Skip to main content

Advertisement

Log in

Beyond Simple and Complex Neurons: Towards Intermediate-level Representations of Shapes and Objects

  • Discussion
  • Published:
KI - Künstliche Intelligenz Aims and scope Submit manuscript

Abstract

Knowledge of the brain has much advanced since the concept of the neuron doctrine developed by Ramón y Cajal (R Trim Histol Norm Patol 1:33–49, 1888). Over the last six decades a wide range of functionalities of neurons in the visual cortex have been identified. These neurons can be hierarchically organized into areas since neurons cluster according to structural properties and related function. The neurons in such areas can be characterized to a first order approximation by their (static) receptive field function, viz their filter characteristic implemented by their connection weights to neighboring cells. This paper aims to provide insights on the steps that computer models in our opinion must pursue in order to develop robust recognition mechanisms that mimic biological processing capabilities beyond the level of cells with classical simple and complex receptive field response properties. We stress the importance of intermediate-level representations to achieve higher-level object abstraction in the context of feature representations, and summarize two current approaches that we consider are advances toward achieving that goal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Notes

  1. Such reassignment of interpretation to meaningful figural surface layout coheres with different processing phases demonstrated in experiments by Roelfsema et al. [62]. While initial responses are mainly driven by image features, later response facilitations are generated as a consequence of selective feature enhancements generated during grouping and figure-ground segregation processes.

References

  1. Azzopardi G, Petkov N (2012) A corf computational model of a simple cell that relies on lgn input outperforms the gabor function model. Biol Cybernet 106(3):177–189

    Article  Google Scholar 

  2. Azzopardi G, Petkov N (2013) Trainable cosfire filters for keypoint detection and pattern recognition. IEEE Trans Pattern Analy Mach Intell 35(2):490–503

    Article  Google Scholar 

  3. Bastos AM, Usrey WM, Adams RA, Mangun GR, Fries P, Friston KJ (2012) Canonical microcircuits for predictive coding. Neuron 76(4):695–711

    Article  Google Scholar 

  4. Baylis G, Driver J (2001) Shape-coding in IT cells generalizes over contrast and mirror reversal, but not figure-ground reversal. Nat Neurosci 4(9):937–942

    Article  Google Scholar 

  5. Ben-Shahar O, Zucker S (2004) Geometrical computations explain projection patterns of long-range horizontal connections in visual cortex. Neural Comput 16(3):445–476

    Article  MATH  Google Scholar 

  6. Born RT, Bradley DC (2005) Structure and function of visual area MT. Annu Rev Neurosci 28:157–189

    Article  Google Scholar 

  7. Bosking WH, Zhang Y, Schofield B, Fitzpatrick D (1997) Orientation selectivity and the arrangement of horizontal connections in tree shrew striate cortex. J Neurosci 17(6):2112–2127

    Google Scholar 

  8. Boynton G, Hegde J (2004) Visual cortex: the continuing puzzle of area V2. Curr Biol 14(13):523–524

    Article  Google Scholar 

  9. Brosch T, Neumann H (2014) Computing with a canonical neural circuits model with pool normalization and modulating feedback

  10. Cadieu C, Kouth K, Pasupathy A, Connor C, Riesenhuber M, Poggio T (2007) A model of V4 shape selectivity and invariance. J Neurophysiol 98:1733–1750

    Article  Google Scholar 

  11. Caplovitz GP, Tse PU (2007) V3a processes contour curvature as a trackable feature for the perception of rotational motion. Cereb Cortex 17(5):1179–1189

    Article  Google Scholar 

  12. Carandini M, Ferster D (2000) Membrane potential and firing rate in cat primary visual cortex. J Neurosci 20(1):470–484

    Google Scholar 

  13. Carandini M, Heeger DJ (2012) Normalization as a canonical neural computation. Nat R Neurosci 13(1):51–62

    Article  Google Scholar 

  14. Carandini M, Heeger DJ, Movshon JA (1997) Linearity and normalization in simple cells of the macaque primary visual cortex. J Neurosci 17(21):8621–8644

