Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Duration of antiviral immunity after smallpox vaccination

Abstract

Although naturally occurring smallpox was eliminated through the efforts of the World Health Organization Global Eradication Program, it remains possible that smallpox could be intentionally released. Here we examine the magnitude and duration of antiviral immunity induced by one or more smallpox vaccinations. We found that more than 90% of volunteers vaccinated 25–75 years ago still maintain substantial humoral or cellular immunity (or both) against vaccinia, the virus used to vaccinate against smallpox. Antiviral antibody responses remained stable between 1–75 years after vaccination, whereas antiviral T-cell responses declined slowly, with a half-life of 8–15 years. If these levels of immunity are considered to be at least partially protective, then the morbidity and mortality associated with an intentional smallpox outbreak would be substantially reduced because of pre-existing immunity in a large number of previously vaccinated individuals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Virus-specific CD4+ T-cell memory after smallpox vaccination.
Figure 2: Virus-specific CD8+ T-cell memory after smallpox vaccination.
Figure 3: Relationship between vaccinia-specific CD4+ and CD8+ T-cell memory over time.
Figure 4: Long-lived antiviral antibody responses induced by smallpox vaccination.

Similar content being viewed by others

References

  1. Henderson, D.A. The looming threat of bioterrorism. Science 283, 1279–1282 (1999).

    Article  CAS  Google Scholar 

  2. Meltzer, M.I., Damon, I., LeDuc, J.W. & Millar, J.D. Modeling potential responses to smallpox as a bioterrorist weapon. Emerg. Infect. Dis. 7, 959–969 (2001).

    Article  CAS  Google Scholar 

  3. Gani, R. & Leach, S. Transmission potential of smallpox in contemporary populations. Nature 414, 748–751 (2001).

    Article  CAS  Google Scholar 

  4. Kaplan, E.H., Craft, D.L. & Wein, L.M. Emergency response to a smallpox attack: the case for mass vaccination. Proc. Natl. Acad. Sci. USA 99, 10935–10940 (2002).

    Article  CAS  Google Scholar 

  5. O'Toole, T., Mair, M. & Inglesby, T.V. Shining light on “Dark Winter”. Clin. Infect. Dis. 34, 972–983 (2002).

    Article  Google Scholar 

  6. Smith, G.L. & McFadden, G. Science and society. Smallpox: anything to declare? Nat. Rev. Immunol. 2, 521–527 (2002).

    Article  CAS  Google Scholar 

  7. Fenner, F., Henderson, D.A., Arita, I., Jezek, Z. & Ladnyi, I.D. in The Pathogenesis, Immunology, and Pathology of Smallpox and Vaccinia (World Health Organization, Geneva, 1988).

    Google Scholar 

  8. Mack, T.M., Noble, J. Jr & Thomas, D.B. A prospective study of serum antibody and protection against smallpox. Am. J. Trop. Med. Hyg. 21, 214–218 (1972).

    Article  CAS  Google Scholar 

  9. Sarkar, J.K., Mitra, A.C. & Mukherjee, M.K. The minimum protective level of antibodies in smallpox. Bull. World Health Organ. 52, 307–311 (1975).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Downie, A.W. & McCarthy, K. The antibody response in man following infection with viruses of the pox group. III. Antibody response in smallpox. J. Hyg. 56, 479–487 (1958).

    Article  CAS  Google Scholar 

  11. Slifka, M.K. & Whitton, J.L. Activated and memory CD8+ T cells can be distinguished by their cytokine profiles and phenotypic markers. J. Immunol. 164, 208–216 (2000).

    Article  CAS  Google Scholar 

  12. Nyerges, G., Hollos, I., Losonczy, G., Erdos, L. & Petras, G. Development of vaccination immunity in hospital personnel revaccinated at three-year intervals. Acta Microbiol. Acad. Sci. Hung. 19, 63–68 (1972).

    CAS  PubMed  Google Scholar 

  13. el-Ad, B. et al. The persistence of neutralizing antibodies after revaccination against smallpox. J. Infect. Dis. 161, 446–448 (1990).

    Article  CAS  Google Scholar 

  14. Terajima, M. et al. Quantitation of CD8+ T cell responses to newly identified HLA-A*0201-restricted T cell epitopes conserved among vaccinia and variola (smallpox) viruses. J. Exp. Med. 197, 927–932 (2003).

    Article  CAS  Google Scholar 

  15. Speller, S.A. & Warren, A.P. Ex vivo detection and enumeration of human antigen-specific CD8+ T lymphocytes using antigen delivery by a recombinant vaccinia expression vector and intracellular cytokine staining. J. Immunol. Methods 262, 167–180 (2002).

    Article  CAS  Google Scholar 

  16. McCarthy, K. & Downie, A.W. The antibody response in man following infection with viruses of the pox group. II. Antibody response following vaccination. J. Hyg. 56, 466–478 (1958).

    Article  CAS  Google Scholar 

  17. Stienlauf, S. et al. Kinetics of formation of neutralizing antibodies against vaccinia virus following re-vaccination. Vaccine 17, 201–204 (1999).

    Article  CAS  Google Scholar 

  18. Centers for Disease Control. Vaccinia (smallpox) vaccine: recommendations of the Advisory Committee on Immunization practices (ACIP). Morb. Mortal. Wkly. Rep. 50, 1–25 (2001).

  19. Frey, S.E., Newman, F.K., Yan, L. & Belshe, R.B. Response to smallpox vaccine in persons immunized in the distant past. J. Am. Med. Assoc. 289, 3295–3299 (2003).

    Article  Google Scholar 

  20. Frey, S.E. et al. Dose-related effects of smallpox vaccine. N. Engl. J. Med. 346, 1275–1280 (2002).

    Article  CAS  Google Scholar 

  21. Ennis, F.A., Cruz, J., Demkowicz, W.E. Jr, Rothman, A.L. & McClain, D.J. Primary induction of human CD8+ cytotoxic T lymphocytes and interferon-γ-producing T cells after smallpox vaccination. J. Infect. Dis. 185, 1657–1659 (2002).

    Article  Google Scholar 

  22. CDC. Smallpox - Stockholm, Sweden, 1963. Morb. Mortal. Wkly. Rep. 12, 172, 174–176, 183, 188, 191, 220, 236 (1963).

  23. Mack, T.M. Smallpox in Europe, 1950–1971. J. Infect. Dis. 125, 161–169 (1972).

    Article  CAS  Google Scholar 

  24. Gayton, W. in The value of vaccination as shown by an analysis of 10,403 cases of smallpox (Gillett & Henty, London, 1885).

    Google Scholar 

  25. Hanna, W. in Studies in smallpox and vaccination (William Wood and Company, New York, 1913).

    Book  Google Scholar 

  26. Hanna, W. & Baxby, D. Studies in smallpox and vaccination. 1913. Rev. Med. Virol. 12, 201–209 (2002).

    Article  CAS  Google Scholar 

  27. Heiner, G.G. et al. A study of inapparent infection in smallpox. Am. J. Epidemiol. 94, 252–268 (1971).

    Article  CAS  Google Scholar 

  28. Kempe, C.H. Studies on smallpox and complications of smallpox vaccination. Pediatrics 25, 176–189 (1960).

    Google Scholar 

  29. Czerny, C.P. & Mahnel, H. Structural and functional analysis of orthopoxvirus epitopes with neutralizing monoclonal antibodies. J. Gen. Virol. 71 (Pt. 10), 2341–2352 (1990).

    Article  CAS  Google Scholar 

  30. Galmiche, M.C., Goenaga, J., Wittek, R. & Rindisbacher, L. Neutralizing and protective antibodies directed against vaccinia virus envelope antigens. Virology 254, 71–80 (1999).

    Article  CAS  Google Scholar 

  31. Ramirez, J.C., Tapia, E. & Esteban, M. Administration to mice of a monoclonal antibody that neutralizes the intracellular mature virus form of vaccinia virus limits virus replication efficiently under prophylactic and therapeutic conditions. J. Gen. Virol. 83, 1059–1067 (2002).

    Article  CAS  Google Scholar 

  32. Zinkernagel, R.M. & Althage, A. Antiviral protection by virus-immune cytotoxic T cells: infected target cells are lysed before infectious virus progeny is assembled. J. Exp. Med. 145, 644–651 (1977).

    Article  CAS  Google Scholar 

  33. Derby, M., Alexander-Miller, M., Tse, R. & Berzofsky, J. High-avidity CTL exploit two complementary mechanisms to provide better protection against viral infection than low-avidity CTL. J. Immunol. 166, 1690–1697 (2001).

    Article  CAS  Google Scholar 

  34. Appay, V. et al. Characterization of CD4(+) CTLs ex vivo. J. Immunol. 168, 5954–5958 (2002).

    Article  CAS  Google Scholar 

  35. Yanai, F. et al. Essential roles of perforin in antigen-specific cytotoxicity mediated by human CD4+ T lymphocytes: analysis using the combination of hereditary perforin-deficient effector cells and Fas-deficient target cells. J. Immunol. 170, 2205–2213 (2003).

    Article  CAS  Google Scholar 

  36. Littaua, R.A., Takeda, A., Cruz, J. & Ennis, F.A. Vaccinia virus-specific human CD4+ cytotoxic T-lymphocyte clones. J. Virol. 66, 2274–2280 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Erickson, A.L. & Walker, C.M. Class I major histocompatibility complex-restricted cytotoxic T cell responses to vaccinia virus in humans. J. Gen. Virol. 74, 751–754 (1993).

    Article  Google Scholar 

  38. Demkowicz, W.E.J., Littaua, R.A., Wang, J. & Ennis, F.A. Human cytotoxic T-cell memory: long-lived responses to vaccinia virus. J. Virol. 70, 2627–2631 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Zarling, J.M. et al. Proliferative and cytotoxic T cells to AIDS virus glycoproteins in chimpanzees immunized with a recombinant vaccinia virus expressing AIDS virus envelope glycoproteins. J. Immunol. 139, 988–990 (1987).

    CAS  PubMed  Google Scholar 

  40. Breman, J.G. & Henderson, D.A. Diagnosis and management of smallpox. N. Engl. J. Med. 346, 1300–1308 (2002).

    Article  Google Scholar 

  41. Perrin, L.H., Reynolds, D., Zinkernagel, R. & Oldstone, M.B. Generation of virus-specific cytolytic activity in human peripheral lymphocytes after vaccination with vaccinia virus and measles virus. Med. Microbiol. Immunol. (Berl.) 166, 71–79 (1978).

    Article  CAS  Google Scholar 

  42. Perrin, L.H., Zinkernagel, R.M. & Oldstone, M.B. Immune response in humans after vaccination with vaccinia virus: generation of a virus-specific cytotoxic activity by human peripheral lymphocytes. J. Exp. Med. 146, 949–969 (1977).

    Article  CAS  Google Scholar 

  43. Kempe, C.H., Berge, T.O. & England, B. Hyperimmune vaccinial γ globulin. Pediatrics 18, 177 (1956).

    CAS  PubMed  Google Scholar 

  44. Peirce, E.R., Melville, F.S., Downie, A.W. & Duckworth, M.J. Antivaccinial γ-globulin in smallpox prophylaxis. Lancet 2, 635–638 (1958).

    Article  CAS  Google Scholar 

  45. Kempe, C.H. et al. The use of vaccinia hyperimmune γ-globulin in the prophylaxis of smallpox. Bull World Health Organ. 25, 41–48 (1961).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Slifka, M.K. & Ahmed, R. Long-term humoral immunity against viruses: revisiting the issue of plasma cell longevity. Trends Microbiol. 4, 394–400 (1996).

    Article  CAS  Google Scholar 

  47. Frelinger, J.A. & Garba, M.L. How durable are the immune responses after smallpox vaccination? N. Engl. J. Med. 347, 689–690 (2002).

    Article  Google Scholar 

  48. Slifka, M.K. & Ahmed, R. Limiting dilution analysis of virus-specific memory B cells by an ELISPOT assay. J. Immunol. Meth. 199, 37–46 (1996).

    Article  CAS  Google Scholar 

  49. Anderson, S.G. & Skegg, J. The international standard for anti-smallpox serum. Bull. World Health Organ. 42, 515–523 (1970).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Cutchins, E., Warren, J. & Jones, W.P. The antibody response to smallpox vaccination as measured by a tissue culture plaque technique. J. Immunol. 85, 275–283 (1960).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the many volunteers for the generous gift of their time and their unselfish participation in this research study; S. Tofte, T. Gromlich and K. Buxton for technical assistance; J. Kravitz, A. Melnick and G. Oxman for their support; and J.L. Whitton for insightful discussions. This work was supported by Oregon Health and Science University postdoctoral fellowship T32HL07781 (to S.G.H.), National Institutes of Health grants AI21640 (to J.A.N.) and AI051346 (to M.K.S.), Public Health Service grant 5 M01 RR00334 (to M.K.S.) and Oregon National Primate Research Center grant RR00163 (to M.K.S.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark K Slifka.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hammarlund, E., Lewis, M., Hansen, S. et al. Duration of antiviral immunity after smallpox vaccination. Nat Med 9, 1131–1137 (2003). https://doi.org/10.1038/nm917

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nm917

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing