Skip to main content
See More

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Experimental & Molecular Medicine
  • View all journals
  • Search
  • Log in
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. experimental & molecular medicine
  3. articles
  4. article
Effect of serum and hydrogen peroxide on the Ca2+/calmodulin-dependent phosphorylation of eukaryotic elongation factor 2(eEF-2) in Chinese hamster ovary cells
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 01 December 2001

Effect of serum and hydrogen peroxide on the Ca2+/calmodulin-dependent phosphorylation of eukaryotic elongation factor 2(eEF-2) in Chinese hamster ovary cells

  • Kee Ryeon Kang1 &
  • So-Young Lee 

Experimental & Molecular Medicine volume 33, pages 198–204 (2001)Cite this article

  • 975 Accesses

  • 13 Citations

  • Metrics details

Abstract

Eukaryotic elongation factor eEF-2 mediates regulatory steps important for the overall regulation of mRNA translation in mammalian cells and is activated by variety of cellular conditions and factors. In this study, eEF-2 specific, Ca2+/CaM-dependent protein kinase III (CaM PK III), also called eEF-2 kinase, was examined under oxidative stress and cell proliferation state using CHO cells. The eEF-2 kinase activity was determined in the kinase buffer containing Ca2+ and CaM in the presence of eEF-2 and [γ-32P] ATP. The eEF-2 kinase activity in cell lysates was completely dependent upon Ca2+ and CaM. Phosphorylation of eEF-2 was clearly identified in proliferating cells, but not detectable in CHO cells arrested in their growth by serum deprivation. The content of the eEF-2 protein, however, was equivalent in both cells. Using a phosphorylation state-specific antibody, we show that oxidant such as H2O2, which triggers a large influx of Ca2+, dramatically enhances the phosphorylation of eEF-2. In addition, H2O2-induced eEF-2 phosphorylation is dependent on Ca2+ and CaM, but independent of protein kinase C. In addition, okadaic acid inhibits phosphoprotein phosphatase 2A(PP2A)-mediated eEF-2 dephosphorylation. These results may provide a possible link between the elevation of intracellular Ca2+ and cell division and suggest that phosphorylation of eEF-2 is sensitive cellular reflex on stimuli that induces intracellular Ca2+ flux.

Similar content being viewed by others

eEF2K as an important kinase associated with cancer survival and prognosis

Article Open access 26 November 2024

Structural insights into the dual Ca2+-sensor-mediated activation of the PPEF phosphatase family

Article Open access 01 April 2025

Regulation of the EphA2 receptor intracellular region by phosphomimetic negative charges in the kinase-SAM linker

Article Open access 02 December 2021

Article PDF

Author information

Authors and Affiliations

  1. Department of Biochemistry and Gyeongsang Institute of Health Science, Gyeongsang National University College of Medicine, Chinju, Korea

    Kee Ryeon Kang

Authors
  1. Kee Ryeon Kang
    View author publications

    Search author on:PubMed Google Scholar

  2. So-Young Lee
    View author publications

    Search author on:PubMed Google Scholar

Rights and permissions

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and permissions

About this article

Cite this article

Kang, K., Lee, SY. Effect of serum and hydrogen peroxide on the Ca2+/calmodulin-dependent phosphorylation of eukaryotic elongation factor 2(eEF-2) in Chinese hamster ovary cells. Exp Mol Med 33, 198–204 (2001). https://doi.org/10.1038/emm.2001.33

Download citation

  • Published: 01 December 2001

  • Issue date: 01 December 2001

  • DOI: https://doi.org/10.1038/emm.2001.33

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Ca2+
  • CaM
  • eEF-2
  • eEF-2 kinase

This article is cited by

  • Antiamnesic Effect of B. monniera on L-NNA Induced Amnesia Involves Calmodulin

    • Akshay Anand
    • Manish Kumar Saraf
    • Sudesh Prabhakar

    Neurochemical Research (2010)

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Current issue
  • Collections
  • Sign up for alerts
  • RSS feed

About the journal

  • Special Feature
  • Journal Information
  • About the Editors
  • About the Partner
  • Contact
  • For Advertisers
  • Press Releases
  • Open Access Fees and Funding

Publish with us

  • For Authors & Referees
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Experimental & Molecular Medicine (Exp Mol Med)

ISSN 2092-6413 (online)

ISSN 1226-3613 (print)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2025 Springer Nature Limited