Skip to main content
Log in

Targeting PI3K/Akt in Cerebral Ischemia Reperfusion Injury Alleviation: From Signaling Networks to Targeted Therapy

  • Reviews
  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Ischemia/reperfusion (I/R) injury is a pathological event that results in reperfusion due to low blood flow to an organ. Cerebral ischemia is a common cerebrovascular disease with high mortality, and reperfusion is the current standard intervention. However, reperfusion may further induce cellular damage and dysfunction known as cerebral ischemia/reperfusion injury (CIRI). Currently, strategies for the clinical management of CIRI are limited, necessitating the exploration of novel and efficacious treatment modalities for the benefit of patients. PI3K/Akt signaling pathway is an important cellular process associated with the disease. Stimulation of the PI3K/Akt pathway enhances I/R injury in multiple organs such as heart, brain, lung, and liver. It stands as a pivotal signaling pathway crucial for diminishing cerebral infarction size and safeguarding the functionality of brain tissue after CIRI. During CIRI, activation of the PI3K/Akt pathway exhibits a protective effect on CIRI. Furthermore, activation of the PI3K/Akt pathway has the potential to augment the activity of antioxidant enzymes, resulting in a decrease in reactive oxygen species (ROS) and the associated oxidative stress. Meanwhile, PI3K/Akt plays a neuroprotective role by inhibiting inflammatory responses and apoptosis. For example, PI3K/Akt interacts with NF-κB, Nrf2, and MAPK signaling pathways to mitigate CIRI. This article is aimed to explore the pivotal role and underlying mechanism of PI3K/Akt in ameliorating CIRI and investigate the influence of ischemic preconditioning and post-processing, as well as the impact of pertinent drugs or activators targeting the PI3K/Akt pathway on CIRI. The primary objective is to furnish compelling evidence supporting the activation of PI3K/Akt in the context of CIRI, elucidating its mechanistic intricacies. By doing so, the paper aims to underscore the critical contribution of PI3K/Akt in mitigating CIRI, providing a theoretical foundation for considering the PI3K/Akt pathway as a viable target for CIRI treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

Not applicable.

Abbreviations

CIRI:

Cerebral ischemia–reperfusion injury

NF-κB:

Nuclear transcription factor-κB

PI3K/Akt:

Phosphatidylinosine 3 kinase/protein kinase B

Nrf2:

Nuclear factor erythroid-2-related factor 2

Akt:

Protein kinase B

IGF-1:

Insulin-like growth factor-1

FGF:

Fibroblast growth factor

EGF:

Epidermal growth factor

RTK:

Receptor tyrosine kinase

ROS:

Reactive oxygen

RNS:

Reactive nitrogen species

BBB:

Blood-brain barrier

CAT:

Catalase

SOD:

Superoxide dismutase

GSH:

Glutathione

I/R:

Ischemia/reperfusion

TLR4:

Toll-like receptor-4

PTEN:

Tensin homologous protein

MMPs:

Matrix metalloproteinase

MCAO:

Middle cerebral artery occlusion

MAPK:

Mitogen activated protein kinase

OGD/R:

Oxygen-glucose deprivation/reoxygenation

IPC:

Ischemic preconditioning

References

  1. Katan M, Luft A (2018) Global Burden of Stroke [J]. Semin Neurol 38(2):208–211

    Article  PubMed  Google Scholar 

  2. Stoll G, Kleinschnitz C, Nieswandt B (2008) Molecular mechanisms of thrombus formation in ischemic stroke: novel insights and targets for treatment [J]. Blood 112(9):3555–3562

    Article  CAS  PubMed  Google Scholar 

  3. Vongsfak J, Pratchayasakul W, Apaijai N et al (2021) The alterations in mitochondrial dynamics following cerebral ischemia/reperfusion injury [J]. Antioxidants (Basel) 10(9):1384

  4. Li F, Mao Q, Wang J et al (2022) Salidroside inhibited cerebral ischemia/reperfusion-induced oxidative stress and apoptosis via Nrf2/Trx1 signaling pathway [J]. Metab Brain Dis 37(8):2965–2978

