Abstract
Protein aggregates of misfolded proteins are a pathological hallmark of nearly all neurological disorders, including Alzheimer’s disease, Parkinson’s disease, amyotrophic lateral sclerosis, and various polyglutamine diseases such as Huntington’s disease. Selective distribution in different cellular compartments highlights their core functions in cellular homeostasis. Investigating the cellular protein quality control system has become a significant strategy for counteracting protein aggregates and their toxic consequences. Heat shock proteins (Hsps) are crucial in regulating protein quality control, contributing to both protein aggregation and disaggregation. Beyond their well-known role in oncogenesis, several studies have identified Hsp90 as a key regulator of the functional stability of neuronal proteins. Similarly, Hsp70 is believed to promote cell survival by interacting with components of apoptotic and pro-survival pathways in neurodegeneration. Thus, targeting Hsp90 and Hsp70 represents a promising therapeutic strategy for treating neurodegenerative disorders. This review provides a comprehensive overview of the structure, mode of action, and roles of Hsp90 and Hsp70. Additionally, Drosophila melanogaster is highlighted as an effective model system for studying the roles of Hsp70 and Hsp90 in the proteinopathies associated with neurodegenerative diseases.



Similar content being viewed by others
Data availability
Not applicable.
References
Aghdassi, A., Phillips, P., Dudeja, V., Dhaulakhandi, D., Sharif, R., Dawra, R.: Heat shock protein 70 increases tumorigenicity and inhibits apoptosis in pancreatic adenocarcinoma. Experimental Therapeutics, Molecular Targets, and Chemical Biology. 67(2), 616–625 (2007)
Alvira, S., Cuéllar, J., Röhl, A., Yamamoto, S., Itoh, H., Alfonso, C., Valpuesta, J. M.: Structural characterization of the substrate transfer mechanism in Hsp70/Hsp90 folding machinery mediated by Hop. Nat. Commun. 5(1), 5484 (2014)
Bohush, A., Bieganowski, P., Filipek, A.: Hsp90 and its co-chaperones in neurodegenerative diseases. Int. J. Mol. Sci. 20, 4976 (2019a)
Bohush, A., Niewiadomska, G., Weis, S., Filipek, A.: HSP90 and its novel co-chaperones, SGT1 and CHP-1, in brain of patients with parkinson’s disease and dementia with lewy bodies. J. Parkinsons Dis.parkinsons Dis. 9, 97–107 (2019b)
Bonini, N.M., Fortini, M.E.: Human neurodegenerative disease modeling using Drosophila. Annu. Rev. Neurosci.. Rev. Neurosci. 26, 627–656 (2003)
Bracher, A., Verghese, J.: The nucleotide exchange factors of Hsp70 molecular chaperones. Front. Mol. Biosci.biosci. 2, 10 (2015)
Diao, Z., Apalkov, D., Pakala, M., Ding, Y., Panchula, A., Huai, Y.: Spin transfer switching and spin polarization in magnetic tunnel junctions with MgO and AlO x barriers. Appl. Phys. Lett. 87, 232502 (2005)
Dou, F., Netzer, W.J., Tanemura, K., Li, F., Hartl, F.U., Takashima, A., Xu, H.: Chaperones increase association of tau protein with microtubules. Proc. Natl. Acad. Sci. 100, 721–726 (2003)
Evans, C.G., Chang, L., Gestwicki, J.E.: Heat shock protein 70 (Hsp70) as an emerging drug target introduction to Hsp70 structure and function. J. Med. Chem. 53, 4585–4602 (2010)
