Abstract
Bohmian mechanics is arguably the most naively obvious embedding imaginable of Schrödinger's equation into a completely coherent physical theory. It describes a world in which particles move in a highly non-Newtonian sort of way, one which may at first appear to have little to do with the spectrum of predictions of quantum mechanics. It turns out, however, that as a consequence of the defining dynamical equations of Bohmian mechanics, when a system has wave function ψits configuration is typically random, with probability density ρgiven by |ψ|2, the quantum equilibrium distribution. It also turns out that the entire quantum formalism, operators as observables and all the rest, naturally emerges in Bohmian mechanics from the analysis of “measurements.” This analysis reveals the status of operators as observables in the description of quantum phenomena, and facilitates a clear view of the range of applicability of the usual quantum mechanical formulas.
Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.REFERENCES
Y. Aharonov, J. Anandan,and L. Vaidman,Meaning of the wave function, Phys. Rev. A 47:4616–4626 (1993).
D. Z. Albert, Quantum Mechanics and Experience(Harvard University Press, Cambridge, MA,1992).
S. T. Ali and G. G. Emch,Fuzzy observables in quantum mechanics, J. Math. Phys. 15:176–182 (1974).
A. Aspect, J. Dalibard,and G. Roger,Experimental test of Bell's inequalities using timevarying analyzers, Phys. Rev. Lett. 49:1804–1807 (1982).
J. S. Bell,On the Einstein-Podolsky-Rosen paradox, Physics 1:195–200 (1964),reprinted in ref. 75,and in ref. 10.
J. S. Bell,On the problem of hidden variables in quantum mechanics, Rev. Modern Phys. 38:447–452 (1966),reprinted in ref. 75 and in ref. 10.
J. S. Bell,De Broglie-Bohm,delayed-choice double-slit experiment, and density matrix, Internat. J. Quantum Chem.: A Symposium, 14:155–159 (1980),reprinted in ref. 10.
J. S. Bell,Quantum mechanics for cosmologists, in Quantum Gravity 2,C. Isham, R. Penrose,and D. Sciama,eds. (Oxford University Press, New York),pp. 611–637, reprinted in ref. 10.
J. S. Bell,On the impossible pilot wave, Found. Phys. 12:989–999 (1982),reprinted in ref. 10.
J. S. Bell, Speakable and Unspeakable in Quantum Mechanics(Cambridge University Press, Cambridge,1987).
J. S. Bell,Against “measurement, ” Physics World 3:33–40 (1990),also in ref. 63.
I. Bialynicki-Birula,On the wave function of the photon, Acta Phys. Pol. 86:97–116 (1994).
A. Böhm, Quantum Mechanics(Springer-Verlag, New York/Heidelberg/Berlin, 1979).
D. Bohm, Quantum Theory(Prentice-Hall, Englewood Cliffs,N.J.,1951).
D. Bohm,A suggested interpretation of the quantum theory in terms of ''hidden'' variables: Parts I and II, Phys. Rev. 85:166–193 (1952),reprinted in ref. 75.
D. Bohm and B. J Hiley, The Undivided Universe: An Ontological Interpretation of Quantum Theory(Routledge & Kegan Paul, London,1993).
N. Bohr, Atomic Physics and Human Knowledge(Wiley, New York,1958).
V. B. Braginsky, Y. I. Vorontsov,and K. S. Thorne,Quantum nondemolition measurements, Science 209:547–57 (1980),reprinted in ref. 75.
M. Daumer, D. Dürr, S. Goldstein,and N. Zanghì,On the flux-across-surfaces theorem, Lett. Math. Phys. 38:103–116 (1996).
M. Daumer, D. Dürr, S. Goldstein,and N. Zanghì,On the quantum probability flux through surfaces, J. Stat. Phys. 88:967–977 (1997).
E. B. Davies, Quantum Theory of Open Systems(Academic Press, London/New York/ San Francisco,1976).
C. Dewdney, L. Hardy,and E. J. Squires,How late meaurements of quantum trajectories can fool a detector, Phys. Lett. A 184:6–11 (1993).
P. A. M. Dirac, The Principles of Quantum Mechanics(Oxford University Press, Oxford, 1930).
D. Dürr, W. Fusseder, S. Goldstein,and N. Zanghì,Comment on: Surrealistic Bohm trajectories, Z. f. Naturforsch. 48a:1261–1262 (1993).
D. Dürr, S. Goldstein,and N. Zanghì,Quantum equilibrium and the origin of absolute uncertainty, J. Stat. Phys. 67:843–907 (1992).
D. Dürr, K. Münch-Berndl,and S. Teufel,The flux across surfaces theorem for short range potentials without energy cutoffs, J. Math. Phys. 40:1901–1922 (1999).
D. Dürr, S. Goldstein, S. Teufel,and N. Zanghì,Scattering theory from microscopic first principles, Physica A 279:416–431 (2000).
D. Dürr, S. Goldstein, J. Taylor, R. Tumulka,and N. Zanghì,Bosons, fermions, and the topology of configuration space,in preparation.
D. Dürr, S. Goldstein, R. Tumulka,and N. Zanghì,Quantum Hamiltonians and stochastic jumps,quant-ph/0303056.
D. Dürr, S. Goldstein, R. Tumulka,and N. Zanghì,Trajectories and particle creation and annihilation in quantum field theory, J. Phys. A: Math. Gen. 36:4143–4149 (2003).
D. Dürr, S. Goldstein, R. Tumulka,and N. Zanghì,On the role of density matrices in Bohmian mechanics,in preparation.
A. Einstein, B. Podolsky,and N. Rosen,Can quantum-mechanical description of physical reality be considered complete?, Phys. Rev. 47:777–780 (1935).
E. Englert, M. O. Scully, G. Süssman,and H. Walther,Surrealistic Bohm trajectories, Z. f. Naturforsch. 47a:1175 (1992).
R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals(McGraw-Hill, New York,1965).
M. Gell-Mann and J. B. Hartle,Quantum mechanics in the light of quantum cosmology, in Complexity, Entropy, and the Physics of Information,W. Zurek, ed. (Addison-Wesley, Reading,1990),pp. 425–458,also in ref. 52.
G. C. Ghirardi,private communication, unpublished (1981).
G. C. Ghirardi and T. Weber,Quantum mechanics and faster-than-light communication: Methodological considerations, Nuovo Cimento B 78:9 (1983).
G. C. Ghirardi, A. Rimini,and T. Weber,Unified dynamics for microscopic and macroscopic systems, Phys. Rev. D 34:470–491 (1986).
G. C. Ghirardi and A. Rimini,Old and new ideas in the theory of quantum measurements, in ref. 63.
G. C. Ghirardi, P. Pearle,and A. Rimini,Markov processes in Hilbert space and continous spontaneous localization of system of identical particles, Phys. Rev. A 42:78–89 (1990).
A. M. Gleason,Measures on the closed subspaces of a Hilbert space, J. Math. and Mech. 6:885–893 (1957).
S. Goldstein,Stochastic mechanics and quantum theory, J. Stat. Phys. 47:645–667 (1987).
S. Goldstein,Quantum theory without observers,part one, Physics Today42-46 (March 1998); Part two, Physics Today38–42 (April 1998).
S. Goldstein and D. Page,Linearly positive histories: Probabilities for a robust family of sequences of quantum events, Phys. Rev. Lett. 74:3715–3719 (1995).
D. M. Greenberg, M. Horne, S. Shimony,and A. Zeilenger,Bell's theorem without inequalities, Amer. J. Phys. 58:1131–1143 (1990).
R. B. Griffiths,Consistent histories and the interpretation of quantum mechanics, J. Stat. Phys. 36:219–272 (1984).
G. Grübl and K. Rheinberger,Time of arrival from Bohmian flow, J. Phys. A: Math. Gen. 35:2907–2924 (2002).
L. Hardy,Nonlocality for two particles without inequalities for almost all entangled states, Phys. Rev. Lett. 71:1665 (1993).
W. Heisenberg, Physics and Beyond; Encounters and Conversations(Harper & Row, New York,1971).
A. S. Holevo,Probabilistic and statistical aspects of quantum theory, North-Holland Series in Statistics and Probability,Vol. 1 (North-Holland, Amsterdam/New York/ Oxford,1982).
E. Joos and H. D. Zeh,The emergence of classical properties through interaction with the environment, Z. Physik B 59:223–243 (1985).
S. Kobayashi, H. Ezawa, Y. Murayama,and S. Nomura,eds., Proceedings of the 3rd International Symposium on Quantum Mechanics in the Light of New Technology(Physical Society of Japan,1990).
S. Kochen and E. P. Specker,The problem of hidden variables in quantum mechanics, J. Math. and Mech. 17:59–87 (1967).
K. Kraus,Position observables of the photon,in The Uncertainty Principle and Foundations of Quantum Mechanics,W. C. Price and S. S. Chissick, eds. (Wiley, New York, 1977),pp. 293–320.
K. Kraus,States,effects,and operations, Lectures Notes in Phys. 190(1983).
L. D. Landau and E. M. Lifshitz, Quantum Mechanics: Non-Relativistic Theory(Pergamon Press, Oxford and New York,1958),translated from the Russian by J. B. Sykes and J. S. Bell.
C. R. Leavens,Transmission,reflection and dwell times within Bohm's causal interpretation of quantum mechanics, Solid State Communications 74:923 (1990).
W. R. McKinnon and C. R. Leavens,Distributions of delay times and transmission times in Bohm's causal interpretation of quantum mechanics, Phys. Rev. A 51:2748–2757 (1995).
C. R. Leavens,Time of arrival in quantum and Bohmian mechanics, Phys. Rev. A 58:840–847 (1998).
A. J. Leggett,Macroscopic quantum systems and the quantum theory of measurement, Progr. Theoret. Phys. (Supplement) 69:80–100 (1980).
G. Lüders,über die Zustandsänderung durch den Messprozess, Ann. Physik 8:322–328 (1951).
D. N. Mermin,Hidden variables and the two theorems of John Bell, Rev. Modern Phys. 65:803–815 (1993).
A. I. Miller,ed., Sixty-Two Years of Uncertainty: Historical, Philosophical, and Physical Inquiries into the Foundations of Quantum Mechanics(Plenum Press, New York,1990).
E. Nelson, Quantum Fluctuations(Princeton University Press, Princeton,N.J.,1985).
R. Omnes,Logical reformulation of quantum mechanics, J. Stat. Phys. 53:893–932 (1988).
W. Pauli,in Encyclopedia of Physics,S. Flügge, ed.,Vol. 60 (Springer, Berlin/ Heidelberg/New York,1958).
A. Peres,Two simple proofs of the Kochen-Specker theorem, J. Phys. A 24:175–178 (1991).
E. Prugovecki, Quantum Mechanics in Hilbert Space(Academic Press, New York and London,1971).
M. Reed and B. Simon, Methods of Modern Mathematical Physics II(Academic Press, New York,1975).
M. Reed and B. Simon, Methods of Modern Mathematical Physics I. Functional Analysis, revised and enlarged edition (Academic Press, New York,1980).
F. Riesz and B. Sz.-Nagy, Functional Analysis(F. Ungar, New York,1955).
E. Schrödinger,Die gegenwärtige Situation in der Quantenmechanik, Naturwissenschaften 23:807–812 (1935),English translation by J. D. Trimmer, The Present Situation in Quantum Mechanics: A Translation of Schrödinger's ''Cat Paradox'' Paper,Proceedings of the American Philosophical Society,Vol. 124,pp. 323-338 (1980),reprinted in ref. 75.
M. O. Scully, B. G. Englert,and H. Walther,Quantum optical tests of complementarity, Nature 351:111–116 (1991).
J. von Neumann, Mathematische Grundlagen der Quantenmechanik(Springer-Verlag, Berlin,1932),English translation by R. T. Beyer, Mathematical Foundations of Quantum Mechanics(Princeton University Press,Princeton,N.J.,1955).
J. A. Wheeler and W. H. Zurek, Quantum Theory and Measurement(Princeton University Press, Princeton,N.J.,1983).
E. P. Wigner,The problem of measurement, Amer. J. Phys. 31:6–15 (1963),reprinted in ref. 75.
E. P. Wigner,Interpretation of quantum mechanics,in ref. 75 (1976).
W. K. Wooters and W. H. Zurek,A single quantum cannot be cloned, Nature 299:802–803 (1982).
W. H. Zurek,Environment-induced superselection rules, Phys. Rev. D 26:1862–1880 (1982).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Dürr, D., Goldstein, S. & Zanghì, N. Quantum Equilibrium and the Role of Operators as Observables in Quantum Theory. Journal of Statistical Physics 116, 959–1055 (2004). https://doi.org/10.1023/B:JOSS.0000037234.80916.d0
Issue Date:
DOI: https://doi.org/10.1023/B:JOSS.0000037234.80916.d0