    Article  CAS  PubMed  Google Scholar 

  5. Datta A, Sarmah D, Mounica L et al (2020) Cell death pathways in ischemic stroke and targeted pharmacotherapy [J]. Transl Stroke Res 11(6):1185–1202

    Article  PubMed  Google Scholar 

  6. Grysiewicz RA, Thomas K, Pandey DK (2008) Epidemiology of ischemic and hemorrhagic stroke: incidence, prevalence, mortality, and risk factors [J]. Neurol Clin 26(4):871–95

    Article  PubMed  Google Scholar 

  7. Li M, Tang H, Li Z et al (2022) Emerging treatment strategies for cerebral ischemia-reperfusion injury [J]. Neuroscience 507:112–24

    Article  CAS  PubMed  Google Scholar 

  8. Yuan Q, Yuan Y, Zheng Y et al (2021) Anti-cerebral ischemia reperfusion injury of polysaccharides: a review of the mechanisms [J]. Biomed Pharmacother 137:111303

    Article  CAS  PubMed  Google Scholar 

  9. Rickard JA, O’Donnell JA, Evans JM et al (2014) RIPK1 regulates RIPK3-MLKL-driven systemic inflammation and emergency hematopoiesis [J]. Cell 157(5):1175–1188

    Article  CAS  PubMed  Google Scholar 

  10. Wang K, Li Y, Qiang T et al (2021) Role of epigenetic regulation in myocardial ischemia/reperfusion injury [J]. Pharmacol Res 170:105743

    Article  CAS  PubMed  Google Scholar 

  11. Wu PF, Zhang Z, Wang F et al (2010) Natural compounds from traditional medicinal herbs in the treatment of cerebral ischemia/reperfusion injury [J]. Acta Pharmacol Sin 31(12):1523–1531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Derex L, Cho TH (2017) Mechanical thrombectomy in acute ischemic stroke [J]. Revue neurologique 173(3):106–113

    Article  CAS  PubMed  Google Scholar 

  13. Peng Y, Wang Y, Zhou C et al (2022) PI3K/Akt/mTOR pathway and its role in cancer therapeutics: are we making headway? [J]. Front Oncol 12:819128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Li Y, Jin T, Liu N et al (2023) A short peptide exerts neuroprotective effects on cerebral ischemia-reperfusion injury by reducing inflammation via the miR-6328/IKKβ/NF-κB axis [J]. J Neuroinflammation 20(1):53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhang Q, Yao M, Qi J et al (2023) Puerarin inhibited oxidative stress and alleviated cerebral ischemia-reperfusion injury through PI3K/Akt/Nrf2 signaling pathway[J]. Front Pharmacol 14:1134380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wang F, Ma M, Yang J et al (2023) Neuroprotective effects of activin A against cerebral ischemia/reperfusion injury in mice by enhancing Nrf2 expression to attenuate neuronal ferroptosis [J]. ACS Chem Neurosci 14(15):2818–2826

    Article  CAS  PubMed  Google Scholar 

  17. Zhang Q, Yao M, Qi J et al (2023) Puerarin inhibited oxidative stress and alleviated cerebral ischemia-reperfusion injury through PI3K/Akt/Nrf2 signaling pathway [J]. Front Pharmacol 14:1134380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wang Y, Yuan Y, Gao Y et al (2019) MicroRNA-31 regulating apoptosis by mediating the phosphatidylinositol-3 kinase/protein kinase B signaling pathway in treatment of spinal cord injury [J]. Brain Develop 41(8):649–661

    Article  Google Scholar 

  19. Zhao T, Qi Y, Li Y et al (2012) PI3 Kinase regulation of neural regeneration and muscle hypertrophy after spinal cord injury [J]. Mol Biol Rep 39(4):3541–3547

    Article  CAS  PubMed  Google Scholar 

  20. Courtney KD, Corcoran RB, Engelman JA (2010) The PI3K pathway as drug target in human cancer [J]. J Clin Oncol : official journal of the American Society of Clinical Oncology 28(6):1075–1083

    Article  CAS  Google Scholar 

  21. Liu S, Xu L, Shen Y et al (2023) Qingxin Kaiqiao Fang decreases tau hyperphosphorylation in Alzheimer’s disease via the PI3K/Akt/GSK3β pathway in vitro and in vivo [J]. J Ethnopharmacol 318(Pt B):117031