    Google Scholar 

  15. Connor C, Brincatt S, Pasupathy A (2007) Transformation of shape information in the ventral pathway. Curr Opin Neurobiol 17(2):140–147

    Article  Google Scholar 

  16. Craft E, Schütze H, Niebur E, von der Heydt R (2007) A neural model of figure-ground organization. J Neurophysiol 97(6):4310–4326

    Article  Google Scholar 

  17. De Pasquale R, Sherman SM (2013) A modulatory effect of the feedback from higher visual. J Neurophysiol 109:2618–2631

    Article  Google Scholar 

  18. Desimone R, Duncan J (1995) Neural mechanisms of selective visual attention. Ann Rev Neurosci 18:193–222

    Article  Google Scholar 

  19. Dobbins A, Zucker S, Cynader M (1987) Endstopped neurons in the visual cortex as a substrate for calculating curvature. Nature 329(6138):438–441

    Article  Google Scholar 

  20. Edelman GM (1993) Neural darwinism: selection and reentrant signaling in higher brain function. Neuron 10(2):115–125

    Article  MathSciNet  Google Scholar 

  21. Fukushima K (1980) Neocognitron: a self organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biol Cybernet 36(4):193–202

    Article  MATH  Google Scholar 

  22. Gilbert CD, Li W (2013) Top-down influences on visual processing. Nat Rev Neurosci 14(5):350–363

    Article  Google Scholar 

  23. Girard P, Bullier J (1989) Visual activity in area v2 during reversible inactivation of area 17 in the macaque monkey. J Neurophysiol 62(6):1287–302

    Google Scholar 

  24. Grossberg S (1968) Some nonlinear networks capable of learning a spatial pattern of arbitrary complexity. PNAS 2(59):368–372

    Article  Google Scholar 

  25. Grossberg S (1970) Neural pattern discrimination. J Theoret Biol 2(27):291–337

    Article  Google Scholar 

  26. Grossberg S, Mingolla E, Ross WD (1997) Visual brain and visual perception: how does the cortex do perceptual grouping? Trends Neurosci 20(3):106–111

    Article  Google Scholar 

  27. Hansen T, Neumann H (2004) A simple cell model with dominating opponent inhibition for robust image processing. Neural Netw 17(5):647–662

    Article  MATH  Google Scholar 

  28. Hawken M, Parker A (1987) Spatial properties of neurons in the monkey striate cortex. Proc R Soc Lon Ser B Biol Sci 231:251–288

    Article  Google Scholar 

  29. von der Heydt R, Peterhans E, Baumgartner G (1984) Illusory contours and cortical neuron responses. Science 224(4654):1260–1262

    Article  Google Scholar 

  30. Hinton G, Osindero S, Teh YW (2006) A fast learning algorithm for deep belief nets. Neural Comput 18(7):1527–1554

    Article  MATH  MathSciNet  Google Scholar 

  31. Hubel D, Wiesel T (1965) Receptive fields and functional architecture in two nonstriate visual areas (18 and 19) of the cat. J Neurophysiol 28:229–289

    Google Scholar 

  32. Hubel D, Wiesel T (1968) Receptive fields and functional architecture of monkey striate cortex. J Physiol 195(1):215–243

    Article  Google Scholar 

  33. Ito M, Komatsu H (2004) Representation of angles embedded within contour stimuli in area V2 of macaque monkeys. J Neurosc 24(13):3313–3324

    Article  Google Scholar 

  34. Jarrett K, Kavukcuoglu K, Ranzato M, LeCun Y (2009) What is the best multi-stage architecture for object recognition? In: Computer vision, 2009 IEEE 12th International Conference on, IEEE, pp 2146–2153

  35. Kato H, Bishop P, Orban G (1978) Hypeercomplex and simple/complex cells classifications in cat striate cortex. J Neurophys, pp 1071–1095

  36. Kellman PJ, Shipley TF (1991) A theory of visual interpolation in object perception. Cognit Psychol 23(2):141–221

    Article  Google Scholar 

  37. LeCun Y, Bengio Y (1995) Convolutional networks for images, speech, and time series. Handb Brain Theory Neural Netw, 3361

  38. Lecun Y, Boser B, Denker J, Henderson D, Howard R, Hubbard W, Jackel L (1989) Backpropagation applied to handwritten zip code recognition. Neural Comput 1(4):541–551

    Article  Google Scholar 

  39. Logothetis N, Sheinberg D (1996) Visual object recognition. Ann Rev Neurosci 19:577–621

    Article  Google Scholar 

  40. von der Malsburg C, Phillips WA, Singer W (2010) Dynamic coordination in the brain: from neurons to mind. MIT Press, Cambridge

    Book  Google Scholar 

  41. Markov NT, Kennedy H (2013) The importance of being hierarchical. Curr Opin Neurobiol 23(2):187–194

    Article  Google Scholar 

  42. Metzger W (1936) Gesetze des sehens. W. Kramer Frankfurt am Main.

  43. Murray SO, Kersten D, Olshausen BA, Schrater P, Woods DL (2002) Shape perception reduces activity in human primary visual cortex. PNAS 99(23):15164–15169

    Article  Google Scholar 

  44. Mutch J, Lowe DG (2008) Object class recognition and localization using sparse features with limited receptive fields. Int J Comput Vis 80(1):45–57

    Article  Google Scholar 

  45. Nakayama K, Shimojo S, Ftamachandran VS (1990) Transparency: relation to depth, subjective contours, luminance, and neon color spreading. Perception 19(4):497–513

    Article  Google Scholar 

  46. Neumann H, Mingolla E (2001) Computational neural models of spatial integration in perceptual grouping. In Fragments to Objects-Segmentation and Grouping in Vision, ch12 130:353–400

  47. Neumann H, Sepp W (1999) Recurrent V1–V2 interaction in early visual boundary processing. Biol Cybernet 81(5–6):425–444

    Article  Google Scholar 

  48. Neumann H, Yazdanbakhsh A, Mingolla E (2007) Seeing surfaces: the brain’s vision of the world. Phys Life Rev 4(3):189–222

    Article  Google Scholar 

  49. Parent P, Zucker S (1989) Trace inference, curvature consistency, and curve detection. IEEE Pattern Anal Mach Intell 11(8):823–839

    Article  Google Scholar 

  50. Pasupathy A, Connor C (1999) Responses to contour features in macaque area V4. J Neurophysiol 82(5):2490–2502

    Google Scholar 

  51. Pasupathy A, Connor C (2002) Population coding of shape in area V4. Nat Neurosci 5(12):1332–1338

    Article  Google Scholar 

  52. Pessoa L, Thompson E, Noë A (1998) Filling-in is for finding out. Behav Brain Sci 21(06):781–796

    Article  Google Scholar 

  53. Piëch V, Li W, Reeke GN, Gilbert CD (2013) Network model of top-down influences on local gain and contextual interactions in visual cortex. PNAS 110(43):4108–4117

    Article  Google Scholar 

  54. Qiu FT, von Der Heydt R (2005) Figure and ground in the visual cortex: V2 combines stereoscopic cues with gestalt rules. Neuron 47(1):155–166

    Article  Google Scholar 

  55. Ramón y Cajal S (1888) Sobre las fibras nerviosas de la capa molecular del cerebelo. R Trim Histol Norm Patol 1:33–49

    Google Scholar 

  56. Rao R, Ballard D (1999) Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. Nat Neurosci 2(1):79–87

    Article  Google Scholar 

  57. Reynolds JH, Heeger DJ (2009) The normalization model of attention. Neuron 61(2):168–185

    Article  Google Scholar 

  58. Riesenhuber M, Poggio T (1999) Hierarchical models of object recognition in cortex. Nat Neurosci 2(11):1019–1025

    Article  Google Scholar 

  59. Ringach DL, Shapley R (1996) Spatial and temporal properties of illusory contours and amodal boundary completion. Vis Res 36(19):3037–3050

    Article  Google Scholar 

  60. Rodríguez-Sánchez A, Tsotsos J (2011) The importance of intermediate representations for the modeling of 2D shape detection: endstopping and curvature tuned computations. IEEE CVPR pp 4321–4326

  61. Rodríguez-Sánchez A, Tsotsos J (2012) The roles of endstopped and curvature tuned computations in a hierarchical representation of 2D shape. PLOS ONE 7(8):1–13

    Article  Google Scholar 

  62. Roelfsema PR (2006) Cortical algorithms for perceptual grouping. Ann Rev Neurosci 29:203–227

    Article  Google Scholar 

  63. Roelfsema PR, Lamme VA, Spekreijse H, Bosch H (2002) Figureground segregation in a recurrent network architecture. J Cogn Neurosci 14(4):525–537

    Article  Google Scholar 

  64. Rubin N (2001a) Figure and ground in the brain. Nat Neurosci 4(9):857–858

    Article  Google Scholar 

  65. Rubin N (2001b) The role of junctions in surface completion and contour matching. Perception 30(3):339–366

    Article  Google Scholar 

  66. Salin PA, Bullier J (1995) Corticocortical connections in the visual-system- structure and function. Physiol Rev 75(1):107–154

    Google Scholar 

  67. Serre T, Wolf L, Bileschi S, Riesenhuber M (2007) Robust object recognition with cortex-like mechanisms. IEEE T Pattern Anal Mach Intel 29(3):411–426

    Article  Google Scholar 

  68. Sherman SM, Guillery R (1998) On the actions that one nerve cell can have on another: distinguishing drivers from modulators. PNAS 95(12):7121–7126

    Article  Google Scholar 

  69. Tanaka K (1996) Inferotemporal cortex and object vision. Ann Rev Neurosci 19:109–139

    Article  Google Scholar 

  70. Tanaka K, Saito H, Fukada Y, Moriya M (1991) Coding visual images of objects in the inferotemporal cortex of the macaque monkey. J Neurophysiol 66(1):170–189

    Google Scholar 

  71. Thielscher A, Neumann H (2008) Globally consistent depth sorting of overlapping 2d surfaces in a model using local recurrent interactions. Biol Cybernet 98(4):305–337

    Article  MATH  MathSciNet  Google Scholar 

  72. Tschechne S, Neumann H (2014) Hierarchical representation of shapes in visual cortexfrom localized features to figural shape segregation. Front Computat Neurosci 8

  73. Tsotsos J, Culhane S, Winky W, Lai Y, Davis N, Nuflo F (1995) Modeling visual attention via selective tuning. Artif Intel 78(1–2):507–545

    Article  Google Scholar 

  74. Ullman S (1995) Sequence seeking and counter streams: a computational model for bidirectional information flow in the visual cortex. Cereb Cortex 5(1):1–11

    Article  Google Scholar 

  75. Wallis G, Rolls E (1997) Invariant face and object recognition in the visual system. Prog Neurobiol 51(2):167–194

    Article  Google Scholar 

  76. Weidenbacher U, Neumann H (2009) Extraction of surface-related features in a recurrent model of V1–V2 interactions. PLOS ONE 4(6):e5909

    Article  Google Scholar 

  77. Williams LR, Jacobs DW (1997) Stochastic completion fields, a neural model of illusory contour shape and salience. Neural Computat 9(4):837–858

    Article  Google Scholar 

  78. Zhou H, Friedman H, von der Heydt R (2000) Coding of border ownership in monkey visual cortex. J Neurosci 20:6594–6611

    Google Scholar 

  79. Zipser K, Lamme VA, Schiller PH (1996) Contextual modulation in primary visual cortex. J Neurosci 16(22):7376–7389

    Google Scholar 

Download references

Acknowledgments

H. N. has been supported by the Transregional Collaborative Research Centre SFB/TRR 62 “A Companion Technology for Cognitive Technical Systems” funded by the German Research Foundation (DFG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Rodríguez-Sánchez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodríguez-Sánchez, A., Neumann, H. & Piater, J. Beyond Simple and Complex Neurons: Towards Intermediate-level Representations of Shapes and Objects. Künstl Intell 29, 19–29 (2015). https://doi.org/10.1007/s13218-014-0341-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13218-014-0341-0

Keywords