Skip to main content
Log in

Highly anisotropic thermal conductivity of few-layer CrOCl for efficient heat dissipation in graphene device

  • Research Article
  • Published:
Nano Research Aims and scope

Abstract

With the packing density growing continuously in integrated electronic devices, sufficient heat dissipation becomes a serious challenge. Recently, dielectric materials with high thermal conductivity have brought insight into effective dissipation of waste heat in electronic devices to prevent them from overheating and guarantee the performance stability. Layered CrOCl, an anti-ferromagnetic insulator with low-symmetry crystal structure and atomic level flatness, might be a promising solution to the thermal challenge. Herein, we have systematically studied the thermal transport of suspended few-layer CrOCl flakes by micro-Raman thermometry. The CrOCl flakes exhibit high thermal conductivities along zigzag direction, from ∼ 392 ± 33 to ∼ 1,017 ± 46 W·m−1·K−1 with flake thickness from 2 to 50 nm. Besides, pronounced thickness-dependent thermal conductivity ratio (κZZAR from ∼ 2.8 ± 0.24 to ∼ 4.3 ± 0.25) has been observed in the CrOCl flakes, attributed to the discrepancy of phonon dispersion and phonon surface scattering. As a demonstration to the heat sink application of layered CrOCl, we then investigate the energy dissipation in graphene devices on CrOCl, SiO2 and hexagonal boron nitride (h-BN) substrates, respectively. The graphene device temperature rise on CrOCl is only 15.4% of that on SiO2 and 30% on h-BN upon the same electric power density, indicating the efficient heat dissipation of graphene device on CrOCl. Our study provides new insights into two-dimentional (2D) dielectric material with high thermal conductivity and strong anisotropy for the application of thermal management in electronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bhimanapati, G. R.; Lin, Z.; Meunier, V.; Jung, Y.; Cha, J.; Das, S.; Xiao, D.; Son, Y.; Strano, M. S.; Cooper, V. R. et al. Recent advances in two-dimensional materials beyond graphene. ACS Nano 2015, 9, 11509–11539.

    Article  CAS  Google Scholar 

  2. Balandin, A. A. Thermal properties of graphene and nanostructured carbon materials. Nat. Mater. 2011, 10, 569–581.

    Article  CAS  Google Scholar 

  3. Pop, E. Energy dissipation and transport in nanoscale devices. Nano Res. 2010, 3, 147–169.

    Article  CAS  Google Scholar 

  4. Moore, A. L.; Shi, L. Emerging challenges and materials for thermal management of electronics. Mater. Today 2014, 17, 163–174.

    Article  CAS  Google Scholar 

  5. Wei, Y. H.; Deng, C. Y.; Zheng, X. M.; Chen, Y. B.; Zhang, X. Z.; Luo, W.; Zhang, Y.; Peng, G.; Liu, J. X.; Huang, H. et al. Anisotropic in-plane thermal conductivity for multi-layer WTe2. Nano Res. 2022, 15, 401–407.

    Article  CAS  Google Scholar 

  6. Wei, Y. H.; Zhang, R. Y.; Zhang, Y.; Zheng, X. M.; Cai, W. W.; Ge, Q.; Novoselov, K. S.; Xu, Z. J.; Jiang, T.; Deng, C. Y. et al. Thickness-independent energy dissipation in graphene electronics. ACS Appl. Mater. Interfaces 2020, 12, 17706–17712.

    Article  CAS  Google Scholar 

  7. Zhang, Z. W.; Hu, S. Q.; Chen, J.; Li, B. W. Hexagonal boron nitride: A promising substrate for graphene with high heat dissipation. Nanotechnology 2017, 28, 225704.

    Article  Google Scholar 

  8. Ahmed, F.; Kim, Y. D.; Choi, M. S.; Liu, X. C.; Qu, D. S.; Yang, Z.; Hu, J. Y.; Herman, I. P.; Hone, J.; Yoo, W. J. High electric field carrier transport and power dissipation in multilayer black phosphorus field effect transistor with dielectric engineering. Adv. Funct. Mater. 2017, 27, 1604025.

    Article  Google Scholar 

  9. Balandin, A. A.; Ghosh, S.; Bao, W. Z.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C. N. Superior thermal conductivity of single-layer graphene. Nano Lett. 2008, 8, 902–907.

    Article  CAS  Google Scholar 

  10. Seol, J. H.; Jo, I.; Moore, A. L.; Lindsay, L.; Aitken, Z. H.; Pettes, M. T.; Li, X. S.; Yao, Z.; Huang, R.; Broido, D. et al. Two-dimensional phonon transport in supported graphene. Science 2010, 328, 213–216.

    Article  CAS  Google Scholar 

  11. Fu, Y. F.; Hansson, J.; Liu, Y.; Chen, S. J.; Zehri, A.; Samani, M. K.; Wang, N.; Ni, Y. X.; Zhang, Y.; Zhang, Z. B. et al. Graphene related materials for thermal management. 2D Mater. 2019, 7, 012001.

    Article  Google Scholar 

  12. Yang, G.; Yi, H. K.; Yao, Y. G.; Li, C. W.; Li, Z. Thermally conductive graphene films for heat dissipation. ACS Appl. Nano Mater. 2020, 3, 2149–2155.

    Article  CAS  Google Scholar 

  13. Song, H.; Liu, J.; Liu, B.; Wu, J.; Cheng, H.; Kang, F. Two-dimensional materials for thermal management applications [J]. Joule, 2018, 2, 442–463.

    Article  CAS  Google Scholar 

  14. Jo, I.; Pettes, M. T.; Kim, J.; Watanabe, K.; Taniguchi, T.; Yao, Z.; Shi, L. Thermal conductivity and phonon transport in suspended few-layer hexagonal boron nitride. Nano Lett. 2013, 13, 550–554.

    Article  CAS  Google Scholar 

  15. Dean, C. R.; Young, A. F.; Meric, I.; Lee, C.; Wang, L.; Sorgenfrei, S.; Watanabe, K.; Taniguchi, T.; Kim, P.; Shepard, K. L. et al. Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 2010, 5, 722–726.

    Article  CAS  Google Scholar 

  16. Cai, W. W.; Moore, A. L.; Zhu, Y. W.; Li, X. S.; Chen, S. S.; Shi, L.; Ruoff, R. S. Thermal transport in suspended and supported monolayer graphene grown by chemical vapor deposition. Nano Lett. 2010, 10, 1645–1651.

    Article  CAS  Google Scholar 

  17. Sahoo, S.; Gaur, A. P. S.; Ahmadi, M.; Guinel, M. J. F.; Katiyar, R. S. Temperature-dependent Raman studies and thermal conductivity of few-layer MoS2. J. Phys. Chem. C 2013, 117, 9042–9047.

    Article  CAS  Google Scholar 

  18. Ong, Z Y.; Cai, Y. Q.; Zhang, G.; Zhang, Y. W. Strong thermal transport anisotropy and strain modulation in single-layer phosphorene. J. Phys. Chem. C 2014, 118, 25272–25277.

    Article  CAS  Google Scholar 

  19. Luo, Z.; Maassen, J.; Deng, Y. X.; Du, Y. C.; Garrelts, R. P.; Lundstrom, M. S.; Ye, P. D.; Xu, X. F. Anisotropic in-plane thermal conductivity observed in few-layer black phosphorus. Nat. Commun. 2015, 6, 8572.

    Article  CAS  Google Scholar 

  20. Jain, A.; McGaughey, A. J. H. Strongly anisotropic in-plane thermal transport in single-layer black phosphorene. Sci. Rep. 2015, 5, 8501.

    Article  CAS  Google Scholar 

  21. Chen, Y.; Peng, B.; Cong, C. X.; Shang, J. Z.; Wu, L. S.; Yang, W. H.; Zhou, J. D.; Yu, P.; Zhang, H. B.; Wang, Y. L. et al. In-plane anisotropic thermal conductivity of few-layered transition metal dichalcogenide Td-WTe2. Adv. Mater. 2019, 31, 1804979.

    Article  Google Scholar 

  22. Kim, S. E.; Mujid, F.; Rai, A.; Eriksson, F.; Suh, J.; Poddar, P.; Ray, A.; Park, C.; Fransson, E.; Zhong, Y. et al. Extremely anisotropic van der Waals thermal conductors. Nature 2021, 597, 660–665.

    Article  CAS  Google Scholar 

  23. Chung, D. D. L.; Takizawa, Y. Performance of isotropic and anisotropic heat spreaders. J. Electron. Mater. 2012, 41, 2580–2587.

    Article  CAS  Google Scholar 

  24. Zhang, T. L.; Wang, Y. M.; Li, H. X.; Zhong, F.; Shi, J.; Wu, M. H.; Sun, Z. Y.; Shen, W. F.; Wei, B.; Hu, W. D. et al. Magnetism and optical anisotropy in van der Waals antiferromagnetic insulator CrOCl. ACS Nano 2019, 13, 11353–11362.

    Article  CAS  Google Scholar 

  25. Angelkort, J.; Wölfel, A.; Schönleber, A.; van Smaalen, S.; Kremer, R. K. Observation of strong magnetoelastic coupling in a first-order phase transition of CrOCl. Phys. Rev. B 2009, 80, 144416.

    Article  Google Scholar 

  26. Miao, N. H.; Xu, B.; Zhu, L. G.; Zhou, J.; Sun, Z. M. 2D intrinsic ferromagnets from van der Waals antiferromagnets. J. Am. Chem. Soc. 2018, 140, 2417–2420.

    Article  CAS  Google Scholar 

  27. Zhang, M. J.; Hu, Q. F.; Hua, C. Q.; Cheng, M.; Liu, Z.; Song, S. J.; Wang, F. G.; He, P. M.; Cao, G. H.; Xu, Z. A.; Lu, Y. H.; Yang, J. B.; Zheng, Y. Metamagnetic transitions in few-layer CrOCl controlled by magnetic anisotropy flipping. 2021, arXiv:2108.02825.arXiv.org e-Print archive. https://doi.org/10.48550/arXiv.2108.02825 (accessed Aug 5, 2021)

  28. Zhang, T. Y.; Wang, H. W.; Xia, X. X.; Yan, N.; Sha, X. Z.; Huang, J. Q.; Watanabe, K.; Taniguchi, T.; Zhu, M. J.; Wang, L. et al. A monolithically sculpted van der Waals nano-opto-electro-mechanical coupler. Light:Sci. Appl. 2022, 11, 48.

    Article  CAS  Google Scholar 

  29. Yang, K. N.; Gao, X.; Wang, Y. N.; Zhang, T. Y.; Gu, P. F.; Luo, Z. P.; Zheng, R. J.; Cao, S. M.; Wang, H. W.; Sun, X. D.; Watanabe, K.; Taniguchi, T.; Li, X. Y.; Zhang, J.; Dai, X.; Chen, J. H.; Ye, Y.; Han, Z. V. Realization of graphene logics in an exciton-enhanced insulating phase. 2021, arXiv: 2110.02921. arXiv.org e-Printarchive. https://doi.org/10.48550/arXiv.2110.02921 (accessed Oct 6, 2021)

  30. Wang, Y. N.; Gao, X.; Yang, K. N.; Gu, P. F.; Dong, B. J.; Jiang, Y. H.; Watanabe, K.; Taniguchi, T.; Kang, J.; Lou, W. K.; Mao, J. H.; Y, Y.; Han, Z, V.; Chang, K.; Zhang, J.; Zhang, Z. D. Flavoured quantum Hall phase in graphene/CrOCl heterostructures. 2021, arXiv: 2110.02899. arXiv.org e-Printarchive. https://doi.org/10.48550/arXiv.2110.02899 (accessed Oct 6, 2021)

  31. Lee, S.; Yang, F.; Suh, J.; Yang, S. J.; Lee, Y.; Li, G.; Choe, H. S.; Suslu, A.; Chen, Y. B.; Ko, C. et al. Anisotropic in-plane thermal conductivity of black phosphorus nanoribbons at temperatures higher than 100 K. Nat. Commun. 2015, 6, 8573.

    Article  CAS  Google Scholar 

  32. Jang, H.; Wood, J. D.; Ryder, C. R.; Hersam, M. C.; Cahill, D. G. Anisotropic thermal conductivity of exfoliated black phosphorus. Adv. Mater. 2015, 27, 8017–8022.

    Article  CAS  Google Scholar 

  33. Yan, R. S.; Simpson, J. R.; Bertolazzi, S.; Brivio, J.; Watson, M.; Wu, X. F.; Kis, A.; Luo, T. F.; Walker, A. R. H.; Xing, H. G. Thermal conductivity of monolayer molybdenum disulfide obtained from temperature-dependent Raman spectroscopy. ACS Nano 2014, 8, 986–993.

    Article  CAS  Google Scholar 

  34. Chen, Y. B.; Deng, C. Y.; Wei, Y. H.; Liu, J. X.; Su, Y.; Xie, S. Y.; Cai, W. W.; Peng, G.; Huang, H.; Dai, M. Y. et al. Thickness dependent anisotropy of in-plane Raman modes under different temperatures in supported few-layer WTe2. Appl. Phys. Lett. 2021, 119, 063104.

    Article  CAS  Google Scholar 

  35. Cai, Q. R.; Scullion, D.; Gan, W.; Falin, A.; Zhang, S. Y.; Watanabe, K.; Taniguchi, T.; Chen, Y.; Santos, E. J. G.; Li, L. H. High thermal conductivity of high-quality monolayer boron nitride and its thermal expansion. Sci. Adv. 2019, 5, eaav0129.

    Article  Google Scholar 

  36. Chen, Y. B.; Chen, C. Y.; Kealhofer, R.; Liu, H. L.; Yuan, Z. Q.; Jiang, L. L.; Suh, J.; Park, J.; Ko, C.; Choe, H. S. et al. Black arsenic: A layered semiconductor with extreme in-plane anisotropy. Adv. Mater. 2018, 30, 1800754.

    Article  Google Scholar 

  37. Xu, W.; Zhu, L. Y.; Cai, Y. Q.; Zhang, G.; Li, B. W. Direction dependent thermal conductivity of monolayer phosphorene: Parameterization of Stillinger—Weber potential and molecular dynamics study. J. Appl. Phys. 2015, 117, 214308.

    Article  Google Scholar 

  38. Zhao, Y. S.; Zhang, G.; Nai, M. H.; Ding, G. Q.; Li, D. F.; Liu, Y.; Hippalgaonkar, K.; Lim, C. T.; Chi, D. Z.; Li, B. W. et al. Probing the physical origin of anisotropic thermal transport in black phosphorus nanoribbons. Adv. Mater. 2018, 30, 1804928.

    Article  Google Scholar 

  39. Zhang, X.; Sun, D. Z.; Li, Y. L.; Lee, G. H.; Cui, X.; Chenet, D.; You, Y. M.; Heinz, T. F.; Hone, J. C. Measurement of lateral and interfacial thermal conductivity of single- and bilayer MoS2 and MoSe2 using refined optothermal Raman technique. ACS Appl. Mater. Interfaces 2015, 7, 25923–25929.

    Article  CAS  Google Scholar 

  40. Pettes, M. T.; Maassen, J.; Jo, I.; Lundstrom, M. S.; Shi, L. Effects of surface band bending and scattering on thermoelectric transport in suspended bismuth telluride nanoplates. Nano Lett. 2013, 13, 5316–5322.

    Article  CAS  Google Scholar 

  41. Jeong, C.; Datta, S.; Lundstrom, M. Thermal conductivity of bulk and thin-film silicon: A Landauer approach. J. Appl. Phys. 2012, 111, 093708.

    Article  Google Scholar 

  42. Bonini, N.; Garg, J.; Marzari, N. Acoustic phonon lifetimes and thermal transport in free-standing and strained graphene. Nano Lett. 2012, 12, 2673–2678.

    Article  CAS  Google Scholar 

  43. Mleczko, M. J.; Xu, R. L.; Okabe, K.; Kuo, H. H.; Fisher, I. R.; Wong, H. S. P.; Nishi, Y.; Pop, E. High current density and low thermal conductivity of atomically thin semimetallic WTe2. ACS Nano 2016, 10, 7507–7514.

    Article  CAS  Google Scholar 

  44. Yalon, E.; McClellan, C. J.; Smithe, K. K. H.; Rojo, M. M.; Xu, R. L.; Suryavanshi, S. V.; Gabourie, A. J.; Neumann, C. M.; Xiong, F.; Farimani, A. B. et al. Energy dissipation in monolayer MoS2 electronics. Nano Lett. 2017, 17, 3429–3433.

    Article  CAS  Google Scholar 

  45. Yang, X.; Ma, J. J.; Ling, J.; Li, N.; Wang, D.; Yue, F.; Xu, S. M. Cellulose acetate-based SiO2/TiO2 hybrid microsphere composite aerogel films for water-in-oil emulsion separation. Appl. Surf. Sci. 2018, 435, 609–616.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No.11874423).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Han Huang, Chuyun Deng or Xueao Zhang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, X., Wei, Y., Wei, Z. et al. Highly anisotropic thermal conductivity of few-layer CrOCl for efficient heat dissipation in graphene device. Nano Res. 15, 9377–9385 (2022). https://doi.org/10.1007/s12274-022-4611-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1007/s12274-022-4611-0

Keywords