 94, 7303–7307 (1997). A definitive study showing the different radiosensitivity of PARP1-deficient and wild-type mice.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Dantzer, F. et al. Base excision repair is impaired in mammalian cells lacking poly(ADP-ribose) polymerase-1. Biochemistry 39, 7559–7569 (2000). This paper discusses the role of PARP in regulating BER.

    Article  CAS  PubMed  Google Scholar 

  15. Flohr, C., Burkle, A., Radicella, J. P. & Epe, B. Poly(ADP-ribosyl)ation accelerates DNA repair in a pathway dependent on Cockayne syndrome B protein. Nucleic Acids Res. 31, 5332–5337 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. von Kobbe, C. et al. Poly(ADP-ribose) polymerase 1 regulates both the exonuclease and helicase activities of the Werner syndrome protein. Nucleic Acids Res. 32, 4003–4014 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kun, E. & Bauer, P. I. Cell biological functions of PARP I: an overview. Ital. J. Biochem. 50, 15–18 (2001).

    CAS  PubMed  Google Scholar 

  18. Yung, T. M., Sato, S. & Satoh, M. S. Poly(ADP-ribosyl)ation as a DNA damage-induced post-translational modification regulating poly(ADP-ribose) polymerase-1-topoisomerase I interaction. J. Biol. Chem. 279, 39686–39696 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Oei, S. L. & Ziegler, M. ATP for the DNA ligation step in base excision repair is generated from poly(ADP-ribose). J. Biol. Chem. 275, 23234–23239 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. Vodenicharov, M. D., Sallmann, F. R., Satoh, M. S. & Poirier, G. G. Base excision repair is efficient in cells lacking poly(ADP-ribose) polymerase 1. Nucleic Acids Res. 28, 3887–3896 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Russell, J., Sanderson, R. J. & Lindahl, T. Down-regulation of DNA repair synthesis at DNA single-strand interruptions in poly(ADP-ribose) polymerase-1 deficient murine cell extracts. DNA Repair 1, 547–558 (2002).

    Article  Google Scholar 

  22. Allinson, S. L., Dianova, I. I. & Dianov, G. L. Poly(ADP-ribose) polymerase in base excision repair: always engaged, but not essential for DNA damage processing. Acta Biochim. Pol. 50, 169–179 (2003).

    Article  CAS  PubMed  Google Scholar 

  23. Tong, W. M. et al. Null mutation of DNA strand break-binding molecule poly(ADP-ribose) polymerase causes medulloblastomas in p53(−/−) mice. Am. J. Pathol. 162, 343–352 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Nozaki, T. et al. PARP-1 deficiency implicated in colon and liver tumorigenesis induced by azoxymethane. Cancer Sci. 94, 497–500 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. Masutani, M., Nakagama, H. & Sugimura, T. Poly(ADP-ribose) and carcinogenesis. Genes Chromosom. Cancer 38, 339–348 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. Conde, C. et al. Loss of poly(ADP-ribose) polymerase-1 causes increased tumour latency in p53-deficient mice. EMBO J. 20, 3535–3543 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hans, M. A., Muller, M., Meyer-Ficca, M., Burkle, A. & Kupper, J. H. Overexpression of dominant negative PARP interferes with tumor formation of HeLa cells in nude mice: evidence for increased tumor cell apoptosis in vivo. Oncogene 18, 7010–7015 (1999).

    Article  CAS  PubMed  Google Scholar 

  28. Martin-Oliva, D. et al. Crosstalk between PARP-1 and NF-κB modulates the promotion of skin neoplasia. Oncogene 23, 5275–5283 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Simbulan-Rosenthal, C. M. et al. Misregulation of gene expression in primary fibroblasts lacking poly(ADP-ribose) polymerase. Proc. Natl Acad. Sci. USA 97, 11274–11279 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Simbulan-Rosenthal, C. M. et al. Inhibition of poly(ADP-ribose) polymerase activity is insufficient to induce tetraploidy. Nucleic Acids Res. 29, 841–849 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kraus, W. L. & Lis, J. T. PARP goes transcription. Cell 113, 677–683 (2003).

    Article  CAS  PubMed  Google Scholar 

  32. Reale, A., Matteis, G. D., Galleazzi, G., Zampieri, M. & Caiafa, P. Modulation of DNMT1 activity by ADP-ribose polymers. Oncogene 24, 13–19 (2005). This was the first report on the regulation by PARP of DNA methyl transferase.

    Article  CAS  PubMed  Google Scholar 

  33. Hassa, P. O. & Hottiger, M. O. The functional role of poly(ADP-ribose)polymerase 1 as novel coactivator of NF-κB in inflammatory disorders. Cell. Mol. Life Sci. 59, 1534–1553 (2002). A comprehensive overview on the role of PARP in regulating NF-κB activation.

    Article  CAS  PubMed  Google Scholar 

  34. Hassa, P. O., Buerki, C., Lombardi, C., Imhof, R. & Hottiger, M. O. Transcriptional coactivation of nuclear factor-κB-dependent gene expression by p300 is regulated by poly(ADP)-ribose polymerase-1. J. Biol. Chem. 278, 45145–45153 (2003).

    Article  CAS  PubMed  Google Scholar 

  35. Nakajima, H. et al. Critical role of the automodification of poly(ADP-ribose) polymerase-1 in nuclear factor-κB-dependent gene expression in primary cultured mouse glial cells. J. Biol. Chem. 279, 42774–42786 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. Hasko, G. et al. Poly(ADP-ribose) polymerase is a regulator of chemokine production: relevance for the pathogenesis of shock and inflammation. Mol. Med. 8, 283–289 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Garcia-Soriano, F. et al. Diabetic endothelial dysfunction: the role of poly(ADP-ribose) polymerase activation. Nature Med. 7, 108–113 (2001). This was the first report implicating the role of PARP in the pathogenesis of diabetic complications.

    Article  CAS  PubMed  Google Scholar 

  38. Du, X. et al. Inhibition of GAPDH activity by poly(ADP-ribose) polymerase activates three major pathways of hyperglycemic damage in endothelial cells. J. Clin. Invest. 112, 1049–1057 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Carrillo, A. et al. Transcription regulation of TNF-α-early response genes by poly(ADP-ribose) polymerase-1 in murine heart endothelial cells. Nucleic Acids Res. 32, 757–766 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ota, K., Kameoka, M., Tanaka, Y., Itaya, A. & Yoshihara, K. Expression of histone acetyltransferases was down-regulated in poly(ADP-ribose) polymerase-1-deficient murine cells. Biochem. Biophys. Res. Commun. 310, 312–317 (2003).

    Article  CAS  PubMed  Google Scholar 

  41. Zingarelli, B. et al. Absence of poly(ADP-ribose)polymerase-1 alters nuclear factor-κB activation and gene expression of apoptosis regulators after reperfusion injury. Mol. Med. 9, 143–153 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zingarelli, B., O'Connor, M. & Hake, P. W. Inhibitors of poly (ADP-ribose) polymerase modulate signal transduction pathways in colitis. Eur. J. Pharmacol. 469, 183–194 (2003).

    Article  CAS  PubMed  Google Scholar 

  43. Veres, B. et al. Decrease of the inflammatory response and induction of the Akt/protein kinase B pathway by poly-(ADP-ribose) polymerase 1 inhibitor in endotoxin-induced septic shock. Biochem. Pharmacol. 65, 1373–1382 (2003).

    Article  CAS  PubMed  Google Scholar 

  44. Veres, B. et al. Regulation of kinase cascades and transcription factors by a poly(ADP-ribose) polymerase-1 inhibitor, 4-hydroxyquinazoline, in lipopolysaccharide-induced inflammation in mice. J. Pharmacol. Exp. Ther. 310, 247–255 (2004). This paper shows that PARP inhibitors affect the activation of many kinase pathways.

    Article  CAS  PubMed  Google Scholar 

  45. Szabó, C. et al. Regulation of components of the inflammatory response by 5-iodo-6-amino-1,2-benzopyrone, and inhibitor of poly (ADP-ribose) synthetase and pleiotropic modifier of cellular signal pathways. Int. J. Oncol. 10, 1093–1101 (1997).

    Article  PubMed  Google Scholar 

  46. Ha, H. C. Defective transcription factor activation for proinflammatory gene expression in poly(ADP-ribose) polymerase 1-deficient glia. Proc. Natl Acad. Sci. USA 101, 5087–5092 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Simbulan-Rosenthal, C. M. et al. Misregulation of gene expression in primary fibroblasts lacking poly(ADP-ribose) polymerase. Proc. Natl Acad. Sci. USA 97, 11274–11279 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ha, H. C., Hester, L. D. & Snyder, S. H. Poly(ADP-ribose) polymerase-1 dependence of stress-induced transcription factors and associated gene expression in glia. Proc. Natl Acad. Sci. USA 99, 3270–3275 (2002). This report shows that PARP regulates signal transduction and gene expression in immunostimulated cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zingarelli, B. et al. Differential regulation of activator protein-1 and heat shock factor-1 in myocardial ischemia and reperfusion injury: role of poly(ADP-ribose) polymerase-1. Am. J. Physiol. Heart Circ. Physiol. 286, H1408–H1415 (2004).

    Article  CAS  PubMed  Google Scholar 

  50. Ivana-Scovassi, A. & Diederich, M. Modulation of poly(ADP-ribosylation) in apoptotic cells. Biochem. Pharmacol. 68, 1041–1047 (2004).

    Article  CAS  PubMed  Google Scholar 

  51. Kwan, J. A. et al. Matrix metalloproteinase-2 (MMP-2) is present in the nucleus of cardiac myocytes and is capable of cleaving poly (ADP-ribose) polymerase (PARP) in vitro. FASEB J. 18, 690–692 (2004).

    Article  CAS  PubMed  Google Scholar 

  52. Leist, M. et al. Apoptosis in the absence of poly-(ADP-ribose) polymerase. Biochem. Biophys. Res. Commun. 233, 518–522 (1997).

    Article  CAS  PubMed  Google Scholar 

  53. Virág, L. et al. Peroxynitrite-induced thymocyte apoptosis: the role of caspases and poly (ADP-ribose) synthetase activation. Immunology 94, 345–355 (1998). This was the first definitive report showing that PARP activation promotes cell necrosis.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Herceg, Z. & Wang, Z. Q. Failure of poly(ADP-ribose) polymerase cleavage by caspases leads to induction of necrosis and enhanced apoptosis. Mol. Cell. Biol. 19, 5124–5133 (1999). A definitive report showing that, by preventing PARP-mediated cell necrosis, PARP cleavage serves to promote apoptosis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Aikin, R., Rosenberg, L., Paraskevas, S. & Maysinger, D. Inhibition of caspase-mediated PARP-1 cleavage results in increased necrosis in isolated islets of Langerhans. J. Mol. Med. 82, 389–397 (2004).

    Article  CAS  PubMed  Google Scholar 

  56. Eliasson, M. J. et al. Poly(ADP-ribose) polymerase gene disruption renders mice resistant to cerebral ischemia. Nature Med. 3, 1089–1095 (1997). In this study, PARP-knockout mice showed an 80% reduction in cortical necrosis in a murine model of stroke.

    Article  CAS  PubMed  Google Scholar 

  57. Zingarelli, B., Salzman, A. L. & Szabó, C. Genetic disruption of poly (ADP-ribose) synthetase inhibits the expression of P-selectin and intercellular adhesion molecule-1 in myocardial ischemia/reperfusion injury. Circ. Res. 83, 85–94 (1998). In this study, PARP-knockout mice showed a 40% reduction in myocardial necrosis in a murine model of myocardial infarction.

    Article  CAS  PubMed  Google Scholar 

  58. Zhang, J., Dawson, V. L., Dawson, T. M. & Snyder, S. H. Nitric oxide activation of poly(ADP-ribose) synthetase in neurotoxicity. Science 263, 687–689 (1994). A seminal report linking NO overproduction, PARP activation and neurotoxicity.

    Article  CAS  PubMed  Google Scholar 

  59. Heller, B. et al. Inactivation of the poly(ADP-ribose) polymerase gene affects oxygen radical and nitric oxide toxicity in islet cells. J. Biol. Chem. 270, 11176–11180 (1995). A seminal report linking NO overproduction, PARP activation and islet cell toxicity.

    Article  CAS  PubMed  Google Scholar 

  60. Virág, L., Salzman, A. L. & Szabó, C. Poly(ADP-ribose) synthetase activation mediates mitochondrial injury during oxidant-induced cell death. J. Immunol. 161, 3753–3759 (1998).

    PubMed  Google Scholar 

  61. Ha, H. C. & Snyder, S. H. Poly(ADP-ribose) polymerase is a mediator of necrotic cell death by ATP depletion. Proc. Natl Acad. Sci. USA 96, 13978–13982 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Szabó, C., Zingarelli, B., O'Connor, M. & Salzman, A. L. DNA strand breakage, activation of poly (ADP-ribose) synthetase, and cellular energy depletion are involved in the cytotoxicity of macrophages and smooth muscle cells exposed to peroxynitrite. Proc. Natl Acad. Sci. USA 93, 1753–1758 (1996). This report describes the identification of peroxynitrite (the reaction product of NO and superoxide) as an endogenous trigger of DNA single-strand breakage and PARP activation.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Zingarelli, B., O'Connor, M., Wong, H., Salzman, A. L. & Szabó, C. Peroxynitrite-mediated DNA strand breakage activates poly-adenosine diphosphate ribosyl synthetase and causes cellular energy depletion in macrophages stimulated with bacterial lipopolysaccharide. J. Immunol. 156, 350–358 (1996).

    CAS  PubMed  Google Scholar 

  64. Berger, N. A. & Berger, S. J. Metabolic consequences of DNA damage: the role of poly (ADP-ribose) polymerase as mediator of the suicide response. Basic Life Sci. 38, 357–363 (1986). This paper describes the regulation by PARP activation of NAD depletion, cell suicide and DNA-repair mechanisms in cells with massive DNA damage.

    Article  CAS  PubMed  Google Scholar 

  65. Berger, N. A., Whitacre, C. M., Hashimoto, H., Berger, S. J. & Chatterjee, S. NAD and poly(ADP-ribose) regulation of proteins involved in response to cellular stress and DNA damage. Biochimie 77, 364–367 (1995).

    Article  CAS  PubMed  Google Scholar 

  66. Skaper, S. D. et al. Poly(ADP-ribose) polymerase-1 in acute neuronal death and inflammation: a strategy for neuroprotection. Ann. NY Acad. Sci. 993, 217–228 (2003).

    Article  CAS  PubMed  Google Scholar 

  67. Szabó, G., Liaudet, L., Hagl, S. & Szabó, C. Poly(ADP-ribose) polymerase activation in the reperfused myocardium. Cardiovasc. Res. 61, 471–480 (2004).

    Article  PubMed  CAS  Google Scholar 

  68. Ying, W., Alano, C. C., Garnier, P. & Swanson, R. A. NAD(+) as a metabolic link between DNA damage and cell death. J. Neurosci. Res. 79, 216–223 (2005).

    Article  CAS  PubMed  Google Scholar 

  69. Chiarugi, A. Poly(ADP-ribose) polymerase: killer or conspirator? The 'suicide hypothesis' revisited. Trends Pharmacol. Sci. 23, 122–129 (2002).

    Article  CAS  PubMed  Google Scholar 

  70. Ying, W., Garnier, P. & Swanson, R. A. NAD+ repletion prevents PARP-1-induced glycolytic blockade and cell death in cultured mouse astrocytes. Biochem. Biophys. Res. Commun. 308, 809–813 (2003).

    Article  CAS  PubMed  Google Scholar 

  71. Ying, W., Chen, Y., Alano, C. C. & Swanson, R. A. Tricarboxylic acid cycle substrates prevent PARP-mediated death of neurons and astrocytes. J. Cereb. Blood Flow Metab. 22, 774–779 (2002).

    Article  CAS  PubMed  Google Scholar 

  72. Wang, H. et al. Apoptosis-inducing factor substitutes for caspase executioners in NMDA-triggered excitotoxic neuronal death. J. Neurosci. 24, 10963–10973 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Xiao, C. Y., Chen, M., Zsengeller, Z. & Szabó, C. Poly(ADP-ribose) polymerase contributes to the development of myocardial infarction in diabetic rats and regulates the nuclear translocation of apoptosis-inducing factor. J. Pharmacol. Exp. Ther. 310, 498–504 (2004).

    Article  CAS  PubMed  Google Scholar 

  74. Hong, S. J., Dawson, T. M. & Dawson, V. L. Nuclear and mitochondrial conversations in cell death: PARP-1 and AIF signaling. Trends Pharmacol. Sci. 25, 259–264 (2004). A comprehensive overview of recent progress on the role of PARP in regulating AIF translocation and AIF-mediated cytotoxicity.

    Article  CAS  PubMed  Google Scholar 

  75. Du, L. et al. Intra-mitochondrial poly(ADP-ribosyl)ation contributes to NAD+ depletion and cell death induced by oxidative stress. J. Biol. Chem. 278, 18426–18433 (2003).

    Article  CAS  PubMed  Google Scholar 

  76. Lai, Y. C. et al. Poly-ADP-ribosylation as a post-translational modification of mitochondrial proteins: 82. Crit. Care Med. 32, A21 (2004).

    Article  Google Scholar 

  77. Scovassi, A. I. Mitochondrial poly(ADP-ribosylation): from old data to new perspectives. FASEB J. 18, 1487–1488 (2004).

    Article  CAS  PubMed  Google Scholar 

  78. Szabó, C. & Dawson, V. L. Role of poly(ADP-ribose) synthetase in inflammation and ischaemia–reperfusion. Trends Pharmacol. Sci. 19, 287–298 (1998).

    Article  PubMed  Google Scholar 

  79. Liaudet, L. et al. Protection against hemorrhagic shock in mice genetically deficient in poly(ADP-ribose)polymerase. Proc. Natl Acad. Sci. USA 97, 10203–10208 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Casey, P. J. et al. PARP inhibition modulates spinal cord dysfunction after thoracoabdominal aortic ischemia–reperfusion. J. Vasc. Surg. 41, 99–107 (2005).

    Article  PubMed  Google Scholar 

  81. Kendirci, M. et al. PARP inhibition restores in vivo erectile function in bilateral cavernous nerve injured rats. J. Sex. Med. (Suppl. 1), 107 (2004).

  82. Khan, A. U. et al. Liposomal NAD(+) prevents diminished O(2) consumption by immunostimulated Caco-2 cells. Am. J. Physiol. Lung Cell Mol. Physiol. 282, L1082–L1091 (2002).

    Article  CAS  PubMed  Google Scholar 

  83. Soriano, F. G, Pacher, P., Mabley, J., Liaudet, L. & Szabó, C. Rapid reversal of the diabetic endothelial dysfunction by pharmacological inhibition of poly(ADP-ribose) polymerase. Circ. Res. 89, 684–691 (2001).

    Article  CAS  PubMed  Google Scholar 

  84. Jijon, H. B. et al. Inhibition of poly(ADP-ribose) polymerase attenuates inflammation in a model of chronic colitis. Am. J. Physiol. Gastrointest. Liver Physiol. 279, G641–G651 (2000).

    Article  CAS  PubMed  Google Scholar 

  85. Suarez-Pinzon, W. L., Mabley, J. G., Power, R., Szabó, C. & Rabinovitch, A. Poly (ADP-ribose) polymerase inhibition prevents spontaneous and recurrent autoimmune diabetes in NOD mice by inducing apoptosis of islet-infiltrating leukocytes. Diabetes 52, 1683–1688 (2003).

    Article  CAS  PubMed  Google Scholar 

  86. Endres, M. et al. Role of peroxynitrite and neuronal nitric oxide synthase in the activation of poly(ADP-ribose) synthetase in a murine model of cerebral ischemia–reperfusion. Neurosci. Lett. 248, 41–44 (1998).

    Article  CAS  PubMed  Google Scholar 

  87. Liaudet, L. et al. Suppression of poly (ADP-ribose) polymerase activation by 3-aminobenzamide in a rat model of myocardial infarction: long-term morphological and functional consequences. Br. J. Pharmacol. 133, 1424–1430 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Szabó, C. et al. Inhibition of poly (ADP-ribose) synthetase attenuates neutrophil recruitment and exerts antiinflammatory effects. J. Exp. Med. 186, 1041–1049 (1997).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Szabó, C., Cuzzocrea, S., Zingarelli, B., O'Connor, M. & Salzman, A. L. Endothelial dysfunction in a rat model of endotoxic shock. Importance of the activation of poly (ADP-ribose) synthetase by peroxynitrite. J. Clin. Invest. 100, 723–735 (1997).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Szabó, C. et al. Angiotensin II-mediated endothelial dysfunction: role of poly(ADP-ribose) polymerase activation. Mol. Med. 10, 28–35 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Pacher, P., Mabley, J. G., Soriano, F. G., Liaudet, L. & Szabó, C. Activation of poly(ADP-ribose) polymerase contributes to the endothelial dysfunction associated with hypertension and aging. Int. J. Mol. Med. 9, 659–664 (2002).

    CAS  PubMed  Google Scholar 

  92. Zhang, C., Yang, J. & Jennings, L. K. Attenuation of neointima formation through the inhibition of DNA repair enzyme PARP-1 in balloon-injured rat carotid artery. Am. J. Physiol. Heart. Circ. Physiol. 287, H659–H666 (2004).

    Article  CAS  PubMed  Google Scholar 

  93. Benko, R., Pacher, P., Vaslin, A., Kollai, M. & Szabó, C. Restoration of the endothelial function in the aortic rings of apolipoprotein E deficient mice by pharmacological inhibition of the nuclear enzyme poly(ADP-ribose) polymerase. Life Sci. 75, 1255–1261 (2004).

    Article  CAS  PubMed  Google Scholar 

  94. Obrosova, I. G. et al. Role of poly(ADP-ribose) polymerase activation in diabetic neuropathy. Diabetes 53, 711–720 (2004).

    Article  CAS  PubMed  Google Scholar 

  95. Zheng, L., Szabó, C. & Kern, T. S. Poly(ADP-ribose) polymerase is involved in the development of diabetic retinopathy via regulation of nuclear factor-κB. Diabetes 53, 2960–2967 (2004).

    Article  CAS  PubMed  Google Scholar 

  96. Delaney, C. A. et al. Potentiation of temozolomide and topotecan growth inhibition and cytotoxicity by novel poly(adenosine diphosphoribose) polymerase inhibitors in a panel of human tumor cell lines. Clin. Cancer Res. 6, 2860–2867 (2000). This paper describes the synergistic cytotoxic effects of PARP inhibitors and certain antitumour agents, including temozolomide.

    CAS  PubMed  Google Scholar 

  97. Tentori, L. et al. Effects of single or split exposure of leukemic cells to temozolomide, combined with poly(ADP-ribose) polymerase inhibitors on cell growth, chromosomal aberrations and base excision repair components. Cancer Chemother. Pharmacol. 47, 361–369 (2001).

    Article  CAS  PubMed  Google Scholar 

  98. Tentori, L., Portarena, I., Bonmassar, E. & Graziani, G. Combined effects of adenovirus-mediated wild-type p53 transduction, temozolomide and poly (ADP-ribose) polymerase inhibitor in mismatch repair deficient and non-proliferating tumor cells. Cell Death Differ. 8, 457–469 (2001).

    Article  CAS  PubMed  Google Scholar 

  99. Calabrese, C. R. et al. Anticancer chemosensitization and radiosensitization by the novel poly(ADP-ribose) polymerase-1 inhibitor AG14361. J. Natl. Cancer Inst. 96, 56–67 (2004).

    Article  CAS  PubMed  Google Scholar 

  100. Curtin, N. J. et al. Novel poly(ADP-ribose) polymerase-1 inhibitor, AG14361, restores sensitivity to temozolomide in mismatch repair-deficient cells. Clin. Cancer Res. 10, 881–889 (2004).

    Article  CAS  PubMed  Google Scholar 

  101. Yung, T. M., Sato, S. & Satoh, M. S. Poly(ADP-ribosyl)ation as a DNA damage-induced post-translational modification regulating poly(ADP-ribose) polymerase-1-topoisomerase I interaction. J. Biol. Chem. 279, 39686–39696 (2004).

    Article  CAS  PubMed  Google Scholar 

  102. Malanga, M. & Althaus, F. R. Poly(ADP-ribose) reactivates stalled DNA topoisomerase I and induces DNA strand break resealing. J. Biol. Chem. 279, 5244–5248 (2004).

    Article  CAS  PubMed  Google Scholar 

  103. Munoz-Gamez, J. A. et al. PARP inhibition sensitizes p53-deficient breast cancer cells to doxorubicin-induced apoptosis. Biochem. J. 386, 119–125 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Pacher, P. et al. Activation of poly(ADP-ribose) polymerase contributes to development of doxorubicin-induced heart failure. J. Pharmacol. Exp. Ther. 300, 862–867 (2002).

    Article  CAS  PubMed  Google Scholar 

  105. Szenczi, O. et al. Poly(ADP-ribose) polymerase regulates myocardial calcium handling in doxorubicin-induced heart failure. Biochem. Pharmacol. 69, 725–732 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Chalmers, A. J. Poly(ADP-ribose) polymerase-1 and ionizing radiation: sensor, signaller and therapeutic target. Clin. Oncol. (R. Coll. Radiol.) 16, 29–39 (2004).

    Article  CAS  Google Scholar 

  107. Rudat, V., Kupper, J. H. & Weber, K. J. Trans-dominant inhibition of poly(ADP-ribosyl)ation leads to decreased recovery from ionizing radiation-induced cell killing. Int. J. Radiat. Biol. 73, 325–330 (1998).

    Article  CAS  PubMed  Google Scholar 

  108. Schlicker, A., Peschke, P., Burkle, A., Hahn, E. W. & Kim, J. H. 4-amino-1,8-naphthalimide: a novel inhibitor of poly(ADP-ribose) polymerase and radiation sensitizer. Int. J. Radiat. Biol. 75, 91–100 (1999).

    Article  CAS  PubMed  Google Scholar 

  109. Veuger, S. J., Curtin, N. J., Richardson, C. J., Smith, G. C. & Durkacz, B. W. Radiosensitization and DNA repair inhibition by the combined use of novel inhibitors of DNA-dependent protein kinase and poly(ADP-ribose) polymerase-1. Cancer Res. 63, 6008–6015 (2003).

    CAS  PubMed  Google Scholar 

  110. Brock, W. A. et al. Radiosensitization of human and rodent cell lines by INO-1001, a novel inhibitor of poly(ADP-ribose) polymerase. Cancer Lett. 205, 155–160 (2004).

    Article  CAS  PubMed  Google Scholar 

  111. Ruf, A., Mennissier, D. M., De Murcia, G. & Schulz, G. E. Structure of the catalytic fragment of poly(AD-ribose) polymerase from chicken. Proc. Natl Acad. Sci. USA 93, 7481–7485 (1996). This paper describes the characterization of the catalytic site of PARP.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Ruf, A., Mennissier, D. M., De Murcia, G. & Schulz, G. E. Inhibitor and NAD+ binding to poly(ADP-ribose) polymerase as derived from crystal structures and homology modeling. Biochemistry 37, 3893–3900 (1998).

    Article  CAS  PubMed  Google Scholar 

  113. Ruf, A., Rolli, V., De Murcia, G. & Schulz, G. E. The mechanism of the elongation and branching reaction of poly(ADP-ribose) polymerase as derived from crystal structures and mutagenesis. J. Mol. Biol. 278, 57–65 (1998).

    Article  CAS  PubMed  Google Scholar 

  114. Nguewa, P. A., Fuertes, M. A., Alonso, C. & Perez, J. M. Pharmacological modulation of poly(ADP-ribose) polymerase-mediated cell death: exploitation in cancer chemotherapy. Mol. Pharmacol. 64, 1007–1014 (2003).

    Article  CAS  PubMed  Google Scholar 

  115. Oliver, A. W. et al. Crystal structure of the catalytic fragment of murine poly(ADP-ribose) polymerase-2. Nucleic Acids Res. 32, 456–464 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Kinoshita, T. et al. Inhibitor-induced structural change of the active site of human poly(ADP-ribose) polymerase. FEBS Lett. 556, 43–46 (2004).

    Article  CAS  PubMed  Google Scholar 

  117. Hattori, K. et al. Rational approaches to discovery of orally active and brain-penetrable quinazolinone inhibitors of poly(ADP-ribose)polymerase. J. Med. Chem. 47, 4151–4154 (2004). This report describes orally active and CNS-penetrable inhibitors of PARP.

    Article  CAS  PubMed  Google Scholar 

  118. Banasik, M. & Ueda, K. Inhibitors and activators of ADP-ribosylation reactions. Mol. Cell Biochem. 138, 185–197 (1994).

    Article  CAS  PubMed  Google Scholar 

  119. Banasik, M., Komura, H., Shimoyama, M. & Ueda, K. Specific inhibitors of poly(ADP-ribose) synthetase and mono(ADP-ribosyl)transferase. J. Biol. Chem. 267, 1569–1575 (1992). A seminal report identifying several PARP-inhibitor structures that later became prototypes for optimization and drug development.

    Article  CAS  PubMed  Google Scholar 

  120. Li, J. H. & Zhang, J. PARP inhibitors. IDrugs 4, 804–812 (2001).

    CAS  PubMed  Google Scholar 

  121. Southan, G. J. & Szabó, C. Poly(ADP-ribose) polymerase inhibitors. Curr. Med. Chem. 10, 321–340 (2003).

    Article  CAS  PubMed  Google Scholar 

  122. Peukert, S. & Schwahn, U. New inhibitors of poly(ADP-ribose)polymerase (PARP). Expert Opin. Ther. Patents 14, 1531–1551 (2004).

    Article  CAS  Google Scholar 

  123. Suto, M. J., Turner, W. R., Arundel-Suto, C. M., Werbel, L. M. & Seboly-Leopold, J. S. Dihydroisoquinolinones: the design and synthesis of a new series of potent inhibitors of poly(ADP-ribose) polymerase. Anticancer Drug Design 6, 107–117 (1991).

    CAS  Google Scholar 

  124. Pivaziyan, A. D., Birks, E. M., Wood, T. G., Lin, T. S. and Prusoff, W. H. Inhibition of poly(ADP-ribose) polymerase activity by nucleoside analogs of thymidine. Biochem. Pharmacol. 44, 947 (1992).

    Article  Google Scholar 

  125. Steinhagen, H., Gerisch, M., Mittendorf, J., Schlemmer, K. H. & Albrecht, B. Substituted uracil derivatives as potent inhibitors of poly(ADP-ribose)polymerase-1 (PARP-1). Bioorg. Med. Chem. Lett. 12, 3187–3190 (2002).

    Article  CAS  PubMed  Google Scholar 

  126. Jagtap, P. G. et al. The discovery and synthesis of novel adenosine substituted 2,3-dihydro-1-H-isoindol-1-ones: potent inhibitors of poly(ADP-ribose) polymerase-1 (PARP-1). Bioorg. Med. Chem. Lett. 14, 81–85 (2004). This paper describes the synthesis and biological evaluation of the adenosine-based PARP inhibitor EB-47.

    Article  CAS  PubMed  Google Scholar 

  127. LaPlaca, M. C. et al. Pharmacologic inhibition of poly(ADP-ribose) polymerase is neuroprotective following traumatic brain injury in rats. J. Neurotrauma 18, 369–376 (2001).

    Article  CAS  PubMed  Google Scholar 

  128. Mazzon, E. et al. GPI 6150, a poly(ADP-ribose) polymerase inhibitor, exhibits an anti-inflammatory effect in rat models of inflammation. Eur. J. Pharmacol. 415, 85–94 (2001).

    Article  CAS  PubMed  Google Scholar 

  129. Mazzon, E. et al. Beneficial effects of GPI 6150, an inhibitor of poly(ADP-ribose) polymerase in a rat model of splanchnic artery occlusion and reperfusion. Shock 17, 222–227 (2002).

    Article  PubMed  Google Scholar 

  130. Mazzon, E. et al. GPI 6150, a PARP inhibitor, reduces the colon injury caused by dinitrobenzene sulfonic acid in the rat. Biochem. Pharmacol. 64, 327–337 (2002).

    Article  CAS  PubMed  Google Scholar 

  131. Feng, Y. & LeBlanc, M. H. Drug-induced hypothermia begun 5 minutes after injury with a poly(adenosine 5'-diphosphate-ribose) polymerase inhibitor reduces hypoxic brain injury in rat pups. Crit. Care Med. 30, 2420–2424 (2002).

    Article  CAS  PubMed  Google Scholar 

  132. Zhang, J. in PARP as a Therapeutic Target (ed. Zhang, J. C.) 239–333 (CRC Press, Boca Raton, Florida, 2002).

    Book  Google Scholar 

  133. Jagtap, P. et al. Novel phenanthridinone inhibitors of poly(adenosine 5'-diphosphate-ribose) synthetase: potent cytoprotective and anti-shock agents. Crit. Care Med. 30, 1071–1082 (2002). This paper reports on a phenanthridinone-based class of PARP inhibitors with anti-inflammatory effects.

    Article  CAS  PubMed  Google Scholar 

  134. Abdelkarim, G. E. et al. Protective effects of PJ34, a novel, potent inhibitor of poly(ADP-ribose) polymerase (PARP) in in vitro and in vivo models of stroke. Int. J. Mol. Med. 7, 255–260 (2001).

    CAS  PubMed  Google Scholar 

  135. Faro, R. et al. Myocardial protection by PJ34, a novel potent poly(ADP-ribose) synthetase inhibitor. Ann. Thorac. Surg. 73, 575–581 (2002).

    Article  PubMed  Google Scholar 

  136. Szabó, G. et al. Poly(ADP-ribose) polymerase inhibition reduces reperfusion injury after heart transplantation. Circ. Res. 90, 100–106 (2002).

    Article  PubMed  Google Scholar 

  137. Goldfarb, R. D. et al. Protective effects of a novel, potent inhibitor of poly(adenosine 5'-diphosphate-ribose) synthetase in a porcine model of severe bacterial sepsis. Crit. Care Med. 30, 974–980 (2002).

    Article  CAS  PubMed  Google Scholar 

  138. Mabley, J. G. et al. Anti-inflammatory effects of a novel, potent inhibitor of poly(ADP-ribose) polymerase. Inflamm. Res. 50, 561–569 (2001).

    Article  CAS  PubMed  Google Scholar 

  139. Pacher, P., Liaudet, L., Mabley, J., Komjati, K. & Szabó, C. Pharmacologic inhibition of poly(adenosine diphosphate-ribose) polymerase may represent a novel therapeutic approach in chronic heart failure. J. Am. Coll. Cardiol. 40, 1006–1016 (2002).

    Article  CAS  PubMed  Google Scholar 

  140. Pacher, P. et al. The role of poly(ADP-ribose) polymerase activation in the development of myocardial and endothelial dysfunction in diabetes. Diabetes 51, 514–521 (2002).

    Article  CAS  PubMed  Google Scholar 

  141. Pacher, P. et al. Endothelial dysfunction in aging animals: the role of poly(ADP-ribose) polymerase activation. Br. J. Pharmacol. 135, 1347–1350 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Iwashita, A. et al. Neuroprotective effects of a novel poly(ADP-ribose) polymerase-1 inhibitor, 2-[3-[4-(4-chlorophenyl)-1-piperazinyl] propyl]-4(3H)-quinazolinone (FR255595), in an in vitro model of cell death and in mouse 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of Parkinson's disease. J. Pharmacol. Exp. Ther. 309, 1067–1078 (2004).

    Article  CAS  PubMed  Google Scholar 

  143. Iwashita, A. et al. A novel and potent PARP-1 inhibitor, 5-chloro-2-[3-(4-phenyl-3, 6-dihydro-1(2H)-pyridinyl)propyl]-4(3H)-quinazolinone (FR247304), attenuates neuronal damage in vitro and in vivo models of cerebral ischemia. J. Pharmacol. Exp. Ther. 310, 425–436 (2004).

    Article  CAS  PubMed  Google Scholar 

  144. Iwashita, A. et al. A new poly(ADP-ribose) polymerase inhibitor, 2-(4-chlorophenyl)-5-quinoxalinecarboxamide (FR261529), ameliorates methamphetamine-induced dopaminergic neurotoxicity in mice. J. Pharmacol. Exp. Ther. 310, 1114–1124 (2004).

    Article  CAS  PubMed  Google Scholar 

  145. Kamanaka, Y. et al. Neuroprotective effects of ONO-1924H, an inhibitor of poly(ADP-ribose) polymerase (PARP), on cytotoxicity of PCl2 cells and ischemic cerebral damage. Life Sci. 76, 151–162 (2004).

    Article  CAS  PubMed  Google Scholar 

  146. Pellicciari, R. et al. Towards new neuroprotective agents: design and synthesis of 4H-thieno[2,3-c] isoquinoline-5-one derivatives as potent PARP-1 inhibitors. Farmaco 58, 851–858 (2003).

    Article  CAS  PubMed  Google Scholar 

  147. Chiarugi, A. et al. Novel isoquinolinone-derived inhibitors of poly(ADP-ribose) polymerase-1: pharmacological characterization and neuroprotective effects in an in vitro model of cerebral ischemia. J. Pharmacol. Exp. Ther. 305, 943–949 (2003).

    Article  CAS  PubMed  Google Scholar 

  148. Nakajima, H., Kakui, N., Ohkuma, K., Ishikawa, M. & Hasegawa, T. A newly synthesized poly(ADP-ribose) polymerase inhibitor. 2-methyl-3,5,7,8-tetrahydrothipyrano[4,3-d]pyrimidine-4-one (DR2313): pharmacological profiles, neuroprotective effects, and therapeutic time window in cerebral ischemia in rats. J. Pharmacol. Exp. Ther. 312, 472–481 (2005).

    Article  CAS  PubMed  Google Scholar 

  149. Ferraris, D. et al. Design and synthesis of poly ADP-ribose polymerase-1 inhibitors. 2. Biological evaluation of aza-5[H]-phenanthridin-6-ones as potent, aqueous-soluble compounds for the treatment of ischemic injuries. J. Med. Chem. 46, 3138–3151 (2003).

    Article  CAS  PubMed  Google Scholar 

  150. Ferraris, D. et al. Design and synthesis of poly(ADP-ribose)polymerase-1 (PARP-1) inhibitors. Part 3: In vitro evaluation of 1,3,4,5-tetrahydro-benzo[c][1,6]- and [c][1,7]-naphthyridin-6-ones. Bioorg. Med. Chem. Lett. 13, 2513–2518 (2003).

    Article  CAS  PubMed  Google Scholar 

  151. White, A. W. et al. Resistance-modifying agents. 9. Synthesis and biological properties of benzimidazole inhibitors of the DNA repair enzyme poly(ADP-ribose) polymerase. J. Med. Chem. 46, 3138–3151 (2003).

    Article  CAS  Google Scholar 

  152. Canan-Koch, S. S. et al. Novel tricyclic poly(ADP-ribose) polymerase-1 inhibitors with potent anticancer chemopotentiating activity: design, synthesis, and X-ray cocrystal structure. J. Med. Chem. 45, 4961–4974 (2002).

    Article  PubMed  CAS  Google Scholar 

  153. Skalitzky, J. D. et al. Tricyclic benzimidazoles as potent poly(ADP-ribose) polymerase-1 inhibitors. J. Med. Chem. 46, 210–213 (2003).

    Article  CAS  PubMed  Google Scholar 

  154. Calabrese, C. R. et al. Identification of potent nontoxic poly(ADP-ribose) polymerase-1 inhibitors: chemopotentiation and pharmacological studies. Clin. Cancer Res. 9, 2711–2718 (2003).

