Abstract
Exosomes are now accepted as potential biomarkers in cardiovascular disease development, especially in atherosclerosis. Atherosclerosis is a leading cause of cardiovascular disease-related death and morbidity, accounting for one-fifth of all deaths globally. Therefore, the biomarkers for the management of atherosclerosis is urgently needed. Exosomes are reported to play key roles cell-to-cell communication in atherosclerosis with lipid bilayer membranous vesicles containing nucleic acids, proteins, and lipid contents, which are released from all most of multiple kinds of living cells. This review aims to discuss the potential roles of exosome-derived miRNA, protein, and DNA as biomarkers in atherosclerosis pathogenesis, diagnosis, and therapy.

Similar content being viewed by others
References
Huber, H. J., & Holvoet, P. (2015). Exosomes: Emerging roles in communication between blood cells and vascular tissues during atherosclerosis. Current Opinion in Lipidology, 26, 412–419.
Hao, X., & Fan, H. (2017). Identification of miRNAs as atherosclerosis biomarkers and functional role of miR-126 in atherosclerosis progression through MAPK signalling pathway. European Review for Medical and Pharmacological Sciences, 21, 2725–2733.
Yin, M., Loyer, X., & Boulanger, C. M. (2015). Extracellular vesicles as new pharmacological targets to treat atherosclerosis. European Journal of Pharmacology, 763, 90–103.
Chistiakov, D. A., Orekhov, A. N., & Bobryshev, Y. V. (2015). Extracellular vesicles and atherosclerotic disease. Cellular and Molecular Life Sciences, 72, 2697–2708.
Ailawadi, S., Wang, X., Gu, H., & Fan, G.-C. (2015). Pathologic function and therapeutic potential of exosomes in cardiovascular disease. Biochimica et Biophysica Acta, 1852, 1–11.
Alvarez-Llamas, G., Cuesta Fdl, G. M. E., Barderas, V., Darde, L. R. P., & Vivanco, F. (2008). Recent advances in atherosclerosis-based proteomics: New biomarkers and a future perspective. Expert Review Proteomics, 5, 679–691.
de Jong, O. G., Verhaar, M. C., Chen, Y., Vader, P., Gremmels, H., Posthuma, G., Schiffelers, R. M., Gucek, M., & van Balkom, B. W. (2012). Cellular stress conditions are reflected in the protein and RNA content of endothelial cell-derived exosomes. Journal of Extracellular Vesicles, 1, 18396. https://doi.org/10.3402/jev.v1i0.18396.
Wolf, P. (1967). The nature and significance of platelet products in human plasma. British Journal of Haematology, 13, 269–288.
Hessvik, N. P., & Llorente, A. (2018). Current knowledge on exosome biogenesis and release. Cellular and Molecular Life Sciences, 75, 193–208.
Bretz, N. P., Ridinger, J., Rupp, A. K., Rimbach, K., Keller, S., Rupp, C., Marme, F., Umansky, L., Umansky, V., Eigenbrod, T., Sammar, M., & Altevogt, P. (2013). Body fluid exosomes promote secretion of inflammatory cytokines in monocytic cells via toll-like receptor signaling. The Journal of Biological Chemistry, 288, 36691–36702.
Emanueli, C., Shearn, A. I. U., Angelini, G. D., & Sahoo, S. (2015). Exosomes and exosomal miRNAs in cardiovascular protection and repair. Vascular Pharmacology, 71, 24–30.
Khalyfa, A., & Gozal, D. (2014). Exosomal miRNAs as potential biomarkers of cardiovascular risk in children. Journal of Translational Medicine, 12, 162. https://doi.org/10.1186/1479-5876-12-162.
Ge, Q., Zhou, Y., Lu, J., Bai, Y., Xie, X., & Lu, Z. (2014). miRNA in plasma exosome is stable under different storage conditions. Molecules, 19, 1568–1575.
Packard, R. R., & Libby, P. (2008). Inflammation in atherosclerosis: From vascular biology to biomarker discovery and risk prediction. Clinical Chemistry, 54, 24–38.
Izarra, A., Moscoso, I., Levent, E., Cañón, S., Cerrada, I., Díez-Juan, A., Blanca, V., Núñez-Gil, I.-J., Valiente, I., Ruíz-Sauri, A., Sepúlveda, P., Tiburcy, M., Zimmermann, W.-H., & Bernad, A. (2014). miR-133a enhances the protective capacity of cardiac progenitors cells after myocardial infarction. Stem Cell Reports, 3, 1029–1042.
Hergenreider, E., Heydt, S., Tréguer, K., Boettger, T., Horrevoets, A. J. G., Zeiher, A. M., Scheffer, M. P., Frangakis, A. S., Yin, X., Mayr, M., Braun, T., Urbich, C., Boon, R. A., & Dimmeler, S. (2012). Atheroprotective communication between endothelial cells and smooth muscle cells through miRNAs. Nature Cell Biology, 14, 249–256.
Zhang, Y., Liu, D., Chen, X., Li, J., Li, L., Bian, Z., Sun, F., Lu, J., Yin, Y., Cai, X., Sun, Q., Wang, K., Ba, Y., Wang, Q., Wang, D., Yang, J., Liu, P., Xu, T., Yan, Q., Zhang, J., Zen, K., & Zhang, C. Y. (2010). Secreted monocytic miR-150 enhances targeted endothelial cell migration. Molecular Cell, 39, 133–144.
Zheng, B., Yin, W. N., Suzuki, T., Zhang, X. H., Zhang, Y., Song, L. L., Jin, L. S., Zhan, H., Zhang, H., Li, J. S., & Wen, J. K. (2017). Exosome-mediated miR-155 transfer from smooth muscle cells to endothelial cells induces endothelial injury and promotes atherosclerosis. Molecular Therapy, 25, 1279–1294.
van Balkom, B. W., de Jong, O. G., Smits, M., Brummelman, J., den Ouden, K., de Bree, P. M., van Eijndhoven, M. A., Pegtel, D. M., Stoorvogel, W., Wurdinger, T., & Verhaar, M. C. (2013). Endothelial cells require miR-214 to secrete exosomes that suppress senescence and induce angiogenesis in human and mouse endothelial cells. Blood, 121, 3997–4006.
Ismail, N., Wang, Y., Dakhlallah, D., Moldovan, L., Agarwal, K., Batte, K., Shah, P., Wisler, J., Eubank, T. D., Tridandapani, S., Paulaitis, M. E., Piper, M. G., & Marsh, C. B. (2013). Macrophage microvesicles induce macrophage differentiation and miR-223 transfer. Blood, 121, 984–995.
Tan, M., Yan, H. B., Li, J. N., Li, W. K., Fu, Y. Y., Chen, W., & Zhou, Z. (2016). Thrombin stimulated platelet-derived exosomes inhibit platelet-derived growth factor receptor-beta expression in vascular smooth muscle cells. Cellular Physiology and Biochemistry, 38, 2348–2365.
Gidlof, O., van der Brug, M., Ohman, J., Gilje, P., Olde, B., Wahlestedt, C., & Erlinge, D. (2013). Platelets activated during myocardial infarction release functional miRNA, which can be taken up by endothelial cells and regulate ICAM-1 expression. Blood, 121, 3908–3917.
Cervio, E., Barile, L., Moccetti, T., & Vassalli, G. (2015). Exosomes for Intramyocardial intercellular communication. Stem Cells International, 2015, 482171. https://doi.org/10.1155/2015/482171.
Cheng, C., Wang, Q., You, W., Chen, M., & Xia, J. (2014). MiRNAs as biomarkers of myocardial infarction: A meta-analysis. PLoS One, 9, e88566. https://doi.org/10.1371/journal.pone.0088566.
Neppl, R. L., & Wang, D.-Z. (2014). The myriad essential roles of microRNAs in cardiovascular homeostasis and disease. Genes & Diseases, 1, 18–39.
Hulsmans, M., & Holvoet, P. (2013). MicroRNA-containing microvesicles regulating inflammation in association with atherosclerotic disease. Cardiovascular Research, 100, 7–18.
Matkovich, S. J., Wang, W., Tu, Y., Eschenbacher, W. H., Dorn, L. E., Condorelli, G., Diwan, A., Nerbonne, J. M., & Dorn II, G. W. (2010). MicroRNA-133a protects against myocardial fibrosis and modulates electrical repolarization without affecting hypertrophy in pressure-overloaded adult hearts. Circulation Research, 106, 166–175.
Gao, S., Wassler, M., Zhang, L., Li, Y., Wang, J., Zhang, Y., Shelat, H., Williams, J., & Geng, Y. J. (2014). MicroRNA-133a regulates insulin-like growth factor-1 receptor expression and vascular smooth muscle cell proliferation in murine atherosclerosis. Atherosclerosis, 232, 171–179.
Zhao, Y., Li, Y., Luo, P., Gao, Y., Yang, J., Lao, K. H., Wang, G., Cockerill, G., Hu, Y., Xu, Q., Li, T., & Zeng, L. (2016). XBP1 splicing triggers miR-150 transfer from smooth muscle cells to endothelial cells via extracellular vesicles. Scientific Reports, 6, 28627. https://doi.org/10.1038/srep28627.
Pan, Y., Liang, H., Liu, H., Li, D., Chen, X., Li, L., Zhang, C. Y., & Zen, K. (2013). Platelet-secreted microRNA-223 promotes endothelial cell apoptosis induced by advanced glycation end products via targeting the insulin-like growth factor 1 receptor. The Journal of Immunology, 192, 437–446.
Jiang, M., Jing, Q., Zhang, H., Ding, Q. Q., Xiang, M., Meng, D., Sun, N., & Chen, S. F. (2016). Proteomic identification of proteins in exosomes of patients with atherosclerosis. Chinese Journal Pathophysiology, 24, 1525–1526.
Chyrchel, B., Toton-Zuranska, J., Kruszelnicka, O., Chyrchel, M., Mielecki, W., Kolton-Wroz, M., Wolkow, P., & Surdacki, A. (2015). Association of plasma miR-223 and platelet reactivity in patients with coronary artery disease on dual antiplatelet therapy: A preliminary report. Platelets, 26, 593–597.
Tang, N., Sun, B., Gupta, A., Rempel, H., & Pulliam, L. (2016). Monocyte exosomes induce adhesion molecules and cytokines via activation of NF-kappaB in endothelial cells. FASEB Journal, 30, 3097–3106.
Niu, C., Wang, X., Zhao, M., Cai, T., Liu, P., Li, J., Willard, B., Zu, L., Zhou, E., Li, Y., Pan, B., Yang, F., & Zheng, L. (2016). Macrophage foam cell-derived extracellular vesicles promote vascular smooth muscle cell migration and adhesion. Journal of the American Heart Association. https://doi.org/10.1161/JAHA.116.004099.
Goetzl, E. J., Schwartz, J. B., Mustapic, M., Lobach, I. V., Daneman, R., Abner, E. L., & Jicha, G. A. (2017). Altered cargo proteins of human plasma endothelial cell-derived exosomes in atherosclerotic cerebrovascular disease. FASEB Journal, 31, 3689–3694.
Zheng, X., Chen, F., Zhang, Q., Liu, Y., You, P., Sun, S., Lin, J., & Chen, N. (2017). Salivary exosomal PSMA7: A promising biomarker of inflammatory bowel disease. Protein & Cell, 8, 686–695.
Cai, J., Han, Y., Ren, H., Chen, C., He, D., Zhou, L., Eisner, G. M., Asico, L. D., Jose, P. A., & Zeng, C. (2013). Extracellular vesicle-mediated transfer of donor genomic DNA to recipient cells is a novel mechanism for genetic influence between cells. Journal of Molecular Cell Biology, 5, 227–238.
Cai, J., Guan, W., Tan, X., Chen, C., Li, L., Wang, N., Zou, X., Zhou, F., Wang, J., Pei, F., Chen, X., Luo, H., Wang, X., He, D., Zhou, L., Jose, P. A., & Zeng, C. (2015). SRY gene transferred by extracellular vesicles accelerates atherosclerosis by promotion of leucocyte adherence to endothelial cells. Clinical Science, 129, 259–269.
Author information
Authors and Affiliations
Corresponding authors
Ethics declarations
Conflict of Interest
The authors declare that they have no conflict of interest. This review article does not contain any studies with human participants or animals performed by any of authors.
Additional information
Associate Editor Junjie Xiao oversaw the review of this article
Rights and permissions
About this article
Cite this article
Lu, M., Yuan, S., Li, S. et al. The Exosome-Derived Biomarker in Atherosclerosis and Its Clinical Application. J. of Cardiovasc. Trans. Res. 12, 68–74 (2019). https://doi.org/10.1007/s12265-018-9796-y
Received:
Accepted:
Published:
Version of record:
Issue date:
DOI: https://doi.org/10.1007/s12265-018-9796-y

