Skip to main content
Log in

Genome editing in peanuts: advancements, challenges and applications

  • Review Article
  • Published:
The Nucleus Aims and scope Submit manuscript

Abstract

Genome editing, a powerful technology for precise manipulation of DNA sequences, has revolutionized the field of agricultural biotechnology. In recent years, there has been increasing interest in applying genome editing techniques to improve important crop plants, such as peanut (Arachis hypogaea). Peanuts are a vital source of oil and protein, and they play a crucial role in global food security. However, peanut crops face numerous challenges, including susceptibility to diseases, pests, and environmental stressors. The advent of clustered regularly interspaced short palindromic repeats (CRISPR)-based genome editing tools has provided researchers with a rapid, efficient, and precise method to edit the peanut genome. Despite being a polyploid crop, several successful applications of genome editing in peanuts have been reported. For instance, CRISPR/Cas9-mediated gene editing has been used to increase oleic acid content in oil and allergen reduction in peanut varieties through precise genome modifications. However, despite these advancements, challenges remain in the widespread adoption of genome editing in peanuts, off-target effects, and unintended consequences. Advancements in CRISPR-based genome editing holds great promise for the improvement of peanuts by addressing its various prospective traits like phytate reduction, fresh seed dormancy, aflatoxin resistance and abiotic stress tolerance. However, careful consideration of issues, such as safety assessment, and public acceptance, is essential for the successful application and commercialization of genome-edited peanut varieties. Future research and collaborations are needed to overcome these challenges and fully harness the potential of genome editing in improving peanut crops for sustainable agriculture and global food security.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Anzalone AV, Randolph PB, Davis JR, Sousa AA, Koblan LW, Levy JM, Chen PJ, Wilson C, Newby GA, Raguram A, Liu DR. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature. 2019;576(7785):149–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Arias RS, Dang PM, Sobolev VS. RNAi-mediated control of aflatoxins in peanut: method to analyze mycotoxin production and transgene expression in the peanut/Aspergillus pathosystem. J Vis Exp. 2015;106: e53398.

    Google Scholar 

  3. Azameti MK, Dauda WP. Base editing in plants: applications, challenges, and future prospects. Front Plant Sci. 2021;12: 664997. https://doi.org/10.3389/fpls.2021.664997.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Baloglu MC, Celik Altunoglu Y, Baloglu P, Yildiz AB, Türkölmez N, Özden ÇY. Gene-editing technologies and applications in legumes: progress, evolution, and future prospects. Front Genet. 2022;13: 859437. https://doi.org/10.3389/fgene.2022.859437.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bera SK, Kamdar JH, Kasundra SV, Patel SV, Jasani MD, Maurya AK, et al. Steady expression of high oleic acid in peanut bred by marker-assisted backcrossing for fatty acid desaturase mutant alleles and its effect on seed germination along with other seedling traits. PLoS ONE. 2019;14(12): e0226252. https://doi.org/10.1371/journal.pone.0226252.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bertioli D, Cannon S, Froenicke L, et al. The genome sequences of Arachis duranensis and Arachis ipaensis, the diploid ancestors of cultivated peanut. Nat Genet. 2016;48:438–46.

    Article  CAS  PubMed  Google Scholar 

  7. Bertioli DJ, Jenkins J, Clevenger J, et al. The genome sequence of segmental allotetraploid peanut Arachis hypogaea. Nat Genet. 2019;51:877–84.

    Article  CAS  PubMed  Google Scholar 

  8. Bishi SK, Kumar L, Mahatma MK, Khatediya N, Chauhan SM, Misra JB. Quality traits of Indian peanut cultivars and their utility as nutritional and functional food. Food Chem. 2015;167:107–14. https://doi.org/10.1016/j.foodchem.2014.06.076.

    Article  CAS  PubMed  Google Scholar 

  9. Biswas S, Bridgeland A, Irum S, Thomson MJ, Septiningsih EM. Optimization of prime editing in rice, peanut, chickpea, and cowpea protoplasts by restoration of GFP activity. Int J Mol Sci. 2022;23:9809. https://doi.org/10.3390/ijms2317980.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Blanvillain-Baufume S, Reschke M, Sole M, Auguy F, Doucoure H, Szurek B, Meynard D, Portefaix M, Cunnac S, Guiderdoni E, Boch J, Koebnik R. Targeted promoter editing for rice resistance to Xanthomonas oryzae pv. oryzae reveals differential activities for SWEET14-inducing TAL effectors. Plant Biotechnol J. 2017;15:306–17. https://doi.org/10.1111/pbi.12613.

    Article  CAS  PubMed  Google Scholar 

  11. Bomireddy D, Gangurde SS, Variath MT, Janila P, Manohar SS, Sharma V, Parmar S, Deshmukh D, Reddisekhar M, Reddy DM, et al. Discovery of major quantitative trait loci and candidate genes for fresh seed dormancy in groundnut. Agronomy. 2022;12:404. https://doi.org/10.3390/agronomy12020404.

    Article  CAS  Google Scholar 

  12. Brackett NF, Pomés A, Chapman MD. New frontiers: precise editing of allergen genes using CRISPR. Front Allergy. 2022;17(2): 821107. https://doi.org/10.3389/falgy.2021.821107.

    Article  Google Scholar 

  13. Burks AW, Williams LW, Connaughton C, Cockrell G, O’Brien TJ, Helm RM. Identification and characterization of a second major peanut allergen, Ara h II, with use of the sera of patients with atopic dermatitis and positive peanut challenge. J Allergy Clin Immunol. 1992;90(6):962–9.

    Article  CAS  PubMed  Google Scholar 

  14. Carroll D. Genome engineering with zinc-finger nucleases. Genetics. 2011;188:773–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Curtin SJ, Zhang F, Sander JD, et al. Targeted mutagenesis of duplicated genes in soybean with zinc-finger nucleases. Plant Physiol. 2011;156:466–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Department of Biotechnology (DBT). Office Memorandum: Guidelines for the safety assessment of genome edited plants (2022). https://ibkp.dbtindia.gov.in/

  17. Dodo HW, Konan KN, Chen FC, Egnin M, Viquez OM. Alleviating peanut allergy using genetic engineering: the silencing of the immunodominant allergen Ara h 2 leads to its significant reduction and a decrease in peanut allergenicity. Plant Biotechnol J. 2008;6(2):135–45.

    Article  CAS  PubMed  Google Scholar 

  18. Durai S, Mani M, Kandavelou K, Wu J, Porteus MH, Chandrasegaran S. Zinc finger nucleases: custom-designed molecular scissors for genome engineering of plant and mammalian cells. Nucl Acids Res. 2005;33:5978–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gil-Humanes J, Wang Y, Liang Z, Shan Q, Ozuna CV, Sánchez-León S, Baltes NJ, Starker C, et al. High-efficiency gene targeting in hexaploid wheat using DNAreplicons and CRISPR/Cas9. Plant J. 2017;89:1251–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Grabiele M, Chalup L, Robledo G, Seijo G. Genetic and geographic origin of domesticated peanut as evidenced by 5S rDNA and chloroplast DNA sequences. Plant Syst Evol. 2012;298:1151–65.

    Article  Google Scholar 

  21. Han HW, Yu ST, Wang ZW, Yang Z, Jiang CJ, Wang XZ, et al. In planta genetic transformation to produce CRISPRed high-oleic peanut. Plant Growth Regul. 2023;15:1–9.

    Google Scholar 

  22. Hartwell L. Genetics: from genes to genomes. 6th ed. New York: McGraw-Hill Education; 2017.

    Google Scholar 

  23. Haun W, Coffman A, Clasen BM, Demorest ZL, Lowy A, Ray E, Retterath A, Stoddard T, Juillerat A, Cedrone F, Mathis L, Voytas DF, Zhang F. Improved soybean oil quality by targeted mutagenesis of the fatty acid desaturase 2 gene family. Plant Biotechnol J. 2014;12(7):934–40. https://doi.org/10.1111/pbi.12201.

    Article  CAS  PubMed  Google Scholar 

  24. Hilioti Z, Ganopoulos I, Ajith S, et al. A novel arrangement of zinc finger nuclease system for in vivo targeted genome engineering: the tomato LEC1-LIKE4 gene case. Plant Cell Rep. 2016;35:1–15.

    Article  Google Scholar 

  25. Hu J, Li S, Li Z, Li H, Song W, Zhao H, Lai J, Xia L, Li D, Zhang Y. A barley stripe mosaic virus-based guide RNAdelivery system for targeted mutagenesis in wheat and maize. Mol Plant Pathol. 2019;20:1463–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Janila P, Nigam SN, Pandey MK, Nagesh P, Varshney RK. Groundnut improvement: use of genetic and genomic tools. Front Plant Sci. 2013;4:23. https://doi.org/10.3389/fpls.2013.00023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Jin M, Chen L, Deng X, Tang X. Development of herbicide resistance genes and their application in rice. Crop J. 2022;10:26–35.

    Article  Google Scholar 

  28. Jung JH, Altpeter F. TALEN mediated targeted mutagenesis of the caffeic acid O-methyltransferase in highly polyploid sugarcane improves cell wall composition for production of bioethanol. Plant Mol Biol. 2016;92(1–2):131–42. https://doi.org/10.1007/s11103-016-0499-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Jung M, Kim J, Ahn SM. Factors associated with frequency of peanut consumption in Korea: a national population-based study. Nutrients. 2020;12(5):1207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Jung S, Swift D, Sengoku E, et al. The high oleate trait in the cultivated peanut [Arachis hypogaea L.]. I. Isolation and characterization of two genes encoding microsomal oleoyl-PC desaturases. Mol Gen Genet. 2000;263:796–805. https://doi.org/10.1007/s004380000244.

    Article  CAS  PubMed  Google Scholar 

  31. Kim JS, Lee HJ, Carroll D. Genome editing with modularly assembled zinc-finger nucleases. Nat Methods. 2010;7:91.

    Article  CAS  PubMed  Google Scholar 

  32. Kim S, Kim D, Cho SW, Kim J, Kim JS. Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins. Genome Res. 2014;24(6):1012–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kumar R, Janila P, Vishwakarma MK, Khan AW, Manohar SS, Gangurde SS, Variath MT, Shasidhar Y, Pandey MK, Varshney RK. Whole-genome resequencing-based QTL-seq identified candidate genes and molecular markers for fresh seed dormancy in groundnut. Plant Biotechnol J. 2019;18:992–1003.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Lee SY, Kang B, Venkatesh J, Lee J, Lee S, Kim J, Back S, et al. Development of virus-induced genome editing methods in Solanaceous crops. Hortic Res. 2024;11(1):233.

    Article  Google Scholar 

  35. Lei J, Dai P, Li Y, Zhang W, Zhou G, Liu C, Liu X. Heritable gene editing using FT mobile guide RNAs and DNA viruses. Plant Methods. 2021;17:20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Li A, Zhou M, Liao G, Li X, Wang A, Xiao D, et al. CRISPR/Cas9 gene editing in peanut by Agrobacterium tumefaciens-mediated pollen tube transformation. Plant Cell Tissue Organ Cult. 2023;155(3):883–92.

    Article  CAS  Google Scholar 

  37. Liu G, Lin Q, Jin S, Gao C. The CRISPR-Cas toolbox and gene editing technologies. Mol Cell. 2022;82(2):333–47. https://doi.org/10.1016/j.molcel.2021.12.002.

    Article  CAS  PubMed  Google Scholar 

  38. Luo Y, Na R, Nowak JS, Qiu Y, Lu QS, Yang C, Marsolais F, Tian L. Development of a Csy4-processed guide RNA delivery system with soybean-infecting virus ALSV for genome editing. BMC Plant Biol. 2021;21:419.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Makarova KS, Haft DH, Barrangou R, Brouns SJ, Charpentier E, Horvath P, Moineau S, Mojica FJ, Wolf YI, Yakunin AF, van der Oost J, Koonin EV. Evolution and classification of the CRISPR-Cas systems. Nat Rev Microbiol. 2011;9:467–77.

    Article  CAS  PubMed  Google Scholar 

  40. Mao Y, Botella JR, Liu Y, Zhu JK. Gene editing in plants: progress and challenges. Natl Sci Rev. 2019;6(3):421–37. https://doi.org/10.1093/nsr/nwz005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Meena HN, Bhaduri D, Yadav RS, Jain NK, Meena MD. Agronomic performance and nutrient accumulation behaviour in groundnut-cluster bean cropping system as influenced by irrigation water salinity. Proc Natl Acad Sci India Sect B Biol Sci. 2017;87:31–7. https://doi.org/10.1007/s40011-015-0573-2.

    Article  CAS  Google Scholar 

  42. Mohanta TK, Bashir T, Hashem A, Abd Allah EF, Bae H. Genome editing tools in plants. Genes (Basel). 2017;8(12):399. https://doi.org/10.3390/genes8120399.

    Article  CAS  PubMed  Google Scholar 

  43. Molla KA, Yang Y. CRISPR/Cas-mediated base editing: technical considerations and practical applications. Trends Biotechnol. 2019;37(10):1121–42. https://doi.org/10.1016/j.tibtech.2019.03.008.

    Article  CAS  PubMed  Google Scholar 

  44. Molla KA, Sretenovic S, Bansal KC, Qi Y. Precise plant genome editing using base editors and prime editors. Nat Plants. 2021;7(9):1166–87.

    Article  CAS  PubMed  Google Scholar 

  45. Molla KA, Shih J, Wheatley MS, Yang Y. Predictable NHEJ insertion and assessment of HDR editing strategies in plants. Front Genome Ed. 2022;4: 825236.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Mondal S, Badigannavar AM, Dsouza SF. Induced variability for fatty acid profile and molecular characterization of high oleate mutant in cultivated groundnut (Arachis hypogaea L.). Plant Breed. 2011;130(2):242–7.

    Article  CAS  Google Scholar 

  47. Moore M, Klug A, Choo Y. Improved DNA binding specificity from polyzinc finger peptides by using strings of two-finger units. Proc Natl Acad Sci USA. 2001;98:1437–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Nagalakshmi U, Meier N, Liu JY, Voytas DF, Dinesh-Kumar SP. High-efficiency multiplex biallelic heritable editing in Arabidopsis using an RNA virus. Plant Physiol. 2022;189(3):1241–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Neelakandan AK, Subedi B, Traore SM, Binagwa P, Wright DA, He G. Base editing in peanut using CRISPR/nCas9. Front Genome Ed. 2022;4: 901444. https://doi.org/10.3389/fgeed.2022.901444.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Nunes A, Vianna G, Cuneo F, Amaya-Farfan J, de Capdeville G, Rech E, Aragao F. RNAi-mediated silencing of the myo-inositol-1-phosphate synthase gene (GmMIPS1) in transgenic soybean inhibited seed development and reduced phytate content. Planta. 2006;224:125–32.

    Article  CAS  PubMed  Google Scholar 

  51. Park SY, Vaghchhipawala Z, Vasudevan B, Lee LY, Shen Y, Singer K, Waterworth WM, Zhang ZJ, West CE, Mysore KS, et al. Agrobacterium T-DNA integration into the plant genome can occur without the activity of key non-homologous end-joining proteins. Plant J. 2015;81:934–46.

    Article  CAS  PubMed  Google Scholar 

  52. Prasad K, Yogendra K, Sanivarapu H, Rajasekaran K, Cary JW, Sharma KK, Bhatnagar-Mathur P. Multiplexed host-induced gene silencing of Aspergillus flavus genes confers aflatoxin resistance in groundnut. Toxins. 2023;15:319. https://doi.org/10.3390/toxins15050319.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Pruthvi V, Narasimhan R, Nataraja KN. Simultaneous expression of abiotic stress responsive transcription factors, AtDREB2A, AtHB7 and AtABF3 improves salinity and drought tolerance in peanut (Arachis hypogaea L.). PLoS ONE. 2014;9(12):e111152. https://doi.org/10.1371/journal.pone.0111152.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Quadros RM, Miura H, Harms DW, et al. Easi-CRISPR: a robust method for one-step generation of mice carrying conditional and insertion alleles using long ssDNA donors and CRISPR ribonucleoproteins. Genome Biol. 2017;18:92.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Raboy V. myo-Inositol-1, 2, 3, 4, 5, 6-hexakisphosphate. Phytochemistry. 2003;64(6):1033–43.

    Article  CAS  PubMed  Google Scholar 

  56. Rees HA, Liu DR. Base editing: precision chemistry on the genome and transcriptome of living cells. Nat Rev Genet. 2018;19(12):770–88. https://doi.org/10.1038/s41576-018-0059-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Romer P, Hahn S, Jordan T, Strauß T, Bonas U, Lahaye T. Plant pathogen recognition mediated by promoter activation of the pepper Bs3 resistance gene. Science. 2007;318(5850):645–8.

    Article  PubMed  Google Scholar 

  58. Rothkamm K, Kruger I, Thompson LH, Lobrich M. Pathways of DNA double-strand break repair during the mammalian cell cycle. Mol Cell Biol. 2003;23:5706–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Sampson HA. Food allergy. Part 1: immunopathogenesis and clinical disorders. J Allergy Clin Immunol. 1999;103(5):717–28.

    Article  CAS  PubMed  Google Scholar 

  60. Sander J, Joung J. CRISPR-Cas systems for editing, regulating and targeting genomes. Nat Biotechnol. 2014;32:347–55. https://doi.org/10.1038/nbt.2842.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Sarkar T, Thankappan R, Kumar A, Mishra GP, Dobaria JR. Stress inducible expression of AtDREB1A transcription factor in transgenic peanut (Arachis hypogaea L.) conferred tolerance to soil-moisture deficit stress. Front Plant Sci. 2016. https://doi.org/10.3389/fpls.2016.00935.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Sashidhar N, Harloff HJ, Potgieter L, Jung C. Gene editing of three BnITPK genes in tetraploid oilseed rape leads to significant reduction of phytic acid in seeds. Plant Biotechnol J. 2020;18(11):2241–50. https://doi.org/10.1111/pbi.13380.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Schwartzbeck JL, Jung S, Abbott AG, Mosley E, Lewis S, Pries GL, Powell GL. Endoplasmic oleoyl-PC desaturase references the second double bond. Phytochemistry. 2001;57:643–52.

    Article  CAS  PubMed  Google Scholar 

  64. Shalini SA, Akshata RS, Chauhan S. Peanuts as functional food: a review. J Food Sci Technol. 2016;53(1):31–41. https://doi.org/10.1007/s13197-015-2007-9.

    Article  CAS  Google Scholar 

  65. Sharma KK, Pothana A, Prasad K, Shah D, Kaur J, Bhatnagar D, Chen ZY, Raruang Y, Cary JW, Rajasekaran K, Sudini HK, Bhatnagar-Mathur P. Peanuts that keep aflatoxin at bay: a threshold that matters. Plant Biotechnol J. 2018;16(5):1024–33. https://doi.org/10.1111/pbi.12846.

    Article  CAS  PubMed  Google Scholar 

  66. Shi L, Li X, Xue L, Zhang J, Huang B, Sun Z, Zhang Z, Dai X, Han S, Dong W, Zhang X. Creation of herbicide-resistance in allotetraploid peanut using CRISPR/Cas9-meditated cytosine base-editing. Plant Biotechnol J. 2023;21(10):1923.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Shrivastav M, De Haro LP, Nickoloff JA. Regulation of DNA double-strand break repair pathway choice. Cell Res. 2008;18:134–47.

    Article  CAS  PubMed  Google Scholar 

  68. Shu H, Luo Z, Peng Z, Wang J. The application of CRISPR/Cas9 in hairy roots to explore the functions of AhNFR1 and AhNFR5 genes during peanut nodulation. BMC Plant Biol. 2020;20(1):1–5.

    Article  Google Scholar 

  69. Singh S, Singh AL, Gangadhara K, Chaudhari V, Patel CB, Mahatma MK, Verma A, Kumar L. High Zn bioavailability in peanut (Arachis hypogaea L.) cultivars: an implication of phytic acid and mineral interactions in seeds. J Plant Nutr. 2022. https://doi.org/10.1080/01904167.2022.2035750.

    Article  Google Scholar 

  70. Singh S, Singh AL, Pal KK, Reddy KK, Gangadhara K et al. Accumulation of resveratrol, ferulic acid and iron in seeds confer iron deficiency chlorosis tolerance to a novel genetic stock of peanut (Arachis hypogaea L.) grown in calcareous soils. Physiology and Molecular Biology of Plants 2023. https://doi.org/10.1007/s12298-023-01321-9

  71. Song JH, Shin G, Kim HJ, Lee SB, Moon JY, Jeong JC, Choi HK, Kim IA, Song HJ, Kim CY, Chung YS. Mutation of GmIPK1 gene using CRISPR/Cas9 reduced phytic acid content in soybean seeds. Int J Mol Sci. 2022;23(18):10583.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Sparvoli F, Cominelli E. Seed biofortification and phytic acid reduction: a conflict of interest for the plant? Plants (Basel). 2015;4(4):728–55. https://doi.org/10.3390/plants4040728.

    Article  CAS  PubMed  Google Scholar 

  73. Sprink T, Wilhelm R, Hartung F. Genome editing around the globe: an update on policies and perceptions. Plant Physiol. 2022;190(3):1579–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Tang Y, Huang J, Ji H, Pan L, Hu C, Qiu X, et al. Identification of AhFatB genes through genome-wide analysis and knockout of AhFatB reduces the content of saturated fatty acids in peanut (Arichis hypogaea L.). Plant Sci. 2022;319:111247.

    Article  CAS  PubMed  Google Scholar 

  75. Townsend J, Wright D, Winfrey RJ, et al. High-frequency modification of plant genes using engineered zinc-finger nucleases. Nature. 2009;459:442–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Uranga M, Aragonés V, Selma S, Vázquez-Vilar M, Orzáez D, Daròs J. Efficient Cas9 multiplex editing using unspaced sgRNA arrays engineering in a Potato virus X vector. Plant J. 2021;106:555–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Verma A, Mahatma MK, Thawait LK, Singh S, Gangadhar K, Kona P, Singh AL. Processing techniques alter resistant starch content, sugar profile and relative bioavailability of iron in groundnut (Arachis hypogaea L.) kernels. J Food Compos Anal. 2022;112:104653.

    Article  CAS  Google Scholar 

  78. Verma A, Singh S, Thawait LK, Mahatma MK, Singh AL. An expedient ion chromatography-based method for high-throughput analysis of phytic acid in groundnut kernels. J Food Sci Technol. 2022. https://doi.org/10.1007/s13197-022-05527-9.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Vishwakarma MK, Pandey MK, Shasidhar Y, Manohar SS, Nagesh P, Janila P, Varshney RK. Identification of two major quantitative trait locus for fresh seed dormancy using the diversity arrays technology and diversity arrays technology-seq based genetic map in Spanish-type peanuts. Plant Breed. 2016;135:367–75.

    Article  CAS  Google Scholar 

  80. Wada N, Ueta R, Osakabe Y, Osakabe K. Precision genome editing in plants: state-of-the-art in CRISPR/Cas9-based genome engineering. BMC Plant Biol. 2020;20:1–2.

    Article  Google Scholar 

  81. Wang N, Shi L. Screening of mutations by TILLING in plants BT—plant genotyping: methods and protocols. In: Batley J (ed) Plant genotyping. Springer, New York, pp. 193–203 (2015) ISBN 978-1-4939-1966-6

  82. Wang Y, Cheng X, Shan Q, et al. Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat Biotechnol. 2014;32:947–51. https://doi.org/10.1038/nbt.2969.

    Article  CAS  PubMed  Google Scholar 

  83. Wang ML, Wang H, Zhao C, Tonnis B, Tallury S, Wang X, Clevenger J, Guo B. Identification of QTLs for seed dormancy in cultivated peanut using a recombinant inbred line mapping population. Plant Mol Biol Rep. 2021;40:1–10.

    Google Scholar 

  84. Wen S, Liu H, Li X, et al. TALEN-mediated targeted mutagenesis of fatty acid desaturase 2 (FAD2) in peanut (Arachis hypogaea L.) promotes the accumulation of oleic acid. Plant Mol Biol. 2018;97:177–85. https://doi.org/10.1007/s11103-018-0731-z.

    Article  CAS  PubMed  Google Scholar 

  85. Yu B, Liu N, Huang L, Luo H, Zhou X, Lei Y, Yan L, Wang X, Chen W, Kang Y, Ding Y, et al. Identification and application of a candidate gene AhAftr1 for aflatoxin production resistance in peanut seed (Arachis hypogaea L.). J Adv Res. 2023. https://doi.org/10.1016/j.jare.2023.09.014.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Yuan M, Zhu J, Gong L, et al. Mutagenesis of FAD2 genes in peanut with CRISPR/Cas9 based gene editing. BMC Biotechnol. 2019;19:24. https://doi.org/10.1186/s12896-019-0516-8.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Zhan X, Lu Y, Zhu JK, Botella JR. Genome editing for plant research and crop improvement. J Integr Plant Biol. 2021;63:3–33. https://doi.org/10.1111/jipb.13063.

    Article  CAS  PubMed  Google Scholar 

  88. Zhang Y, Iaffaldano B, Qi Y. CRISPR ribonucleoprotein-mediated genetic engineering in plants. Plant Commun. 2021;2(2): 100168.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Zhang C, Liu S, Li X, Zhang R, Li J. Virus-induced gene editing and its applications in plants. Int J Mol Sci. 2022;23(18):10202. https://doi.org/10.3390/ijms231810202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Zhang F, Maeder ML, Unger-Wallace E, et al. High frequency targeted mutagenesis in Arabidopsis thaliana using zinc finger nucleases. Proc Natl Acad Sci USA. 2010;107:12028–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Zhang H, Zhang J, Lang Z, Ramón Botella J, Zhu JK. Genome editing—principles and applications for functional genomics research and crop improvement. Crit Rev Plant Sci. 2017;36(4):291–309. https://doi.org/10.1080/07352689.2017.1402989.

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Director, ICAR-Directorate of Groundnut Research, Junagadh, Gujarat, for his support.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

SS Conceptualization, Literature search and manuscript drafting; CS Conceptualization, manuscript drafting and editing; PK manuscript editing; SKB Supervision and manuscript editing.

Corresponding author

Correspondence to Chandramohan Sangh.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Corresponding Editor: Kutubuddin Ali Molla Reviewers: Chuan Tang Wang, Siddharth Tiwari.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, S., Sangh, C., Kona, P. et al. Genome editing in peanuts: advancements, challenges and applications. Nucleus 67, 127–139 (2024). https://doi.org/10.1007/s13237-024-00482-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1007/s13237-024-00482-6

Keywords