Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Cosmic structure as the quantum interference of a coherent dark wave

Abstract

The conventional cold-particle interpretation of dark matter (known as ‘cold dark matter’, or CDM) still lacks laboratory support and struggles with the basic properties of common dwarf galaxies, which have surprisingly uniform central masses and shallow density profiles1,2,3,4,5. In contrast, galaxies predicted by CDM extend to much lower masses, with steeper, singular profiles6,7,8,9. This tension motivates cold, wavelike dark matter (ψDM) composed of a non-relativistic Bose–Einstein condensate, so the uncertainty principle counters gravity below a Jeans scale10,11,12. Here we achieve cosmological simulations of this quantum state at unprecedentedly high resolution capable of resolving dwarf galaxies, with only one free parameter, mB, the boson mass. We demonstrate the large-scale structure is indistinguishable from CDM, as desired, but differs radically inside galaxies where quantum interference forms solitonic cores surrounded by extended haloes of fluctuating density granules. These results allow us to determine eV using stellar phase-space distributions in dwarf spheroidal galaxies. Denser, more massive solitons are predicted for Milky Way sized galaxies, providing a substantial seed to help explain early spheroid formation. The onset of galaxy formation is substantially delayed relative to CDM, appearing at redshift z ≲ 13 in our simulations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Comparison of cosmological large-scale structures formed by standard CDM and by wavelike dark matter, ψDM.
Figure 2: A slice of the density field of the ψDM simulation on various scales at z = 0.1.
Figure 3: Radial density profiles of haloes formed in the ψDM model.
Figure 4: Modelling the Fornax dSph galaxy with the soliton profile.

Similar content being viewed by others

References

  1. Moore, B. Evidence against dissipation-less dark matter from observations of galaxy haloes. Nature 370, 629–631 (1994).

    Article  ADS  Google Scholar 

  2. Gilmore, G. et al. The observed properties of dark matter on small spatial scales. Astrophys. J. 663, 948–959 (2007).

    Article  ADS  Google Scholar 

  3. Strigari, L. E. et al. A common mass scale for satellite galaxies of the Milky Way. Nature 454, 1096–1097 (2008).

    Article  ADS  Google Scholar 

  4. Walker, M. G. & Peñarrubia, J. A method for measuring (slopes of) the mass profiles of dwarf spheroidal galaxies. Astrophys. J. 742, 20–38 (2011).

    Article  ADS  Google Scholar 

  5. Amorisco, N. C., Agnello, A. & Evans, N. W. The core size of the Fornax dwarf spheroidal. Mon. Not. R. Astron. Soc. 429, L89–L93 (2013).

    Article  ADS  Google Scholar 

  6. Dubinski, J. & Carlberg, R. G. The structure of cold dark matter halos. Astrophys. J. 378, 496–503 (1991).

    Article  ADS  Google Scholar 

  7. Kauffmann, G., White, S. D. M. & Guiderdoni, B. The formation and evolution of galaxies within merging dark matter haloes. Mon. Not. R. Astron. Soc. 264, 201–218 (1993).

    Article  ADS  Google Scholar 

  8. Klypin, A., Kravtsov, A. V., Valenzuela, O. & Prada, F. Where are the missing galactic satellites? Astrophys. J. 522, 82–92 (1999).

    Article  ADS  Google Scholar 

  9. Moore, B. et al. Dark matter substructure within galactic halos. Astrophys. J. 524, L19–L22 (1999).

    Article  ADS  Google Scholar 

  10. Peebles, P. J. E. Fluid dark matter. Astrophys. J. 534, L127–L129 (2000).

    Article  ADS  Google Scholar 

  11. Hu, W., Barkana, R. & Gruzinov, A. Fuzzy cold dark matter: The wave properties of ultralight particles. Phys. Rev. Lett. 85, 1158–1161 (2000).

    Article  ADS  Google Scholar 

  12. Marsh, D. J. E. & Silk, J. A model for halo formation with axion mixed dark matter. Mon. Not. R. Astron. Soc. 437, 2652–2663 (2014).

    Article  ADS  Google Scholar 

  13. Akerib, D. S. et al. First results from the LUX dark matter experiment at the Sanford Underground Research Facility. Phys. Rev. Lett. 112, 091303 (2014).

    Article  ADS  Google Scholar 

  14. Peebles, P. J. E. & Ratra, B. Cosmology with a time-variable cosmological ‘constant’. Astrophys. J. 325, L17–L20 (1988).

    Article  ADS  Google Scholar 

  15. Arvanitaki, A., Dimopoulos, S., Dubovsky, S., Kaloper, N. & March-Russell, J. String axiverse. Phys. Rev. D 81, 123530 (2010).

    Article  ADS  Google Scholar 

  16. Widrow, L. M. & Kaiser, N. Using the Schroedinger equation to simulate collisionless matter. Astrophys. J. 416, L71–L74 (1993).

    Article  ADS  Google Scholar 

  17. Woo, T-P. & Chiueh, T. High-resolution simulation on structure formation with extremely light bosonic dark matter. Astrophys. J. 697, 850–861 (2009).