    PubMed  Google Scholar 

  22. Farid HA, Sayed RH, El-Shamarka ME et al (2023) PI3K/AKT signaling activation by roflumilast ameliorates rotenone-induced Parkinson’s disease in rats [J]. Inflammopharmacol

  23. Shi CS, Hu Q, Fang SL et al (2023) MicroRNA-204-5p ameliorates neurological injury via the EphA4/PI3K/AKT signaling pathway in ischemic stroke [J]. ACS Chem Neurosci 14(11):2060–2073

    Article  CAS  PubMed  Google Scholar 

  24. Li C, Qin T, Jin Y et al (2023) Cerebrospinal fluid-derived extracellular vesicles after spinal cord injury promote vascular regeneration via PI3K/AKT signaling pathway [J]. J Orthop Transl 39:124–34

    Google Scholar 

  25. Samakova A, Gazova A, Sabova N et al (2019) The PI3k/Akt pathway is associated with angiogenesis, oxidative stress and survival of mesenchymal stem cells in pathophysiologic condition in ischemia [J]. Physiol Res 68(Suppl 2):S131–S138

    Article  CAS  PubMed  Google Scholar 

  26. Deng RM, Zhou J (2023) The role of PI3K/AKT signaling pathway in myocardial ischemia-reperfusion injury [J]. Int Immunopharmacol 123:110714

    Article  CAS  PubMed  Google Scholar 

  27. Wu Y, Qiu G, Zhang H et al (2021) Dexmedetomidine alleviates hepatic ischaemia-reperfusion injury via the PI3K/AKT/Nrf2-NLRP3 pathway [J]. J Cell Mol Med 25(21):9983–9994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Shan X, Zhang J, Wei X et al (2022) Dexmedetomidine attenuates renal ischemia-reperfusion injury through activating PI3K/Akt-eNOS signaling via α(2) adrenoreceptors in renal microvascular endothelial cells [J]. FASEB J : official publication of the Federation of American Societies for Experimental Biology 36(11):e22608

    Article  CAS  Google Scholar 

  29. Yuan Y, Sheng P, Ma B et al (2023) Elucidation of the mechanism of Yiqi Tongluo granule against cerebral ischemia/reperfusion injury based on a combined strategy of network pharmacology, multi-omics and molecular biology [J]. Phytomedicine : International journal of phytotherapy and phytopharmacology 118:154934

    Article  CAS  PubMed  Google Scholar 

  30. Meng J, Ma H, Zhu Y et al (2021) Dehydrocostuslactone attenuated oxygen and glucose deprivation/reperfusion-induced PC12 cell injury through inhibition of apoptosis and autophagy by activating the PI3K/AKT/mTOR pathway [J]. Euro J Pharmacol 911:174554

    Article  CAS  Google Scholar 

  31. Bader AG, Kang S, Zhao L et al (2005) Oncogenic PI3K deregulates transcription and translation [J]. Nat Rev Cancer 5(12):921–929

    Article  CAS  PubMed  Google Scholar 

  32. Zhao X, Fang Y, Wang X et al (2020) Knockdown of Ski decreases osteosarcoma cell proliferation and migration by suppressing the PI3K/Akt signaling pathway [J]. Int J Oncol 56(1):206–218

    CAS  PubMed  Google Scholar 

  33. Wu Z, Wang G, Xu S et al (2014) Effects of tetrandrine on glioma cell malignant phenotype via inhibition of ADAM17 [J]. Tumour Biol 35(3):2205–2210

    Article  CAS  PubMed  Google Scholar 

  34. Brazil DP, Hemmings BA (2001) Ten years of protein kinase B signalling: a hard Akt to follow [J]. Trends Biochem Sci 26(11):657–664

    Article  CAS  PubMed  Google Scholar 

  35. Tang LA, Dixon BN, Maples KT et al (2018) Current and investigational agents targeting the phosphoinositide 3-kinase pathway [J]. Pharmacotherapy 38(10):1058–1067

    Article  PubMed  Google Scholar 

  36. Vanhaesebroeck B, Guillermet-Guibert J, Graupera M et al (2010) The emerging mechanisms of isoform-specific PI3K signalling [J]. Nat Rev Mol Cell Biol 11(5):329–341

    Article  CAS  PubMed  Google Scholar 

  37. el Sheikh SS, Domin J, Tomtitchong P et al (2003) Topographical expression of class IA and class II phosphoinositide 3-kinase enzymes in normal human tissues is consistent with a role in differentiation [J]. BMC Clin Pathol 3(1):4

    Article  PubMed  PubMed Central  Google Scholar 

  38. Xie Y, Shi X, Sheng K et al (2019) PI3K/Akt signaling transduction pathway, erythropoiesis and glycolysis in hypoxia (Review) [J]. Mol Med Rep 19(2):783–791

    CAS  PubMed  Google Scholar 

  39. Breitkopf SB, Yang X, Begley MJ et al (2016) A cross-species study of PI3K protein-protein interactions reveals the direct interaction of P85 and SHP2 [J]. Sci Rep 6:20471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Yuan TL, Cantley LC (2008) PI3K pathway alterations in cancer: variations on a theme [J]. Oncogene 27(41):5497–5510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Engelman JA, Luo J, Cantley LC (2006) The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism [J]. Nat Rev Genet 7(8):606–619

    Article  CAS  PubMed  Google Scholar 

  42. Fruman DA, Meyers RE, Cantley LC (1998) Phosphoinositide kinases [J]. Ann Rev Biochem 67:481–507

    Article  CAS  PubMed  Google Scholar 

  43. Guo H, German P, Bai S et al (2015) The PI3K/AKT pathway and renal cell carcinoma [J]. J Genet Genomics Yi chuan xue bao 42(7):343–53

    Article  PubMed  Google Scholar 

  44. Martini M, de Santis MC, Braccini L et al (2014) PI3K/AKT signaling pathway and cancer: an updated review [J]. Ann Med 46(6):372–383

    Article  CAS  PubMed  Google Scholar 

  45. Falasca M, Maffucci T (2007) Role of class II phosphoinositide 3-kinase in cell signalling [J]. Biochem Soc Trans 35(Pt 2):211–214

    Article  CAS  PubMed  Google Scholar 

  46. Loh AH, Brennan RC, Lang WH et al (2013) Dissecting the PI3K signaling axis in pediatric solid tumors: novel targets for clinical integration [J]. Fronti Oncol 3:93

    Google Scholar 

  47. Jaber N, Zong WX (2013) Class III PI3K Vps34: essential roles in autophagy, endocytosis, and heart and liver function [J]. Annal New York Acad Sci 1280:48–51

    Article  CAS  Google Scholar 

  48. Carmona FJ, Montemurro F, Kannan S et al (2016) AKT signaling in ERBB2-amplified breast cancer [J]. Pharmacol Ther 158:63–70

    Article  CAS  PubMed  Google Scholar 

  49. Sarbassov DD, Guertin DA, Ali SM et al (2005) Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex [J]. Science 307(5712):1098–1101

    Article  CAS  PubMed  Google Scholar 

  50. Woodgett JR (2005) Recent advances in the protein kinase B signaling pathway [J]. Curr Opin Cell Biol 17(2):150–157

    Article  CAS  PubMed  Google Scholar 

  51. Coffer PJ, Jin J, Woodgett JR (1998) Protein kinase B (c-Akt): a multifunctional mediator of phosphatidylinositol 3-kinase activation [J]. Biochem J 335(Pt 1):1–13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Recabarren D, Alarcón M (2017) Gene networks in neurodegenerative disorders [J]. Life Sci 183:83–97

    Article  CAS  PubMed  Google Scholar 

  53. Walker KS, Deak M, Paterson A et al (1998) Activation of protein kinase B beta and gamma isoforms by insulin in vivo and by 3-phosphoinositide-dependent protein kinase-1 in vitro: comparison with protein kinase B alpha [J]. Biochem J 331(Pt 1):299–308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Meier R, Alessi DR, Cron P et al (1997) Mitogenic activation, phosphorylation, and nuclear translocation of protein kinase Bbeta [J]. J Biol Chem 272(48):30491–30497