    CAS  PubMed  Google Scholar 

  155. Tikhe, J. G. et al. Design, synthesis, and evaluation of 3,4-dihydro-2H-[1,4]diazepino[6,7,1-hi]indol-1-ones as inhibitors of poly(ADP-ribose) polymerase. J. Med. Chem. 47, 5467–5481 (2004).

    Article  CAS  PubMed  Google Scholar 

  156. Curtin, N. PARP-1: A New Target for Cancer Treatment. Cancer Research UK Scientific Yearbook 52–54 (2002–03).

    Google Scholar 

  157. Farraris, D. et al. Design and synthesis of poly(ADP-ribose) polymerase-1 (PARP-1) inhibitors. Part 4: biological evaluation of imidazobenzodiazepines as potent PARP-1 inhibitors for treatment of ischemic injuries. Bioorg. Med. Chem. 11, 3695–3707 (2003). This paper describes imidazobenzodiazepines and their effects in streptozotocin-induced diabetes and focal cerebral ischaemia.

    Article  CAS  Google Scholar 

  158. Zimmermann, K., Portmann, R. & Rigel, D. Indoloquinazolinones. US Patent 0199505 A (2003).

  159. Miknyoczki, S. J. et al. Chemopotentiation of temozolomide, irinotecan, and cisplatin activity by CEP-6800, a novel poly(ADP-ribose) polymerase inhibitor. Mol. Cancer Ther. 2, 371–382 (2003).

    CAS  PubMed  Google Scholar 

  160. Jagtap, P. G., Baloglu, E., van Duzer, J. H., Szabó, C. & Salzman, A. Substituted indeno[1,2-c]isoquinoline derivatives and methods of use thereof. US Patent 6,828,319 (2004).

  161. Komjati, K. et al. Poly(ADP-ribose) polymerase inhibition protect neurons and the white matter and regulates the translocation of apoptosis-inducing factor in stroke. Int. J. Mol. Med. 13, 373–382 (2004).

    CAS  PubMed  Google Scholar 

  162. Woolley, S. M. et al. Role of poly (ADP) ribose synthetase in lung ischemia–reperfusion injury. J. Heart Lung Transplant. 23, 1290–1296 (2004).

    Article  PubMed  Google Scholar 

  163. Xiao, C. Y. et al. Poly(ADP-ribose) polymerase promotes cardiac remodeling, contractile failure and translocation of apoptosis-inducing factor in a murine experimental model of aortic banding and heart failure. J. Pharmacol. Exp. Ther. 3/2, 891–898 (2005).

    Article  CAS  Google Scholar 

  164. Farivar, A. S. et al. Intratracheal poly (ADP) ribose synthetase inhibition ameliorates lung ischemia reperfusion injury. Ann. Thorac. Surg. 77, 1938–1943 (2004).

    Article  PubMed  Google Scholar 

  165. Murthy, K. G., Xiao, C. Y., Mabley, J. G., Chen, M. & Szabó, C. Activation of poly(ADP-ribose) polymerase in circulating leukocytes during myocardial infarction. Shock 21, 230–234 (2004).

    Article  CAS  PubMed  Google Scholar 

  166. Li, F., Drel, V. R., Szabó, C., Stevens, M. J. & Obrosova, I. G. Low dose PARP inhibitor-containing combination therapies reverse early experimental diabetic neuropathy. Diabetes (in the press).

  167. Iwashita, A. et al. Discovery of quinazoline and quinoxaline derivatives as potent and selective poly(ADP-ribose)polymerase-1/2 inhibitors. FEBS Lett. 579, 1389–1393 (2005).

    Article  CAS  PubMed  Google Scholar 

  168. Popoff, I. et al. Antisense oligonucleotides to poly(ADP-ribose) polymerase-2 ameliorate colitis in interleukin-10-deficient mice. J. Pharmacol. Exp. Ther. 303, 1145–1154 (2002).

    Article  CAS  PubMed  Google Scholar 

  169. Bryant, H. E. et al. Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature 434, 913–917 (2005).

    Article  CAS  PubMed  Google Scholar 

  170. Farmer, H. et al. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 434, 917–921 (2005).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Work in the area of PARP and the pathogenesis of various diseases was supported by grants from the US National Institutes of Health to C.S. and P.J. The authors thank G. Graziani of the University of Rome for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Csaba Szabó.

Ethics declarations

Competing interests

C.S. and P.G. have the following competing interest: stock (C.S.), stock options (P.J), employment (C.S. and P.J.), board of directors (C.S.) and patents (C.S. and P.J.).

Related links

Related links

DATABASES

Entrez Gene

ATF2

ICAM1

IL-6

PARP1

PARP2

TNF-α

WRN

XRCC1

OMIM

atherosclerosis

Parkinson disease

FURTHER INFORMATION

Inotek Pharmaceuticals

Northern Institute for Cancer Research

Glossary

ZINC FINGER

Protein module in which conserved cysteine or histidine residues coordinate a zinc atom. Some zinc-finger regions bind specific DNA sequences.

NUCLEOSOME

A packing unit for DNA within the cell nucleus, which gives the chromatin a 'beads-on-a-string' structure, in which the 'beads' consist of complexes of nuclear proteins (histones) and DNA, and the 'string' consists of DNA only. A histone octamer forms a core around which the double-stranded DNA helix is wound twice.

PHARMACOPHORE

The ensemble of steric and electronic features that is necessary to ensure optimal interactions with a specific biological target structure and to trigger (or to block) its biological response.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jagtap, P., Szabó, C. Poly(ADP-ribose) polymerase and the therapeutic effects of its inhibitors. Nat Rev Drug Discov 4, 421–440 (2005). https://doi.org/10.1038/nrd1718

Download citation

  • Issue date:

  • DOI: https://doi.org/10.1038/nrd1718

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing