Skip to main content
Log in

Anti-CRISPR proteins: a weapon of phage-bacterial arm race for genome editing

  • Review Article
  • Published:
The Nucleus Aims and scope Submit manuscript

Abstract

The ongoing evolutionary competition between bacteria and their phage parasites has led to the development of intricate systems of attacks, defenses, and counter-defenses. Among the prokaryotic adaptive immunity measures, the CRISPR–Cas system has garnered significant attention for its versatility in genome editing and other biotechnological applications. In this system, bacteria capture specific sequences from invading phages and store them in their genome as a record. This allows the bacteria to recognize and target the phage DNA for degradation using Cas proteins upon subsequent infections. On the phage side of the battle, a counter mechanism known as ‘Anti-CRISPR’ (Acr) has emerged. Acr proteins, encoded by phages or Mobile Genetic Elements (MGEs), function to inhibit CRISPR–Cas activity. They achieve this by either blocking DNA binding or inhibiting the cleavage process of the CRISPR–Cas effector complexes. Acrs present the potential to develop regulated and reversible CRISPR–Cas-mediated gene circuits, opening up possibilities for precise genome editing. Researchers are exploring the applications of Acrs to reduce off-target mutations associated with CRISPR–Cas, modulate the activities of Cas endonucleases, and create “genome safeguard” systems where further editing is restricted. The study and utilization of Acrs hold promise for advancing the precision and control of CRISPR–Cas technologies.

Graphical abstract

Enhancing CRISPR with Anti-CRISPR Protein

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Abudayyeh OO, Gootenberg JS, Konermann S, Joung J, Slaymaker IM, Cox DB, Shmakov S, Makarova KS, Semenova E, Minakhin L, Severinov K. C2c2 is a single component programmable RNA-guided RNA targeting CRISPR effector. Science. 2016;353:aaf573. https://doi.org/10.1126/science.aaf5573.

    Article  CAS  Google Scholar 

  2. Agarwal N, Gupta R. History, evolution and classification of CRISPR–Cas associated systems. Prog Mol Biol Transl Sci. 2021;179:11–76.

    Article  CAS  PubMed  Google Scholar 

  3. Alphey L. Genetic control of mosquitoes. Annu Rev Entomol. 2014;59(1):205–24. https://doi.org/10.1146/annurev-ento-011613-162002.

    Article  CAS  PubMed  Google Scholar 

  4. Barrangou R, Horvath P. A decade of discovery: CRISPR functions and applications. Nat Microbiol. 2017;2:17092. https://doi.org/10.1038/nmicrobiol.2017.92.

    Article  CAS  PubMed  Google Scholar 

  5. Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, Romero DA, Horvath P. CRISPR provides acquired resistance against viruses in prokaryotes. Science. 2007;315(5819):1709–12. https://doi.org/10.1126/science.1138140.

    Article  CAS  PubMed  Google Scholar 

  6. Basgall EM, Goetting SC, Goeckel ME, Giersch RM, Roggenkamp E, Schrock MN, Halloran M, Finnigan GC. Gene drive inhibition by the Anti-CRISPR proteins AcrIIA2 and AcrIIA4 in Saccharomyces cerevisiae. Microbiology. 2018;164(4):464. https://doi.org/10.1099/mic.0.000635.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bolotin A, Quinquis B, Sorokin A, Ehrlich SD. Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology. 2005;151(8):2551–61.

    Article  CAS  PubMed  Google Scholar 

  8. Bondy-Denomy J, Davidson AR, Doudna JA, Fineran PC, Maxwell KL, Moineau S, Peng X, Sontheimer EJ, Wiedenheft B. A unified resource for tracking anti-CRISPR names. CRISPR J l. 2018;1(5):304–5. https://doi.org/10.1089/crispr.2018.0043.

    Article  Google Scholar 

  9. Bondy-Denomy J, Garcia B, Strum S, Du M, Rollins MF, Hidalgo-Reyes Y, Wiedenheft B, Maxwell KL, Davidson AR. Multiple mechanisms for CRISPR–Cas inhibition by Anti-CRISPR proteins. Nature. 2015;526(7571):136–9. https://doi.org/10.1038/nature15254.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bondy-Denomy J, Pawluk A, Maxwell KL, Davidson AR. Bacteriophage genes that inactivate the CRISPR/Cas bacterial immune system. Nature. 2013;493(7432):429–32. https://doi.org/10.1038/nature11723.

    Article  CAS  PubMed  Google Scholar 

  11. Borges AL, Davidson AR, Bondy-Denomy J. The discovery, mechanisms, and evolutionary impact of anti-CRISPRs. Annu Rev Virol. 2017;4(1):37. https://doi.org/10.1146/annurev-virology-101416-041616.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Brouns SJ, Jore MM, Lundgren M, Westra ER, Slijkhuis RJ, Snijders AP, Dickman MJ, Makarova KS, Koonin EV, Van Der Oost J. Small CRISPR RNAs guide Antiviral defense in prokaryotes. Science. 2008;321(5891):960–4. https://doi.org/10.1016/j.molcel.2011.12.013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bubeck F, Hoffmann MD, Harteveld Z, Aschenbrenner S, Bietz A, Waldhauer MC, Börner K, Fakhiri J, Schmelas C, Dietz L, Grimm D. Engineered Anti-CRISPR proteins for optogenetic control of CRISPR–Cas9. Nat Methods. 2018;15(11):924–7. https://doi.org/10.1038/s41592-018-0178-9.

    Article  CAS  PubMed  Google Scholar 

  14. Chew WL, Tabebordbar M, Cheng JK, Mali P, Wu EY, Ng AH, Zhu K, Wagers AJ, Church GM. A multifunctional AAV–CRISPR–Cas9 and its host response. Nat Methods. 2016;13(10):868–74. https://doi.org/10.1038/nmeth.3993.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chowdhury S, Carter J, Rollins MF, Golden SM, Jackson RN, Hoffmann C, Bondy-Denomy J, Maxwell KL, Davidson AR, Fischer ER, Lander GC, Wiedenheft B. The structure reveals mechanisms of viral suppressors that intercept a CRISPR RNA-guided surveillance complex. Cell. 2017;169(1):47–57. https://doi.org/10.1016/j.cell.2017.03.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Datsenko KA, Pougach K, Tikhonov A, Wanner BL, Severinov K, Semenova E. Molecular memory of prior infections activates the CRISPR/Cas adaptive bacterial immunity system. Nat Commun. 2012;3(1):1–7. https://doi.org/10.1038/ncomms1937.

    Article  CAS  Google Scholar 

  17. Deltcheva E, Chylinski K, Sharma CM, Gonzales K, Chao Y, Pirzada ZA, Eckert MR, Vogel J, Charpentier E. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature. 2011;471:602–7. https://doi.org/10.1038/nature09886.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Deveau H, Garneau JE, Moineau S. CRISPR/Cas system and its role in phage-bacteria interactions. Annu Rev Microbiol. 2010;64:475–93. https://doi.org/10.1146/annurev.micro.112408.134123.

    Article  CAS  PubMed  Google Scholar 

  19. Dong D, Guo M, Wang S, Zhu Y, Wang S, Xiong Z, Yang J, Xu Z, Huang Z. Structural basis of CRISPR–SpyCas9 inhibition by an anti-CRISPR protein. Nature. 2017;546(7658):436–9. https://doi.org/10.1038/nature22377.

    Article  CAS  PubMed  Google Scholar 

  20. Dong D, Ren K, Qiu X, Zheng J, Guo M, Guan X, Liu H, Li N, Zhang B, Yang D, Ma C. The crystal structure of Cpf1 in complex with CRISPR RNA. Nature. 2016;532:522–6. https://doi.org/10.1038/nature17944.

    Article  CAS  PubMed  Google Scholar 

  21. Dong L, Guan X, Li N, Zhang F, Zhu Y, Ren K, Yu L, Zhou F, Han Z, Gao N, Huang Z. An anti-CRISPR protein disables type V Cas12a by acetylation. Nat Struct Mol Biol. 2019;26(4):308–14. https://doi.org/10.1038/s41594-019-0206-1.

    Article  CAS  PubMed  Google Scholar 

  22. Doudna JA, Charpentier E. The new frontier of genome engineering with CRISPR–Cas9. Science. 2014;346:1258096. https://doi.org/10.1126/science.1258096.

    Article  CAS  PubMed  Google Scholar 

  23. Fineran PC, Charpentier E. Memory of viral infections by CRISPR–Cas adaptive immune systems: acquisition of new information. Virology. 2012;434(2):202–9. https://doi.org/10.1016/j.virol.2012.10.003.

    Article  CAS  PubMed  Google Scholar 

  24. Forsberg KJ, Bhatt IV, Schmidtke DT, Javanmardi K, Dillard KE, Stoddard BL, Finkelstein IJ, Kaiser BK, Malik HS. Functional metagenomics-guided discovery of potent Cas9 inhibitors in the human microbiome. eLife. 2019;8:e46540. https://doi.org/10.7554/eLife.46540.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Forsberg KJ, Schmidtke DT, Werther R, Uribe RV, Hausman D, Sommer MO, Stoddard BL, Kaiser BK, Malik HS (2020) AcrIIA22 is a novel Anti-CRISPR that impairs SpyCas9 activity by relieving DNA torsion of target plasmids. bioRxiv. https://doi.org/10.1101/2020.09.28.317578.

  26. Fuchsbauer O, Swuec P, Zimberger C, Amigues B, Levesque S, Agudelo D, Duringer A, Chaves-Sanjuan A, Spinelli S, Rousseau GM, Velimirovic M. Cas9 allosteric inhibition by the Anti-CRISPR protein AcrIIA6. Mol Cell. 2019;76(6):922–37. https://doi.org/10.1016/j.molcel.2019.09.012.

    Article  CAS  PubMed  Google Scholar 

  27. Gabel C, Li Z, Zhang H, Chang L. Structural basis for inhibition of the type IF CRISPR–Cas surveillance complex by AcrIF4, AcrIF7, and AcrIF14. Nucleic Acids Res. 2021;49(1):584–94. https://doi.org/10.1093/nar/gkaa1199.

    Article  CAS  PubMed  Google Scholar 

  28. Gantz VM, Jasinskiene N, Tatarenkova O, Fazekas A, Macias VM, Bier E, James AA. Highly efficient Cas9-mediated gene drive for population modification of the malaria vector mosquito Anopheles stephensi. Proc Natl Acad Sci. 2015;112(49):E6736–43. https://doi.org/10.1073/pnas.1521077112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Garneau JE, Dupuis MÈ, Villion M, Romero DA, Barrangou R, Boyaval P, Fremaux C, Horvath P, Magadán AH, Moineau S. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature. 2010;468(7320):67–71. https://doi.org/10.1038/nature09523.

    Article  CAS  PubMed  Google Scholar 

  30. Glonti T, Chanishvili N, Taylor PW. Bacteriophage-derived enzyme that depolymerizes the alginic acid capsule associated with cystic fibrosis isolates of Pseudomonas aeruginosa. J Appl Microbiol. 2010;108(2):695–702. https://doi.org/10.1111/j.1365-2672.2009.04469.x.

    Article  CAS  PubMed  Google Scholar 

  31. Guo TW, Bartesaghi A, Yang H, Falconieri V, Rao P, Merk A, Eng ET, Raczkowski AM, Fox T, Earl LA, Patel DJ. Cryo-EM structures reveal the mechanism and inhibition of DNA targeting by a CRISPR–Cas surveillance complex. Cell. 2017;171(2):414–26. https://doi.org/10.1016/j.cell.2017.09.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hammond A, Galizi R, Kyrou K, Simoni A, Siniscalchi C, Katsanos D, Gribble M, Baker D, Marois E, Russell S, Burt A. A CRISPR–Cas9 gene drive system targeting female reproduction in the malaria mosquito vector Anopheles gambiae. Nat Biotechnol. 2016;34(1):78–83. https://doi.org/10.1038/nbt.3439.

    Article  CAS  PubMed  Google Scholar 

  33. Harrington LB, Doxzen KW, Ma E, Liu JJ, Knott GJ, Edraki A, Garcia B, Amrani N, Chen JS, Cofsky JC, Kranzusch PJ. A broad-spectrum inhibitor of CRISPR–Cas9. Cell. 2017;170(6):1224–33. https://doi.org/10.1016/j.cell.2017.07.037.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Haurwitz RE, Jinek M, Wiedenheft B, Zhou K, Doudna JA. Sequence-and structure-specific RNA processing by a CRISPR endonuclease. Science. 2010;329(5997):1355–8. https://doi.org/10.1126/science.1192272.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hirschi M, Lu WT, Santiago-Frangos A, Wilkinson R, Golden SM, Davidson AR, Lander GC, Wiedenheft B. AcrIF9 tethers non-sequence specific dsDNA to the CRISPR RNA-guided surveillance complex. Nat Commun. 2020;11(1):1–6. https://doi.org/10.1038/s41467-020-16512-1.

    Article  CAS  Google Scholar 

  36. Hoffmann MD, Mathony J, Upmeier zu Belzen J, Harteveld Z, Aschenbrenner S, Stengl C, Grimm D, Correia BE, Eils R, Niopek D. Optogenetic control of Neisseria meningitidis Cas9 genome editing using an engineered, light-switchable anti-CRISPR protein. Nucleic Acids Res. 2021;49(5):e29–e29. https://doi.org/10.1093/nar/gkaa1198.

    Article  CAS  PubMed  Google Scholar 

  37. Hsu PD, Scott DA, Weinstein JA, Ran FA, Konermann S, Agarwala V, Li Y, Fine EJ, Wu X, Shalem O, Cradick TJ. DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol. 2013;31(9):827–32. https://doi.org/10.1038/nbt.2647.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hynes AP, Rousseau GM, Agudelo D, Goulet A, Amigues B, Loehr J, Romero DA, Fremaux C, Horvath P, Doyon Y, Cambillau C. Widespread anti-CRISPR proteins in virulent bacteriophages inhibit a range of Cas9 proteins. Nat Commun. 2018;9(1):1–10. https://doi.org/10.1038/s41467-018-05092-w.

    Article  CAS  Google Scholar 

  39. Jiang F, Doudna JA. CRISPR–Cas9 structures and mechanisms. Annu Rev Biophys. 2017;46:505–29. https://doi.org/10.1146/annurev-biophys-062215-010822.

    Article  CAS  PubMed  Google Scholar 

  40. Jiang F, Liu JJ, Osuna BA, Xu M, Berry JD, Rauch BJ, Nogales E, Bondy-Denomy J, Doudna JA. Temperature-responsive competitive inhibition of CRISPR–Cas9. Mol Cell. 2019;73(3):601–10. https://doi.org/10.1016/j.molcel.2018.11.016.

    Article  CAS  PubMed  Google Scholar 

  41. Jiang F, Taylor DW, Chen JS, Kornfeld JE, Zhou K, Thompson AJ, Nogales E, Doudna JA. Structures of a CRISPR–Cas9 R-loop complex primed for DNA cleavage. Science. 2016;351(6275):867–71. https://doi.org/10.1126/science.aad8282.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNAguided DNA endonuclease in adaptive bacterial immunity. Science. 2012;337:816–21. https://doi.org/10.1126/science.1225829.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Jinek M, Jiang F, Taylor DW, Sternberg SH, Kaya E, Ma E, Anders C, Hauer M, Zhou K, Lin S, Kaplan M. Structures of Cas9 endonucleases reveal RNA-mediated conformational activation. Science. 2014;343(6176):1247997. https://doi.org/10.1126/science.1247997.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Jore MM, Brouns SJ, van der Oost J. RNA in defense: CRISPRs protect prokaryotes against mobile genetic elements. Cold Spring Harb Perspect Biol. 2012;4(6):a003657. https://doi.org/10.1101/cshperspect.a003657.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kala S, Cumby N, Sadowski PD, Hyder BZ, Kanelis V, Davidson AR, Maxwell KL. HNH proteins are a widespread component of phage DNA packaging machines. Proc Natl Acad Sci USA. 2014;111:6022–7. https://doi.org/10.1073/pnas.1320952111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kleinstiver BP, Prew MS, Tsai SQ, Topkar VV, Nguyen NT, Zheng Z, Gonzales AP, Li Z, Peterson RT, Yeh JR, Aryee MJ. Engineered CRISPR–Cas9 nucleases with altered PAM specificities. Nature. 2015;523(7561):481–5. https://doi.org/10.1038/nature14592.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Knott GJ, Cress BF, Liu JJ, Thornton BW, Lew RJ, Al-Shayeb B, Rosenberg DJ, Hammel M, Adler BA, Lobba MJ, Xu M. Structural basis for AcrVA4 inhibition of specific CRISPR–Cas12a. elife. 2019;8:e49110. https://doi.org/10.7554/eLife.49110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Koonin EV, Makarova KS, Zhang F. Diversity, classification and evolution of CRISPR–Cas systems. Curr Opin Microbiol. 2017;37:67–78. https://doi.org/10.1016/j.mib.2017.05.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Labrie SJ, Samson JE, Moineau S. Bacteriophage resistance mechanisms. Nat Rev Microbiol. 2010;8(5):317–27. https://doi.org/10.1038/nrmicro2315.

    Article  CAS  PubMed  Google Scholar 

  50. Lee J, Mir A, Edraki A, Garcia B, Amrani N, Lou HE, Gainetdinov I, Pawluk A, Ibraheim R, Gao XD, Liu P. Potent Cas9 inhibition in bacterial and human cells by AcrIIC4 and AcrIIC5 Anti-CRISPR proteins. MBio. 2018. https://doi.org/10.1128/mBio.02321-18.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Lee J, Mou H, Ibraheim R, Liang SQ, Liu P, Xue W, Sontheimer EJ. Tissue-restricted genome editing in vivo specified by microRNA-repressible Anti-CRISPR proteins. RNA. 2019;25(11):1421–31. https://doi.org/10.1261/rna.071704.119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Levy A, Goren MG, Yosef I, Auster O, Manor M, Amitai G, Edgar R, Qimron U, Sorek R. CRISPR adaptation biases explain preference for acquisition of foreign DNA. Nature. 2015;520(7548):505–10. https://doi.org/10.1038/nature14302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Li C, Psatha N, Gil S, Wang H, Papayannopoulou T, Lieber A. HDAd5/35++ adenovirus vector expressing anti-CRISPR peptides decreases CRISPR/Cas9 toxicity in human hematopoietic stem cells. Mol Therapy-Methods Clin Dev. 2018;9:390–401. https://doi.org/10.1016/j.omtm.2018.04.008.

    Article  CAS  Google Scholar 

  54. Liu L, Chen P, Wang M, Li X, Wang J, Yin M, Wang Y. C2c1-sgRNA complex structure reveals RNA-guided DNA cleavage mechanism. Mol Cell. 2017;65:310–22. https://doi.org/10.1016/j.molcel.2016.11.040.

    Article  CAS  PubMed  Google Scholar 

  55. Liu L, Yin M, Wang M, Wang Y. Phage AcrIIA2 DNA mimicry: structural basis of the CRISPR and anti-CRISPR arms race. Mol Cell. 2019;73(3):611–20. https://doi.org/10.1016/j.molcel.2018.11.011.

    Article  CAS  PubMed  Google Scholar 

  56. Lu WT, Trost CN, Müller-Esparza H, Randau L, Davidson AR. Anti-CRISPR AcrIF9 functions by inducing the CRISPR–Cas complex to bind DNA non-specifically. Nucleic Acids Res. 2021. https://doi.org/10.1093/nar/gkab092.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Makarova KS, Haft DH, Barrangou R, Brouns SJ, Charpentier E, Horvath P, Moineau S, Mojica FJ, Wolf YI, Yakunin AF, Van Der Oost J. Evolution and classification of the CRISPR–Cas systems. Nat Rev Microbiol. 2011;9:467–77. https://doi.org/10.1038/nrmicro2577).

    Article  CAS  PubMed  Google Scholar 

  58. Makarova KS, Wolf YI, Koonin EV. Classification and nomenclature of CRISPR–Cas systems: where from here? CRISPR J. 2018;1(5):325–36. https://doi.org/10.1089/crispr.2018.0033.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Makarova KS, Wolf YI, Alkhnbashi OS, Costa F, Shah SA, Saunders SJ, Barrangou R, Brouns SJ, Charpentier E, Haft DH, Horvath P. An updated evolutionary classification of CRISPR–Cas systems. Nat Rev Microbiol. 2015;13:722–36. https://doi.org/10.1038/nrmicro3569.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Makarova KS, Wolf YI, Iranzo J, et al. Evolutionary classification of CRISPR–Cas systems: a burst of class 2 and derived variants. Nat Rev Microbiol. 2020;18:67–83. https://doi.org/10.1038/s41579-019-0299-x.

    Article  CAS  PubMed  Google Scholar 

  61. Marino ND, Pinilla-Redondo R, Csörgő B, Bondy-Denomy J. Anti-CRISPR protein applications: natural brakes for CRISPR–Cas technologies. Nat Methods. 2020;17(6):1–9. https://doi.org/10.1038/s41592-020-0771-6.

    Article  CAS  Google Scholar 

  62. Marino ND, Zhang JY, Borges AL, Sousa AA, Leon LM, Rauch BJ, Walton RT, Berry JD, Joung JK, Kleinstiver BP, Bondy-Denomy J. Discovery of widespread type I and type V CRISPR–Cas inhibitors. Science. 2018;362(6411):240–2. https://doi.org/10.1126/science.aau5174.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Marraffini LA. CRISPR–Cas immunity in prokaryotes. Nature. 2015;526(7571):55–61. https://doi.org/10.1038/nature15386.

    Article  CAS  PubMed  Google Scholar 

  64. Maxwell KL, Garcia B, Bondy-Denomy J, Bona D, Hidalgo-Reyes Y, Davidson AR. The solution structure of an Anti-CRISPR protein. Nat Commun. 2016;7(1):1–5. https://doi.org/10.1038/ncomms13134.

    Article  CAS  Google Scholar 

  65. Nakamura M, Srinivasan P, Chavez M, Carter MA, Dominguez AA, La Russa M, Lau MB, Abbott TR, Xu X, Zhao D, Gao Y. Anti-CRISPR-mediated control of gene editing and synthetic circuits in eukaryotic cells. Nat Commun. 2019;10(1):1–11. https://doi.org/10.1038/S41467-018-08158-X.

    Article  Google Scholar 

  66. Nihongaki Y, Furuhata Y, Otabe T, Hasegawa S, Yoshimoto K, Sato M. CRISPR–Cas9-based photoactivatable transcription systems to induce neuronal differentiation. Nat Methods. 2017;14(10):963–6. https://doi.org/10.1038/nmeth.4430.

    Article  CAS  PubMed  Google Scholar 

  67. Nihongaki Y, Yamamoto S, Kawano F, Suzuki H, Sato M. CRISPR–Cas9-based photoactivatable transcription system. Chem Biol. 2015;22(2):169–74. https://doi.org/10.1016/j.chembiol.2014.12.011.

    Article  CAS  PubMed  Google Scholar 

  68. Nishimasu H, Nureki O. Structures and mechanisms of CRISPR RNA-guided effector nucleases. Curr Opin Struct Biol. 2017;43:68–78. https://doi.org/10.1016/j.sbi.2016.11.013.

    Article  CAS  PubMed  Google Scholar 

  69. Niu Y, Yang L, Gao T, Dong C, Zhang B, Yin P, Hopp AK, Li D, Gan R, Wang H, Liu X. A type IF anti-CRISPR protein inhibits the CRISPR–Cas surveillance complex by ADP-ribosylation. Mol Cell. 2020;80(3):512–24. https://doi.org/10.1016/j.molcel.2020.09.015.

    Article  CAS  PubMed  Google Scholar 

  70. Nussenzweig PM, Marraffini LA. Molecular mechanisms of CRISPR–Cas immunity in bacteria. Annul Rev of Genet. 2020;54:93–120.

    Article  CAS  Google Scholar 

  71. Palmer DJ, Turner DL, Ng P. Production of CRISPR/Cas9-mediated self-cleaving helper-dependent adenoviruses. Mol Ther Methods Clin Dev. 2019;13:432–9. https://doi.org/10.1016/j.omtm.2019.04.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Pawluk A, Bondy-Denomy J, Cheung VH, Maxwell KL, Davidson AR. A new group of phage anti-CRISPR genes inhibits the type IE CRISPR–Cas system of Pseudomonas aeruginosa. MBio. 2014. https://doi.org/10.1128/mBio.00896-14.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Pawluk A, Shah M, Mejdani M, Calmettes C, Moraes TF, Davidson AR, Maxwell KL. Disabling a type IE CRISPR–Cas nuclease with a bacteriophage-encoded anti-CRISPR protein. MBio. 2017. https://doi.org/10.1128/mBio.01751-17.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Pawluk A, Staals RH, Taylor C, Watson BN, Saha S, Fineran PC, Maxwell KL, Davidson AR. Inactivation of CRISPR–Cas systems by anti-CRISPR proteins in diverse bacterial species. Nat Microbiol. 2016;1(8):1–6. https://doi.org/10.1038/nmicrobiol.2016.85.

    Article  CAS  Google Scholar 

  75. Peng R, Xu Y, Zhu T, Li N, Qi J, Chai Y, Wu M, Zhang X, Shi Y, Wang P, Wang J. Alternate binding modes of anti-CRISPR viral suppressors AcrF1/2 to Csy surveillance complex revealed by cryo-EM structures. Cell Res. 2017;27(7):853–64. https://doi.org/10.1038/cr.2017.79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Rauch BJ, Silvis MR, Hultquist JF, Waters CS, McGregor MJ, Krogan NJ, Bondy-Denomy J. Inhibition of CRISPR–Cas9 with bacteriophage proteins. Cell. 2017;168(1–2):150–8. https://doi.org/10.1016/j.cell.2016.12.009.

    Article  CAS  PubMed  Google Scholar 

  77. Richter C, Dy RL, McKenzie RE, Watson BN, Taylor C, Chang JT, McNeil MB, Staals RH, Fineran PC. Priming in the Type IF CRISPR–Cas system triggers strand-independent spacer acquisition, bi-directionally from the primed protospacer. Nucleic Acids Res. 2014;42(13):8516–26. https://doi.org/10.1093/nar/gku527.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Rollins MF, Chowdhury S, Carter J, Golden SM, Miettinen HM, Santiago-Frangos A, Faith D, Lawrence CM, Lander GC, Wiedenheft B. The structure reveals a mechanism of CRISPR–RNA-guided nuclease recruitment and anti-CRISPR viral mimicry. Mol Cell. 2019;74(1):132–42. https://doi.org/10.1016/j.molcel.2019.02.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Rouillon C, Zhou M, Zhang J, Politis A, Beilsten-Edmands V, Cannone G, Graham S, Robinson CV, Spagnolo L, White MF. Structure of the CRISPR interference complex CSM reveals key similarities with cascade. Mol Cell. 2013;52:124–34. https://doi.org/10.1016/j.molcel.2013.08.020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Savitskaya E, Semenova E, Dedkov V, Metlitskaya A, Severinov K. Highthroughput analysis of type I-E CRISPR/Cas spacer acquisition in E. coli. RNA Biol. 2013;10(5):716–25. https://doi.org/10.4161/rna.24325.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Shin J, Jiang F, Liu JJ, Bray NL, Rauch BJ, Baik SH, Nogales E, Bondy-Denomy J, Corn JE, Doudna JA. Disabling Cas9 by an Anti-CRISPR DNA mimic. Sci Adv. 2017;3(7):e1701620. https://doi.org/10.1126/sciadv.1701620.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Shmakov S, Abudayyeh OO, Makarova KS, Wolf YI, Gootenberg JS, Semenova E, Minakhin L, Joung J, Konermann S, Severinov K, Zhang F. Discovery and functional characterization of diverse class 2 CRISPR–Cas systems. Mol Cell. 2015;60:385–97. https://doi.org/10.1016/j.molcel.2015.10.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Shmakov S, Smargon A, Scott D, Cox D, Pyzocha N, Yan W, Abudayyeh OO, Gootenberg JS, Makarova KS, Wolf YI, Severinov K. Diversity and evolution of class 2 CRISPR–Cas systems. Nat Rev Microbiol. 2017;15:169–82. https://doi.org/10.1038/nrmicro.2016.184.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Smargon AA, Cox DB, Pyzocha NK, Zheng K, Slaymaker IM, Gootenberg JS, Abudayyeh OA, Essletzbichler P, Shmakov S, Makarova KS, Koonin EV. Cas13b is a type VI-B CRISPR-associated RNA-guided RNase differentially regulated by accessory proteins Csx27 and Csx28. Mol Cell. 2017;65:618–30. https://doi.org/10.1016/j.molcel.2016.12.023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Song G, Zhang F, Tian C, Gao X, Zhu X, Fan D, Tian Y. Discovery of potent and versatile CRISPR–Cas9 inhibitors engineered for chemically controllable genome editing. Nucleic Acids Res. 2022;50(5):2836–53. https://doi.org/10.1093/nar/gkac099.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Spilman M, Cocozaki A, Hale C, Shao Y, Ramia N, Terns R, Terns M, Li H, Stagg S. Structure of an RNA silencing complex of the CRISPR–Cas immune system. Mol Cell. 2013;52:146–52. https://doi.org/10.1016/j.molcel.2013.09.008.

    Article  CAS  PubMed  Google Scholar 

  87. Staals RH, Agari Y, Maki-Yonekura S, Zhu Y, Taylor DW, Van Duijn E, Barendregt A, Vlot M, Koehorst JJ, Sakamoto K, Masuda A. Structure and activity of the RNA-targeting Type III-B CRISPR–Cas complex of Thermus thermophilus. Mol Cell. 2013;52:135–45. https://doi.org/10.1016/j.molcel.2013.09.013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Stanley SY, Maxwell KL. Phage-encoded anti-CRISPR defenses. Annu Rev Genet. 2018;52:445–64. https://doi.org/10.1146/annurev-genet-120417-031321.

    Article  CAS  PubMed  Google Scholar 

  89. Swarts DC, Mosterd C, van Passel MW, Brouns SJ. CRISPR interference directs strand-specific spacer acquisition. PLoS ONE. 2012;7(4):e35888. https://doi.org/10.1371/journal.pone.0035888.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Szczelkun MD, Tikhomirova MS, Sinkunas T, Gasiunas G, Karvelis T, Pschera P, Siksnys V, Seidel R. Direct observation of R-loop formation by single RNA-guided Cas9 and Cascade effector complexes. Proc Natl Acad Sci. 2014;111(27):9798–803. https://doi.org/10.1146/annurev-genet-120417-031321.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Thakur S, Kushwah N, Kumar S, Singh P, Rathore M, Singh NP, Das A. Genome editing using CRISPR/Cas systems in legumes. In: Gupta OP, Karkute SG, editors. Genome editing in plants: principles and applications. CRC Press; 2021. p. 89–108.

    Chapter  Google Scholar 

  92. Tsai SQ, Zheng Z, Nguyen NT, Liebers M, Topkar VV, Thapar V, Wyvekens N, Khayter C, Iafrate AJ, Le LP, Aryee MJ, Joung JK. GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR–Cas nucleases. Nat Biotechnol. 2015;33(2):187–97. https://doi.org/10.1038/nbt.3117.

    Article  CAS  PubMed  Google Scholar 

  93. Vasu K, Nagaraja V. Diverse functions of restriction-modification systems in addition to cellular defense. Microbiol Mol Biol Rev. 2013;77:53–72. https://doi.org/10.1128/MMBR.00044-12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Wang Y, Zhang ZT, Se SO, Lynn P, Lu T, Jin YS, Blaschek HP. Gene transcription repression in Clostridium beijerinckii using CRISPR–dCas9. Biotechnol Bioeng. 2016;113(12):2739–43. https://doi.org/10.1002/bit.26020.

    Article  CAS  PubMed  Google Scholar 

  95. Watters KE, Fellmann C, Bai HB, Ren SM, Doudna JA. Systematic discovery of natural CRISPR–Cas12a inhibitors. Science. 2018;362(6411):236–9. https://doi.org/10.1126/science.aau5138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Wiedenheft B, Lander GC, Zhou K, Jore MM, Brouns SJ, van der Oost J, Doudna JA, Nogales E. Structures of the RNA-guided surveillance complex from a bacterial immune system. Nature. 2011;477:486–9. https://doi.org/10.1038/nature10402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Wright AV, Nuñez JK, Doudna JA. Biology and applications of CRISPR systems: harnessing nature’s toolbox for genome engineering. Cell. 2016;164(1–2):29–44. https://doi.org/10.1016/j.cell.2015.12.035.

    Article  CAS  PubMed  Google Scholar 

  98. Wyvekens N, Topkar VV, Khayter C, Joung JK, Tsai SQ. Dimeric CRISPR RNA-guided FokI-dCas9 nucleases directed by truncated gRNAs for highly specific genome editing. Hum Gene Ther. 2015;26(7):425–31. https://doi.org/10.1089/hum.2015.084.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Yang H, Patel DJ. Inhibition mechanism of an anti-CRISPR suppressor AcrIIA4 targeting SpyCas9. Mol Cell. 2017;67(1):117–27. https://doi.org/10.1016/j.molcel.2017.05.024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Yosef I, Goren MG, Qimron U. Proteins and DNA elements essential for the CRISPR adaptation process in Escherichia coli. Nucleic Acids Res. 2012;40(12):5569–76. https://doi.org/10.1093/nar/gks216.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Zetsche B, Gootenberg JS, Abudayyeh OO, Slaymaker IM, Makarova KS, Essletzbichler P, Volz SE, Joung J, Van Der Oost J, Regev A, Koonin EV. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR–Cas system. Cell. 2015;163:759–71. https://doi.org/10.1016/j.cell.2015.09.038.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Zhang K, Wang S, Li S, Zhu Y, Pintilie GD, Mou TC, Schmid MF, Huang Z, Chiu W. Inhibition mechanisms of AcrF9, AcrF8, and AcrF6 against type IF CRISPR–Cas complex revealed by cryo-EM. Proc Natl Acad Sci. 2020;117(13):7176–82. https://doi.org/10.1073/pnas.1922638117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Zhang XH, Tee LY, Wang XG, Huang QS, Yang SH. Off-target effects in CRISPR/Cas9-mediated genome engineering. Mol Ther Nucleic Acids. 2015;4:e264. https://doi.org/10.1038/mtna.2015.37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Zhang H, Li Z, Daczkowski CM, Gabel C, Mesecar AD, Chang L. Structural basis for the inhibition of CRISPR–Cas12a by anti-CRISPR proteins. Cell Host Microbe. 2019;25(6):815–26. https://doi.org/10.1016/j.chom.2019.05.004.

    Article  CAS  PubMed  Google Scholar 

  105. Zhu Y, Gao A, Zhan Q, Wang Y, Feng H, Liu S, Gao G, Serganov A, Gao P. Diverse mechanisms of CRISPR–Cas9 inhibition by type IIC anti-CRISPR proteins. Mol Cell. 2019;74(2):296–309. https://doi.org/10.1016/j.molcel.2019.01.038.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The present manuscript does not involve any type/source of funding.

Author information

Authors and Affiliations

Authors

Contributions

SJ, LBS, and KK Conceived and designed the manuscript. Collection of the required information was performed by SJ, JV, NS, KRS, and SK while SJ, JV, KK, and SK wrote the first draft of the manuscript. All authors have read and given their consent for manuscript publication.

Corresponding author

Correspondence to Sandeep Jaiswal.

Ethics declarations

Conflict of interest

Authors hereby declare that no conflict of interest exists.

Consent to participate

Not applicable.

Consent to publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Corresponding Editor: Nishant Chakravorty; Reviewers: Budhaditya Mukherjee, Arindam Ghosh.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jaiswal, S., Singh, L.B., Kumar, K. et al. Anti-CRISPR proteins: a weapon of phage-bacterial arm race for genome editing. Nucleus 67, 47–59 (2024). https://doi.org/10.1007/s13237-023-00457-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1007/s13237-023-00457-z

Keywords