    Article  ADS  Google Scholar 

  18. Spergel, D. N. & Steinhardt, P. J. Observational evidence for self-interacting cold dark matter. Phys. Rev. Lett. 84, 3760–3763 (2000).

    Article  ADS  Google Scholar 

  19. Bode, P., Ostriker, J. P. & Turok, N. Halo formation in warm dark matter models. Astrophys. J. 556, 93–107 (2001).

    Article  ADS  Google Scholar 

  20. Macciò, A. V., Paduroiu, S., Anderhalden, D., Schneider, A. & Moore, B. Cores in warm dark matter haloes: A Catch 22 problem. Mon. Not. R. Astron. Soc. 424, 1105–1112 (2012).

    Article  ADS  Google Scholar 

  21. Rocha, M. et al. Cosmological simulations with self-interacting dark matter—I. Constant-density cores and substructure. Mon. Not. R. Astron. Soc. 430, 81–104 (2013).

    Article  ADS  Google Scholar 

  22. Schive, H-Y., Tsai, Y-C. & Chiueh, T. GAMER: A graphic processing unit accelerated adaptive-mesh-refinement code for astrophysics. Astrophys. J. Suppl. 186, 457–484 (2010).

    Article  ADS  Google Scholar 

  23. Navarro, J. F., Frenk, C. S. & White, S. D. M. The structure of cold dark matter halos. Astrophys. J. 462, 563–575 (1996).

    Article  ADS  Google Scholar 

  24. Amorisco, N. C. & Evans, N. W. Phase-space models of the dwarf spheroidals. Mon. Not. R. Astron. Soc. 411, 2118–2136 (2011).

    Article  ADS  Google Scholar 

  25. Amorisco, N. C. & Evans, N. W. A troublesome past: Chemodynamics of the Fornax dwarf spheroidal. Astrophys. J. 756, L2–L6 (2012).

    Article  ADS  Google Scholar 

  26. Wolf, J. et al. Accurate masses for dispersion-supported galaxies. Mon. Not. R. Astron. Soc. 406, 1220–1237 (2010).

    ADS  Google Scholar 

  27. Cole, D. R., Dehnen, W., Read, J. I. & Wilkinson, M. I. The mass distribution of the Fornax dSph: Constraints from its globular cluster distribution. Mon. Not. R. Astron. Soc. 426, 601–613 (2012).

    Article  ADS  Google Scholar 

  28. Lora, V., Magaña, J., Bernal, A., Sánchez-Salcedo, F. J. & Grebel, E. K. On the mass of ultra-light bosonic dark matter from galactic dynamics. J. Cosmol. Astropart. Phys. 2, 11–32 (2012).

    Article  ADS  Google Scholar 

  29. Minniti, D. Field stars and clusters of the galactic bulge: Implications for galaxy formation. Astrophys. J. 459, 175–180 (1996).

    Article  ADS  Google Scholar 

  30. Ness, M. et al. ARGOS - IV. The kinematics of the Milky Way bulge. Mon. Not. R. Astron. Soc. 432, 2092–2103 (2013).

    Article  ADS  Google Scholar 

  31. Zoccali, M. et al. Age and metallicity distribution of the galactic bulge from extensive optical and near-IR stellar photometry. Astron. Astrophys. 399, 931–956 (2003).

    Article  ADS  Google Scholar 

  32. Abel, T., Bryan, G. L. & Norman, M. L. The formation of the first star in the universe. Science 295, 93–98 (2002).

    Article  ADS  Google Scholar 

  33. Coe, D. et al. CLASH: Three strongly lensed images of a candidate z ≍ 11 galaxy. Astrophys. J. 762, 32–52 (2013).

    Article  ADS  Google Scholar 

  34. Springel, V. The cosmological simulation code GADGET-2. Mon. Not. R. Astron. Soc. 364, 1105–1134 (2005).

    Article  ADS  Google Scholar 

  35. Burkert, A. The structure of dark matter halos in dwarf galaxies. Astrophys. J. 447, L25–L28 (1995).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank T-P. Woo for calculating the soliton solution and M-H. Liao for helping conduct the simulations. We acknowledge Chipbond Technology Corporation for donating the GPU cluster with which this work was conducted. This work is supported in part by the National Science Council of Taiwan under grants NSC100-2112-M-002-018-MY3 and NSC99-2112-M-002-009-MY3.

Author information

Authors and Affiliations

Authors

Contributions

Each author has contributed significantly to this paper. In particular, T.C. conceived and supervised the project, H-Y.S. developed the code and conducted the simulations, the results of which have been linked by T.B. to the observations.

Corresponding author

Correspondence to Tzihong Chiueh.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1592 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schive, HY., Chiueh, T. & Broadhurst, T. Cosmic structure as the quantum interference of a coherent dark wave. Nature Phys 10, 496–499 (2014). https://doi.org/10.1038/nphys2996

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys2996

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing