Skip to main content
Log in

Microglia

  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

Microglia—the macrophage equivalent of the CNS—safeguards and supports neuronal functions. Threats to the CNS homeostasis can trigger a rapid transformation of these cells from a normally “resting” into alerted and “activated” states. Microglia primarily serves the tissue defence and protection when participating in mechanisms of innate and adaptive immunity. On the contrary, excessive acute or chronic microglial activation can provoke severe neuronal and glial damage by carrying or fuelling destructive cascades. Several factors and conditions have already been identified that maintain the resting phenotype or organize and control the activation process. Cells are thereby able to recognize a dangerous signal as well as to sense functional disturbance. Microglial activation is also proving a much more variable and adaptive process than previously noticed. Aiming at microglia as a therapeutic target, research may focus on intracellular pathways that are probably common to activation scenarios as triggered by various receptor systems. Certain signalling elements may have key roles in the cytosolic integration of sensory inputs and a conversion into programs of executive performance. As the integrative aspect of microglial activation becomes illuminated hope builds up also on strategies for selective interference with harmful outcomes in favour of the—phylogenetically approved—beneficial potential of these fascinating cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Akiyama, H., Barger, S., Barnum, S., Bradt, B., Bauer, J., Cole, G.M., Cooper, N.R., Eikelenboom, P., Emmerling, M., Fiebich, B.L., Finch, C.E., Frautschy, S., Griffin, W.S., Hampel, H., Hull, M., Landreth, G., Lue, L., Mrak, R., Mackenzie, I.R., McGeer, P.L., O'Banion, M.K., Pachter, J., Pasinetti, G., Plata-Salaman, C., Rogers, J., Rydel, R., Shen, Y., Streit, W., Strohmeyer, R., Tooyoma, I., Van Muiswinkel, F.L., Veerhuis, R., Walker, D., Webster, S., Wegrzyniak, B., Wenk, G., and Wyss-Coray, T. (2000). Inflammation and Alzheimer's disease. Neurobiol. Aging21:383–421.

    Google Scholar 

  • Aloisi, F. (2001). Immune function of microglia. Glia 36:165–179.

    Article  PubMed  Google Scholar 

  • Asensio, V.C., and Campbell, I.L. (1999). Chemokines in the CNS: Plurifunctional mediators in diverse states. tiTrends Neurosci. 22:504–512.

    Google Scholar 

  • Beattie, M.S., Hermann, G.E., Rogers, R.C., and Bresnahan, J.C. (2002). Cell death in models of spinal cord injury. Prog. Brain Res. 137:37–47.

    PubMed  Google Scholar 

  • Besedovsky, H.O., and del Rey, A. (2001). Cytokines as mediators of central and peripheral immune-neuroendocrine interactions. In (R. Ader, D.L. Felten, and N. Cohen, eds.), Psychoneuroimmunology, Academic Press, San Diego, CA, pp. 1–17.

    Google Scholar 

  • Bezzi, P., Domercq, M., Brambilla, L., Galli, R., Schols, D., De Clercq, E., Vescovi, A., Bagetta, G., Kollias, G., Meldolesi, J., and Volterra, A. (2001). CXCR4-activated astrocyte glutamate release via TNFalpha: Amplification by microglia triggers neurotoxicity. Nat. Neurosci. 4:702–710.

    PubMed  Google Scholar 

  • Bezzi, P., and Volterra, A. (2001). A neuron-glia signalling network in the active brain. Curr. Opin. Neurobiol. 11:387–394.

    PubMed  Google Scholar 

  • Biber, K., Sauter, A., Brouwer, N., Copray, S.C., and Boddeke, H.W. (2001). Ischemia-induced neuronal expression of the microglia attracting chemokine secondary lymphoid-tissue Chemokine (SLC). Glia 34:121–133.

    PubMed  Google Scholar 

  • Biber, K., Zuurman, M.W., Dijkstra, I.M., and Boddeke, H.W.G.M. (2002). Chemokines in the brain: Neuroim-munology and beyond. Curr. Opin. Pharmacol. 2:63–68.

    PubMed  Google Scholar 

  • Boucsein, C., Zacharias, R., Farber, K., Pavlovic, S., Hanisch, U.K., and Kettenmann, H. (2003). Purinergic receptors on microglial cells: Functional expression in acute brain slices and modulation of microglial activation in vitro. Eur. J. Neurosci. 17:2267–2276.

    PubMed  Google Scholar 

  • Brown, G.C., and Bal-Price, A. (2003). Inflammatory neurodegeneration mediated by nitric oxide, glutamate, and mitochondria. Mol. Neurobiol. 27:325–355.

    PubMed  Google Scholar 

  • Butterworth, R.F. (1998). Pathogenesis of acute hepatic encephalopathy. Digestion 59(Suppl. 2):16–21.

    Google Scholar 

  • Butterworth, R.F. (2001). Neurotransmitter dysfunction in hepatic encephalopathy: New approaches and new findings. Metab. Brain Dis. 16:55–65.

    PubMed  Google Scholar 

  • Coughlin, S.R. (2000). Thrombin signalling and protease-activated receptors. Nature 407:258–264.

    PubMed  Google Scholar 

  • Cuadros, M.A., and Navascues, J. (1998). The origin and differentiation of microglial cells during development. Prog. Neurobiol. 56:173–189

    PubMed  Google Scholar 

  • Cuadros, M.A., and Navascues, J. (2001). Early origin and colonization of the developing central nervous system by microglial precursors. Prog. Brain Res. 132:51–59.

    PubMed  Google Scholar 

  • de Gans, J., and van de Beek, D. (2002). Dexamethasone in adults with bacterial meningitis. N. Engl. J. Med. 347:1549–1556.

    PubMed  Google Scholar 

  • Dong, Y., and Benveniste, E.N. (2001). Immune function of astrocytes. Glia 36:180–190.

    PubMed  Google Scholar 

  • Draheim, H.J., Prinz, M., Weber, J.R., Weiser, T., Kettenmann, H., and Hanisch, U.K. (1999). Induction of K channels in mouse brain microglia: Cells acquire responsiveness to pneumococcal cell wall components during late development. Neuroscience 89:1379–1390.

    PubMed  Google Scholar 

  • Eikelenboom, P., Bate, C., Van Gool, W.A., Hoozemans, J.J., Rozemuller, J.M., Veerhuis, R., and Williams, A. (2002). Neuroinflammation in Alzheimer's disease and prion disease. Glia 40:232–239.

    PubMed  Google Scholar 

  • Elkabes, S., DiCicco, B.E., and Black, I.B. (1996). Brain microglia/macrophages express neurotrophins that selectively regulate microglial proliferation and function. J. Neurosci. 16:2508–2521.

    PubMed  Google Scholar 

  • Emsley, H.C., and Tyrrell, P.J. (2002). Inflammation and infection in clinical stroke. J. Cereb. Blood Flow Metab. 22:1399–1419.

    PubMed  Google Scholar 

  • Garden, G.A. (2002). Microglia in human immunodeficiency virus-associated neurodegeneration. Glia 40:240–251.

    PubMed  Google Scholar 

  • Gingrich, M.B., and Traynelis, S.F. (2000). Serine proteases and brain damage—is there a link? Trends Neurosci. 23:399–407.

    PubMed  Google Scholar 

  • Giulian, D. (1995). Microglia and neuronal dysfunction. In (H. Kettenmann, and B.R. Ransom, eds.), Neuroglia, Oxford University Press, New York, pp. 671–684.

    Google Scholar 

  • Hanisch, U.K. (2001a). Effects of interleukin-2 and interferons on the nervous system. In (R. Ader, D.L. Felten, and N. Cohen, eds.), Psychoneuroimmunology, Academic Press, San Diego, CA, pp. 585–631.

    Google Scholar 

  • Hanisch, U.K. (2001b). Microglia as a source and target of cytokine activities in the brain. In (W.J. Streit, ed.), Microglia in the Degenerating and Regenerating CNS, Springer-Verlag, New York, pp. 79–124.

  • Hanisch, U.K. (2002). Microglia as a source and target of cytokines. Glia 40:140–155.

    PubMed  Google Scholar 

  • Hanisch, U.K., Kohsaka, S., and M¨ oller, T. (2002a). Editorial. Glia 40:131–132.

    Google Scholar 

  • Hanisch, U.K., Kohsaka, S., and M¨ oller, T., guest eds. (2002b). Microglia, Special issue. Glia 40(2):131–269.

  • Hanisch, U.K., Prinz, M., Angstwurm, K., H¨ ausler, K.G., Kann, O., Kettenmann, H., and Weber, J.R. (2001). The protein tyrosine kinase inhibitor AG126 prevents the massive microglial cytokine induction by pneumococcal cell walls. Eur. J. Immunol. 31:2104–2115.

    PubMed  Google Scholar 

  • Harrison, J.K., Jiang, Y., Chen, S., Xia, Y., Maciejewski, D., McNamara, R.K., Streit, W.J., Salafranca, M.N., Adhikari, S., Thompson, D.A., Botti, P., Bacon, K.B., and Feng, L. (1998). Role for neuronally derived fractalkine in mediating interactions between neurons and CX3CR1-expressing microglia. Proc. Natl. Acad. Sci. U. S. A. 95:10896–10901.

    PubMed  Google Scholar 

  • H¨ ausler, K.G., Prinz, M., Nolte, C., Weber, J.R., Schumann, R.R., Kettenmann, H., and Hanisch, U.K. (2002). Interferon-gamma differentially modulates the release of cytokines and chemokines in lipopolysaccharide-and pneumococcal cell wall-stimulated mouse microglia and macrophages. Eur. J. Neurosci. 16:2113–2122.

    PubMed  Google Scholar 

  • Heppner, F.L., Prinz, M., and Aguzzi, A. (2001). Pathogenesis of prion diseases: Possible implications of microglial cells. Prog. Brain Res. 132:737–750.

    PubMed  Google Scholar 

  • Hickey, W.F. (2001). Basic principles of immunological surveillance of the normal central nervous system. Glia 36:118–124.

    PubMed  Google Scholar 

  • Hide, I., Tanaka, M., Inoue, A., Nakajima, K., Kohsaka, S., Inoue, K., and Nakata, Y. (2000). Extracellular ATP triggers tumor necrosis factor-alpha release from rat microglia. J. Neurochem. 75:965–972.

    PubMed  Google Scholar 

  • Hoek, R.M., Ruuls, S.R., Murphy, C.A., Wright, G.J., Goddard, R., Zurawski, S.M., Blom, B., Homola, M.E., Streit, W.J., Brown, M.H., Barclay, A.N., and Sedgwick, J.D. (2000). Down-regulation of the macrophage lineage through interaction with OX2 (CD200). Science 290:1768–1771.

    PubMed  Google Scholar 

  • Hoffmann, A., Kann, O., Ohlemeyer, C., Hanisch, U.K., and Kettenmann, H. (2003). Elevation of basal intracellular calcium as a central element in the activation of brain macrophages (microglia): Suppression of receptor-evoked calcium signaling and control of release function. J. Neurosci. 23:4410–4419.

    PubMed  Google Scholar 

  • Honda, S., Sasaki, Y., Ohsawa, K., Imai, Y., Nakamura, Y., Inoue, K., and Kohsaka, S. (2001). Extracellular ATP or ADP induce chemotaxis of cultured microglia through Gi/o-coupled P2Y receptors. J. Neurosci. 21:1975–1982.

    PubMed  Google Scholar 

  • Inoue, K. (2002). Microglial activation by purines and pyrimidines. Glia 40:156–163.

    PubMed  Google Scholar 

  • Johnson, S. (2001). Gradual micronutrient accumulation and depletion in Alzheimer's disease. Med. Hypotheses 56:595–597.

    PubMed  Google Scholar 

  • Kaul, M., Garden, G.A., and Lipton, S.A. (2001). Pathways to neuronal injury and apoptosis in HIV-associated dementia. Nature 410:988–994.

    PubMed  Google Scholar 

  • Kreutzberg, G.W. (1996). Microglia: A sensor for pathological events in the CNS. Trends Neurosci. 19:312–318.

    PubMed  Google Scholar 

  • Lassmann, H., Wekerle, H., Hickey, W.F., and Antel, J., guest eds. (2001). Neuroinflammation Special issue. Glia 36(2):117–243

  • Lazarini, F., Tham, T.N., Casanova, P., Arenzana-Seisdedos, F., and Dubois-Dalcq, M. (2003). Role of the alpha-chemokine stromal cell-derived factor (SDF-1) in the developing and mature central nervous system. Glia 42:139–148.

    PubMed  Google Scholar 

  • Lazarov, S.O., Rapalino, O., Agranov, G., and Schwartz, M. (1998). Restricted inflammatory reaction in the CNS: A key impediment to axonal regeneration? Mol. Med. Today 4:337–342.

    PubMed  Google Scholar 

  • Levitzki, A., and Gazit, A. (1995). Tyrosine kinase inhibition: An approach to drug development. Science 267:1782–1787.

    PubMed  Google Scholar 

  • Loddick, S.A., Liu, C., Takao, T., Hashimoto, K., and De Souza, E.B. (1998). Interleukin-1 receptors: Cloning studies and role in central nervous system disorders. Brain Res. Rev. 26:306–319.

    PubMed  Google Scholar 

  • McGeer, E.G., and McGeer, P.L. (1999). Brain inflammation in Alzheimer disease and the therapeutic implications. Curr. Pharm. Des. 5:821–836.

    PubMed  Google Scholar 

  • McGeer, P.L., and McGeer, E.G. (2001). Inflammation, autotoxicity and Alzheimer disease. Neurobiol. Aging 2 2:799–809.

    PubMed  Google Scholar 

  • McGeer, P.L., and McGeer, E.G. (2002). Inflammatory processes in amyotrophic lateral sclerosis. Muscle Nerve 26:459–470.

    PubMed  Google Scholar 

  • McGeer, P.L., McGeer, E.G., and Yasojima, K. (2000). Alzheimer disease and neuroinflammation. J. Neural. Transm. Suppl. 59:53–57.

    PubMed  Google Scholar 

  • Mertsch, K., Hanisch, U.K., Kettenmann, H., and Schnitzer, J. (2001). Characterization of microglial cells and their response to stimulation in an organotypic retinal culture system. J. Comp. Neurol. 431:217–227.

    PubMed  Google Scholar 

  • Moalem, G., Gdalyahu, A., Shani, Y., Otten, U., Lazarovici, P., Cohen, I.R., and Schwartz, M. (2000). Production of neurotrophins by activated T cells: Implications for neuroprotective autoimmunity. J. Autoimmun. 15:331–345.

    PubMed  Google Scholar 

  • Nakajima, K., Tohyama, Y., Kohsaka, S., and Kurihara, T. (2001). Ability of rat microglia to uptake extracellular glutamate. Neurosci. Lett. 307:171–174.

    PubMed  Google Scholar 

  • Nakamura, Y. (2002). Regulating factors for microglial activation. Biol. Pharm. Bull. 25:945–953.

    PubMed  Google Scholar 

  • Nau, R., and Bruck, W. (2002). Neuronal injury in bacterial meningitis: Mechanisms and implications for therapy. Trends Neurosci. 25:38–45.

    PubMed  Google Scholar 

  • Nelson, P.T., Soma, L.A., and Lavi, E. (2002). Microglia in diseases of the central nervous system. Ann. Med. 34:491–500.

    PubMed  Google Scholar 

  • Neumann, H. (2001). Control of glial immune function by neurons. Glia 36:191–199.

    PubMed  Google Scholar 

  • Neumann, H., Boucraut, J., Hahnel, C., Misgeld, T., and Wekerle, H. (1996). Neuronal control of MHC class II inducibility in rat astrocytes and microglia. Eur. J. Neurosci. 8:2582–2590.

    PubMed  Google Scholar 

  • O'Keefe, G.M., Nguyen, V.T., and Benveniste, E.N. (2002). Regulation and function of class II major histocom-patibility complex, CD40, and B7 expression in macrophages and microglia: Implications in neurological diseases. J. Neurovirol. 8:496–512.

    PubMed  Google Scholar 

  • Orr, C.F., Rowe, D.B., and Halliday, G.M. (2002). An inflammatory reviewof Parkinson's disease. Prog. Neurobiol. 68:325–340.

    PubMed  Google Scholar 

  • O'Shea, J.J., Ma, A., and Lipsky, P. (2002). Cytokines and autoimmunity. Nat. Rev. Immunol. 2:37–45.

    PubMed  Google Scholar 

  • Perry, V.H., Newman, T.A., and Cunningham, C. (2003). The impact of systemic infection on the progression of neurodegenerative disease. Nat. Rev. Neurosci. 4:103–112.

    PubMed  Google Scholar 

  • Polazzi, E., and Contestabile, A. (2002). Reciprocal interactions between microglia and neurons: From survival to neuropathology. Rev. Neurosci. 13:221–242.

    PubMed  Google Scholar 

  • Polazzi, E., and Contestabile, A. (2003). Neuron-conditioned media differentially affect the survival of activated or unstimulated microglia: Evidence for neuronal control on apoptotic elimination of activated microglia. J. Neuropathol. Exp. Neurol. 62:351–362.

    PubMed  Google Scholar 

  • Priller, J., Flugel, A., Wehner, T., Boentert, M., Haas, C.A., Prinz, M., Fernandez-Klett, F., Prass, K., Bechmann, I., de Boer, B.A., Frotscher, M., Kreutzberg, G.W., Persons, D.A., and Dirnagl, U. (2001). Targeting gene-modified hematopoietic cells to the central nervous system: Use of green fluorescent protein uncovers microglial engraftment. Nat. Med. 7:1356–1361.

    PubMed  Google Scholar 

  • Prinz, M., Hausler, K.G., Kettenmann, H., and Hanisch, U. (2001). ß-adrenergic receptor stimulation selectively inhibits IL-12p40 release in microglia. Brain Res. 899:264–270.

    PubMed  Google Scholar 

  • Prinz, M., Kann, O., Draheim, H.J., Schumann, R.R., Kettenmann, H., Weber, J.R., and Hanisch, U.K. (1999). Microglial activation by components of Gram-positive and-negative bacteria: Distinct and common routes to the induction of ion channels and cytokines. J. Neuropathol. Exp. Neurol. 58:1078–1089.

    PubMed  Google Scholar 

  • Raber, J., Sorg, O., Horn, T.F., Yu, N., Koob, G.F., Campbell, I.L., and Bloom, F.E. (1998). Inflammatory cytokines: Putative regulators of neuronal and neuro-endocrine function. Brain Res. Rev. 26:320–326.

    PubMed  Google Scholar 

  • Raivich, G., Bohatschek, M., Kloss, C.U., Werner, A., Jones, L.L., and Kreutzberg, G.W. (1999). Neuroglial activation repertoire in the injured brain: Graded response, molecular mechanisms and cues to physiological function. Brain Res. Rev. 30:77–105.

    PubMed  Google Scholar 

  • Rao, K.V., and Norenberg, M.D. (2001). Cerebral energy metabolism in hepatic encephalopathy and hyperam-monemia. Metab. Brain Dis. 16:67–78

    PubMed  Google Scholar 

  • Rezaie, P., and Male, D. (2002). Mesoglia & microglia—A historical review of the concept of mononuclear phagocytes within the central nervous system. J. Hist. Neurosci. 11:325–374.

    PubMed  Google Scholar 

  • Rose, C. (2002). Increased extracellular brain glutamate in acute liver failure: Decreased uptake or increased release? Metab. Brain Dis. 17:251–261.

    PubMed  Google Scholar 

  • Rothwell, N., Allan, S., and Toulmond, S. (1997). Perspectives series: Cytokines and the brain. J. Clin. Invest. 100:2648–2652.

    PubMed  Google Scholar 

  • Sagara, Y., Ishige, K., Tsai, C., and Maher, P. (2002). Tyrphostins protect neuronal cells from oxidative stress. J. Biol. Chem. 277:36204–36215.

    PubMed  Google Scholar 

  • Schwartz, M. (2002). Autoimmunity as the body's defense mechanism against the enemy within: Development of therapeutic vaccines for neurodegenerative disorders. J. Neurovirol. 8:480–485.

    PubMed  Google Scholar 

  • Schwartz, M. (2003). Macrophages and microglia in central nervous system injury: Are they helpful or harmful? J. Cereb. Blood Flow Metab. 23:385–394.

    PubMed  Google Scholar 

  • Schwartz, M., and Cohen, I.R. (2000). Autoimmunity can benefit self-maintenance. Immunol. Today 21:265–268.

    PubMed  Google Scholar 

  • Seiler, N. (2002). Ammonia and Alzheimer's disease. Neurochem. Int. 41:189–207.

    PubMed  Google Scholar 

  • Stohwasser, R., Giesebrecht, J., Kraft, R., M¨ uller, E.-C., H¨ ausler, K.G., Kettenmann, H., Hanisch, U.K., and Kloetzel, P.-M. (2000). Biochemical analysis of proteasomes from microglia: Induction of immunoprotea-somes by interferon-ã and lipopolysaccharide. Glia 29:355–365.

    PubMed  Google Scholar 

  • Stoll, G., and Jander, S. (1999). The role of microglia and macrophages in the pathophysiology of the CNS. Prog. Neurobiol. 58:233–247.

    PubMed  Google Scholar 

  • Streit, W.J. (2000). Microglial response to brain injury: A brief synopsis. Toxicol. Pathol. 28:28–30.

    PubMed  Google Scholar 

  • Streit, W.J. (2002a). Microglia as neuroprotective, immunocompetent cells of the CNS. Glia 40:133–139.

    PubMed  Google Scholar 

  • Streit, W.J., ed. (2002b). Microglia in the Degenerating and Regenerating CNS, Springer-Verlag, New York.

    Google Scholar 

  • Streit, W.J., Walter, S.A., and Pennel, N.A. (2000). Reactive microgliosis. Prog. Neurobiol. 57:563–581.

    Google Scholar 

  • Takahashi, J.L., Giuliani, F., Power, C., Imai, Y., and Yong, V.W. (2003). Interleukin-1beta promotes oligoden-drocyte death through glutamate excitotoxicity. Ann. Neurol. 53:588–595.

    PubMed  Google Scholar 

  • Taylor, D.L., Diemel, L.T., and Pocock, J.M. (2003). Activation of microglial group III metabotropic glutamate receptors protects neurons against microglial neurotoxicity. J. Neurosci. 23:2150–2160.

    PubMed  Google Scholar 

  • Thomas, W.E. (1999). Brain macrophages: On the role of pericytes and perivascular cells. Brain Res. Brain Res.Rev. 31:42–57.

    PubMed  Google Scholar 

  • Vallat-Decouvelaere, A.V., Chretien, F., Gras, G., Le Pavec, G., Dormont, D., and Gray, F. (2003). Expression of excitatory amino acid transporter-1 in brain macrophages and microglia of HIV-infected patients. A neuroprotective role for activated microglia? J. Neuropathol. Exp. Neurol. 62:475–485.

    PubMed  Google Scholar 

  • van Rossum, D., and Hanisch, U.K. (in press). Microglia and the cerebral defence system. In (J.M. Delgado-Garcia, A. Privat, and T. Herdegen, eds.), Brain Damage and Repair: From Molecular Research to Clinical Therapy, Kluwer Academic, Dordrecht, pp. 181–202.

  • Wright, G.J., Puklavec, M.J., Willis, A.C., Hoek, R.M., Sedgwick, J.D., Brown, M.H., and Barclay, A.N. (2000). Lymphoid/neuronal cell surface OX2 glycoprotein recognizes a novel receptor on macrophages implicated in the control of their function. Immunity 13:233–242.

    PubMed  Google Scholar 

  • Yoles, E., Hauben, E., Palgi, O., Agranov, E., Gothilf, A., Cohen, A., Kuchroo, V., Cohen, I.R., Weiner, H., and Schwartz, M. (2001). Protective autoimmunity is a physiological response to CNS trauma. J. Neurosci. 21:3740–3748.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Rossum, D., Hanisch, UK. Microglia. Metab Brain Dis 19, 393–411 (2004). https://doi.org/10.1023/B:MEBR.0000043984.73063.d8

Download citation

  • Issue date:

  • DOI: https://doi.org/10.1023/B:MEBR.0000043984.73063.d8