Falsone, S.F., Kungl, A.J., Rek, A., Cappai, R., Zangger, K.: The molecular chaperone Hsp90 modulates intermediate steps of amyloid assembly of the parkinson-related protein α-synuclein. J. Biol. Chem. 284, 31190–31199 (2009)
Fernández-Fernández, M.R., Gragera, M., Ochoa-Ibarrola, L., Quintana-Gallardo, L., Valpuesta, J.M.: Hsp70–a master regulator in protein degradation. FEBS Lett. 591, 2648–2660 (2017)
Ferretti, R., Palumbo, V., Di Savino, A., Velasco, S., Sbroggiò, M., Sportoletti, P., Brancaccio, M.: Morgana/chp-1, a ROCK inhibitor involved in centrosome duplication and tumorigenesis. Dev. Cell 18, 486–495 (2010)
Fujikake, N., Nagai, Y., Popiel, H.A., Okamoto, Y., Yamaguchi, M., Toda, T.: Heat shock transcription factor 1-activating compounds suppress polyglutamine-induced neurodegeneration through induction of multiple molecular chaperones. J. Biol. Chem. 283, 26188–26197 (2008)
Gupta, A., Bansal, A., Hashimoto-Torii, K.: HSP70 and HSP90 in neurodegenerative diseases. Neurosci. Lett.. Lett. 716, 134678 (2020)
He, W.T., Zheng, X.M., Zhang, Y.H., Gao, Y.G., Song, A.X., van der Goot, F.G., Hu, H.Y.: Cytoplasmic ubiquitin-specific protease 19 (USP19) modulates aggregation of polyglutamine-expanded ataxin-3 and huntingtin through the HSP90 chaperone. PLoS ONE 11, e0147515 (2016)
Hirth, F.: Drosophila melanogaster in the study of human neurodegeneration. CNS Neurol. Disord. Drug TargetsDisord. Drug Targets 9(4), 504–523 (2010)
Hu, C., Yang, J., Qi, Z., Wu, H., Wang, B., Zou, F., Liu, Q.: Heat shock proteins: biological functions, pathological roles, and therapeutic opportunities. MedComm 3, e161 (2022)
Jarrett, J.T., Lansbury, P.T., Jr.: Seeding “one-dimensional crystallization” of amyloid: a pathogenic mechanism in Alzheimer’s disease and scrapie? Cell 73, 1055–1058 (1993)
Kityk, R., Kopp, J., Sinning, I., Mayer, M.P.: Structure and dynamics of the ATP-bound open conformation of Hsp70 chaperones. Mol. Cell 48, 863–874 (2012)
Kityk, R., Kopp, J., Mayer, M.P.: Molecular mechanism of J-domain-triggered ATP hydrolysis by Hsp70 chaperones. Mol. Cell. 69, 227–237 (2018)
Kravats, A. N., Doyle, S. M., Hoskins, J. R., Genest, O., Doody, E., Wickner, S.: Interaction of E. coli Hsp90 with DnaK involves the DnaJ binding region of DnaK. JMB. 429(6), 858–872 (2017)
Lindquist, S.: The heat-shock response. Annu. Rev. Biochem.. Rev. Biochem. 55, 1151–1191 (1986)
Lu, H.A., Sun, T.X., Matsuzaki, T., Yi, X.H., Eswara, J., Bouley, R., Brown, D.: Heat shock protein 70 interacts with aquaporin-2 and regulates its trafficking. J. Biol. Chem. 282, 28721–28732 (2007)
Luo, X., Zuo, X., Zhou, Y., Zhang, B., Shi, Y., Liu, M., Xiao, X.: Extracellular heat shock protein 70 inhibits tumour necrosis factor-α induced proinflammatory mediator production in fibroblast-like synoviocytes. Arthritis Res. Ther.ther. 10, 1–11 (2008)
Luo, W., Sun, W., Taldone, T., Rodina, A., Chiosis, G.: Heat shock protein 90 in neurodegenerative diseases. Mol. Neurodegener.neurodegener. 5, 1–8 (2010)
Minoia, M., Boncoraglio, A., Vinet, J., Morelli, F.F., Brunsting, J.F., Poletti, A., Carra, S.: BAG3 induces the sequestration of proteasomal clients into cytoplasmic puncta: implications for a proteasome-to-autophagy switch. Autophagy 10, 1603–1621 (2014)
Muchowski, P.J., Wacker, J.L.: Modulation of neurodegeneration by molecular chaperones. Nat. Rev. Neurosci.neurosci. 6, 11–22 (2005)
Neckers, L., Schulte, T.W., Mimnaugh, E.: Geldanamycin as a potential anti-cancer agent: its molecular target and biochemical activity. Invest. New Drugs 17, 361–373 (1999)
Noritake, J., Fukata, Y., Iwanaga, T., Hosomi, N., Tsutsumi, R., Matsuda, N., Fukata, M.: Mobile DHHC palmitoylating enzyme mediates activity-sensitive synaptic targeting of PSD-95. J. Cell Biol. 186, 147–160 (2009)
Panaretou, B., Prodromou, C., Roe, S.M., O’Brien, R., Ladbury, J.E., Piper, P.W., Pearl, L.H.: ATP binding and hydrolysis are essential to the function of the Hsp90 molecular chaperone in vivo. EMBO J. 17, 4829–4836 (1998)
Parkhitko, A.A., Jouandin, P., Mohr, S.E., Perrimon, N.: Methionine metabolism and methyltransferases in the regulation of aging and lifespan extension across species. Aging Cell 18, e13034 (2019)
Pirkkala, L., Nykänen, P., Sistonen, L.E.A.: Roles of the heat shock transcription factors in regulation of the heat shock response and beyond. FASEB J. 15, 1118–1131 (2001)
Pratt, W. B., Gestwicki, J. E., Osawa, Y., Lieberman, A. P.: Targeting proteostasis through the protein quality control function of the Hsp90/Hsp70-based chaperone machinery for treatment of adult onset neurodegenerative diseases. ARPT. 55, 353 (2015)
Rai, P.: Role of heat shock proteins in oncogenesis and strategy for treating cancers using Drosophila model. Proc. Indian Natl. Sci. 89(2), 247–253 (2023)
Rai, P., Roy, JK.: Rab11 regulates mitophagy signaling pathway of Parkin and Pink1 in the drosophila model of parkinson’s disease. Biochem. Biophys. Res. Commun. 626, 175–186 (2022)
Rajagopalan, S., Meng, X.P., Ramasamy, S., Harrison, D.G., Galis, Z.S.: Reactive oxygen species produced by macrophage-derived foam cells regulate the activity of vascular matrix metalloproteinases in vitro. Implications for atherosclerotic plaque stability. J. Clin. Investig.clin. Investig. 98, 2572–2579 (1996)
Rakovic, A., Grünewald, A., Voges, L., Hofmann, S., Orolicki, S., Lohmann, K., Klein, C.: PINK1-interacting proteins: proteomic analysis of overexpressed PINK1. Parkinsons Dis. 2011(2011), 153979 (2011)
Rosenzweig, R., Nillegoda, N.B., Mayer, M.P., Bukau, B.: The Hsp70 chaperone network. Nat. Rev. Mol. Cell Biol. 20, 665–680 (2019)
Schopf, F.H., Biebl, M.M., Buchner, J.: The HSP90 chaperone machinery. Nat. Rev. 18, 345–360 (2017)
Shelton, L.B., Baker, J.D., Zheng, D., Sullivan, L.E., Solanki, P.K., Webster, J.M., Dickey, C.A.: Hsp90 activator Aha1 drives production of pathological tau aggregates. Proc. Natl. Acad. Sci. 114, 9707–9712 (2017)
Soto, C., Estrada, L., Castilla, J.: Amyloids, prions, and the inherent infectious nature of misfolded protein aggregates. Trends Biochem. Sci.biochem. Sci. 31, 150–155 (2006)
Sreedhar, A.S., Kalmár, É., Csermely, P., Shen, Y.F.: Hsp90 isoforms: functions, expression and clinical importance. FEBS Lett. 562, 11–15 (2004)
Taipale, M., Jarosz, D.F., Lindquist, S.: HSP90 at the hub of protein homeostasis: emerging mechanistic insights. Nat. Rev. Mol. Cell Biol. 11, 515–528 (2010)
Urban, J.D., Budinsky, R.A., Rowlands, J.C.: An evaluation of single nucleotide polymorphisms in the human heat shock protein 90 kDa alpha and beta isoforms. Drug Metab. Pharmacokinet.metab. Pharmacokinet. 27, 268–278 (2012)
Vasilaki, A., Jackson, M.J.: Role of reactive oxygen species in the defective regeneration seen in aging muscle. Free Radical Biol. Med. 65, 317–323 (2013)
Wang, R.Y.R., Noddings, C.M., Kirschke, E., Myasnikov, A.G., Johnson, J.L., Agard, D.A.: Structure of Hsp90–Hsp70–Hop–GR reveals the Hsp90 client-loading mechanism. Nature 601, 460–464 (2022)
Wasik, U., Schneider, G., Mietelska-Porowska, A., Mazurkiewicz, M., Fabczak, H., Weis, S., Niewiadomska, G.: Calcyclin binding protein and siah-1 interacting protein in alzheimer’s disease pathology: neuronal localization and possible function. Neurobiol. Aging. Aging 34, 1380–1388 (2013)
Westerlund, M., Hoffer, B., Olson, L.: Parkinson’s disease: exit toxins, enter genetics. Prog. Neurobiol.. Neurobiol. 90, 146–156 (2010)
Xu, C., Lu, Y., Pan, Z., Chu, W., Luo, X., Lin, H., Yang, B.: The muscle-specific microRNAs miR-1 and miR-133 produce opposing effects on apoptosis by targeting HSP60, HSP70 and caspase-9 in cardiomyocytes. J. Cell Sci. 120, 3045–3052 (2007)
Yamagishi, M., Nakano, K., Miyake, A., Yamochi, T., Kagami, Y., Tsutsumi, A., Watanabe, T.: Polycomb-mediated loss of miR-31 activates NIK-dependent NF-κB pathway in adult T cell leukemia and other cancers. Cancer Cell 21, 121–135 (2012)
Zhang, H., Amick, J., Chakravarti, R., Santarriaga, S., Schlanger, S., McGlone, C., Page, R.C.: A bipartite interaction between Hsp70 and CHIP regulates ubiquitination of chaperoned client proteins. Structure 23, 472–482 (2015)
Zou, J., Guo, Y., Guettouche, T., Smith, D.F., Voellmy, R.: Repression of heat shock transcription factor HSF1 activation by HSP90 (HSP90 complex) that forms a stress-sensitive complex with HSF1. Cell 94, 471–480 (1998)
Zuehlke, A., Johnson, J.L.: Hsp90 and co-chaperones twist the functions of diverse client proteins. Biopolymers: Original Research on Biomolecules 93, 211–217 (2010)
Zuiderweg, E.R.P., Hightower, L.E., Gestwicki, J.E.: The remarkable multivalency of the Hsp70 chaperones. Cell Stress Chaperones 22, 173–189 (2017)
Acknowledgements
I extend my sincere gratitude to Prof. J.K. Roy of the Cytogenetics Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, India, and Prof. Andreas Bergmann of the Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, USA, for their invaluable support in understanding fly genetics. I also thank Sonam Sriwastaw (SR) from the Department of Botany, Banaras Hindu University, for her assistance with protein structural analysis. Additionally, I appreciate the University Grants Commission, New Delhi, for providing a fellowship to PR (598/OBC-CSIR UGC NET-DEC 2016).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interest
The author declares no conflict of interest.
Ethical standards
This article does not contain any studies with human participants.
Informed consent statement
Not applicable.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Rai, P. Conformational Dynamics of Hsp90 and Hsp70 Chaperones in Treating Neurodegenerative Diseases: Insights from the Drosophila Model. Proc.Indian Natl. Sci. Acad. 90, 628–637 (2024). https://doi.org/10.1007/s43538-024-00325-7
Received:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1007/s43538-024-00325-7