    Article  CAS  PubMed  Google Scholar 

  55. Tewari D, Patni P, Bishayee A et al (2022) Natural products targeting the PI3K-Akt-mTOR signaling pathway in cancer: a novel therapeutic strategy [J]. Semin Cancer Biol 80:1–17

    Article  PubMed  Google Scholar 

  56. Harashima N, Inao T, Imamura R et al (2012) Roles of the PI3K/Akt pathway and autophagy in TLR3 signaling-induced apoptosis and growth arrest of human prostate cancer cells [J]. Cancer Immunol Immunother : CII 61(5):667–676

    Article  CAS  PubMed  Google Scholar 

  57. Axanova LS, Chen YQ, McCoy T et al (2010) 1,25-dihydroxyvitamin D(3) and PI3K/AKT inhibitors synergistically inhibit growth and induce senescence in prostate cancer cells [J]. Prostate 70(15):1658–1671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Hennessy BT, Smith DL, Ram PT et al (2005) Exploiting the PI3K/AKT pathway for cancer drug discovery [J]. Nat Rev Drug Discovery 4(12):988–1004

    Article  CAS  PubMed  Google Scholar 

  59. de Santis MC, Gulluni F, Campa CC et al (2019) Targeting PI3K signaling in cancer: challenges and advances [J]. Biochim Biophys Acta 1871(2):361–366

    Google Scholar 

  60. Czech MP (2000) PIP2 and PIP3: complex roles at the cell surface [J]. Cell 100(6):603–606

    Article  CAS  PubMed  Google Scholar 

  61. Maehama T, Dixon JE (1998) The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate [J]. J Biol Chem 273(22):13375–13378

    Article  CAS  PubMed  Google Scholar 

  62. Dieterle AM, Böhler P, Keppeler H et al (2014) PDK1 controls upstream PI3K expression and PIP3 generation [J]. Oncogene 33(23):3043–53

    Article  CAS  PubMed  Google Scholar 

  63. Huang J, Manning BD (2009) A complex interplay between Akt, TSC2 and the two mTOR complexes [J]. Biochem Soc Trans 37(Pt 1):217–222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Manning BD, Toker A (2017) AKT/PKB signaling: navigating the network [J]. Cell 169(3):381–405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Jafari M, Ghadami E, Dadkhah T et al (2019) PI3k/AKT signaling pathway: erythropoiesis and beyond [J]. J Cell Physiol 234(3):2373–2385

    Article  CAS  PubMed  Google Scholar 

  66. Tang F, Wang Y, Hemmings BA et al (2018) PKB/Akt-dependent regulation of inflammation in cancer [J]. Semin Cancer Biol 48:62–9

    Article  CAS  PubMed  Google Scholar 

  67. Cravero JD, Carlson CS, Im HJ et al (2009) Increased expression of the Akt/PKB inhibitor TRB3 in osteoarthritic chondrocytes inhibits insulin-like growth factor 1-mediated cell survival and proteoglycan synthesis [J]. Arthritis Rheum 60(2):492–500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Lin Z, Zhou P, von Gise A et al (2015) Pi3kcb links Hippo-YAP and PI3K-AKT signaling pathways to promote cardiomyocyte proliferation and survival [J]. Circ Res 116(1):35–45

    Article  CAS  PubMed  Google Scholar 

  69. Shum M, Bellmann K, St-Pierre P et al (2016) Pharmacological inhibition of S6K1 increases glucose metabolism and Akt signalling in vitro and in diet-induced obese mice [J]. Diabetologia 59(3):592–603

    Article  CAS  PubMed  Google Scholar 

  70. Lu C, Liu L, Chen Y et al (2011) TLR2 ligand induces protection against cerebral ischemia/reperfusion injury via activation of phosphoinositide 3-kinase/Akt signaling [J]. J Immunol (Baltimore, Md: 1950) 187(3):1458–66

    Article  CAS  Google Scholar 

  71. He H, Zeng Q, Huang G et al (2019) Bone marrow mesenchymal stem cell transplantation exerts neuroprotective effects following cerebral ischemia/reperfusion injury by inhibiting autophagy via the PI3K/Akt pathway [J]. Brain Res 1707:124–32

    Article  CAS  PubMed  Google Scholar 

  72. Lee CH, Yu HS (2016) Role of mitochondria, ROS, and DNA damage in arsenic induced carcinogenesis [J]. Front Biosci (Schol Ed) 8(2):312–320

    Article  PubMed  Google Scholar 

  73. Wang L, Zhang X, Xiong X, et al (2022) Nrf2 regulates oxidative stress and its role in cerebral ischemic stroke [J]. Antioxidants (Basel) 11(12)

  74. Chen H, Yoshioka H, Kim GS et al (2011) Oxidative stress in ischemic brain damage: mechanisms of cell death and potential molecular targets for neuroprotection [J]. Antioxid Redox Signal 14(8):1505–1517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Wu L, Xiong X, Wu X et al (2022) Targeting oxidative stress and Inflammation to prevent ischemia-reperfusion injury. Front Mol Neurosci 13:28

    Article  Google Scholar 

  76. Allen CL, Bayraktutan U (2009) Oxidative stress and its role in the pathogenesis of ischaemic stroke [J]. Int J Stroke : official journal of the International Stroke Society 4(6):461–470

    Article  CAS  Google Scholar 

  77. Nathan C, Ding A (2010) SnapShot: reactive oxygen intermediates (ROI) [J]. Cell 140(6):951-e2

    Article  PubMed  Google Scholar 

  78. Kahles T, Luedike P, Endres M et al (2007) NADPH oxidase plays a central role in blood-brain barrier damage in experimental stroke [J]. Stroke 38(11):3000–3006

    Article  CAS  PubMed  Google Scholar 

  79. Casas AI, Geuss E, Kleikers PWM et al (2017) NOX4-dependent neuronal autotoxicity and BBB breakdown explain the superior sensitivity of the brain to ischemic damage [J]. Proc Natl Acad Sci USA 114(46):12315–12320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Park HR, Lee H, Lee JJ et al (2018) Protective effects of spatholobi caulis extract on neuronal damage and focal ischemic stroke/reperfusion injury [J]. Mol Neurobiol 55(6):4650–4666

    Article  CAS  PubMed  Google Scholar 

  81. Chen SD, Yang JL, Lin TK et al (2019) Emerging roles of sestrins in neurodegenerative diseases: counteracting oxidative stress and beyond [J]. J Clin Med 8(7)

  82. Xiong J, Yang J, Yan K et al (2021) Ginsenoside Rk1 protects human melanocytes from H(2)O(2)‑induced oxidative injury via regulation of the PI3K/AKT/Nrf2/HO‑1 pathway [J]. Mol Med Rep 24(5)

  83. Lu CY, Day CH, Kuo CH et al (2022) Calycosin alleviates H(2) O(2) -induced astrocyte injury by restricting oxidative stress through the Akt/Nrf2/HO-1 signaling pathway [J]. Environ Toxicol 37(4):858–867

    Article  CAS  PubMed  Google Scholar 

  84. Chartoumpekis D, Ziros PG, Psyrogiannis A et al (2010) Simvastatin lowers reactive oxygen species level by Nrf2 activation via PI3K/Akt pathway [J]. Biochem Biophys Res Commun 396(2):463–466

    Article  CAS  PubMed  Google Scholar 

  85. Hoxhaj G, Manning BD (2020) The PI3K-AKT network at the interface of oncogenic signalling and cancer metabolism [J]. Nat Rev Cancer 20(2):74–88

    Article  CAS  PubMed  Google Scholar 

  86. Tongqiang L, Shaopeng L, Xiaofang Y et al (2016) Salvianolic acid B prevents iodinated contrast media-induced acute renal injury in rats via the PI3K/Akt/Nrf2 pathway [J]. Oxidative Med Cell Longev 2016:7079487

    Article  Google Scholar 

  87. Peng P, Zou J, Zhong B et al (2023) Protective effects and mechanisms of flavonoids in renal ischemia-reperfusion injury [J]. Pharmacology 108(1):27–36

    Article  CAS  PubMed  Google Scholar 

  88. Xie X, Wang F, Ge W et al (2023) Scutellarin attenuates oxidative stress and neuroinflammation in cerebral ischemia/reperfusion injury through PI3K/Akt-mediated Nrf2 signaling pathways [J]. Euro J Pharmacol 957:175979

    Article  CAS  Google Scholar 

  89. Guo Y, Mao M, Li Q et al (2022) Extracts of Ginkgo flavonoids and ginkgolides improve cerebral ischaemia-reperfusion injury through the PI3K/Akt/Nrf2 signalling pathway and multicomponent in vivo processes [J]. Phytomedicine : international journal of phytotherapy and phytopharmacology 99:154028

    Article  CAS  PubMed  Google Scholar 

  90. Tobin MK, Bonds JA, Minshall RD et al (2014) Neurogenesis and inflammation after ischemic stroke: what is known and where we go from here [J]. J Cereb Blood Flow Metab : official journal of the International Society of Cerebral Blood Flow and Metabolism 34(10):1573–1584

    Article  Google Scholar 

  91. Jin R, Yang G, Li G (2010) Inflammatory mechanisms in ischemic stroke: role of inflammatory cells [J]. J Leukoc Biol 87(5):779–789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Talma N, Kok WF, De Veij Mestdagh CF et al (2016) Neuroprotective hypothermia - why keep your head cool during ischemia and reperfusion [J]. Biochimica et biophysica acta 1860(11 Pt A):2521–8

    Article  CAS  PubMed  Google Scholar 

  93. Lambertsen KL, Biber K, Finsen B (2012) Inflammatory cytokines in experimental and human stroke [J]. J Cereb Blood Flow Metab : official journal of the International Society of Cerebral Blood Flow and Metabolism 32(9):1677–1698

    Article  CAS  Google Scholar 

  94. Kang L, Yu H, Yang X et al (2020) Neutrophil extracellular traps released by neutrophils impair revascularization and vascular remodeling after stroke [J]. Nat Commun 11(1):2488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Anrather J, Iadecola C (2016) Inflammation and stroke: an overview [J]. Neurotherapeutics : the journal of the American Society for Experimental NeuroTherapeutics 13(4):661–670

    Article  CAS  PubMed  Google Scholar 

  96. Arvin B, Neville LF, Barone FC et al (1996) The role of inflammation and cytokines in brain injury [J]. Neurosci Biobehav Rev 20(3):445–452

    Article  CAS  PubMed  Google Scholar 

  97. Li L, Li H, Li M (2015) Curcumin protects against cerebral ischemia-reperfusion injury by activating JAK2/STAT3 signaling pathway in rats [J]. Int J Clin Exp Med 8(9):14985–14991

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Sakai S, Shichita T (2019) Inflammation and neural repair after ischemic brain injury [J]. Neurochem Int 130:104316

    Article  CAS  PubMed  Google Scholar 

  99. Ju SM, Kang JG, Bae JS et al (2015) The flavonoid apigenin ameliorates cisplatin-induced nephrotoxicity through reduction of p53 activation and promotion of PI3K/Akt pathway in human renal proximal tubular epithelial cells [J]. Evid Based Complement Alternat Med : eCAM 2015:186436

    Article  PubMed  PubMed Central  Google Scholar 

  100. Zhu L, Wang L, Ju F et al (2017) Transient global cerebral ischemia induces rapid and sustained reorganization of synaptic structures [J]. J Cereb Blood Flow Metab : official journal of the International Society of Cerebral Blood Flow and Metabolism 37(8):2756–2767

    Article  Google Scholar 

  101. Yan C, An F, Wang J et al (2022) Zhongfeng Capsules protects against cerebral ischemia-reperfusion injury via mediating the phosphoinositide 3-kinase/Akt and toll-like receptor 4/nuclear factor kappa B signaling pathways by regulating neuronal apoptosis and inflammation [J]. Apoptosis : an international journal on programmed cell death 27(7–8):561–576

    Article  CAS  PubMed  Google Scholar 

  102. Liu Y, Qu X, Yan M et al (2022) Tricin attenuates cerebral ischemia/reperfusion injury through inhibiting nerve cell autophagy, apoptosis and inflammation by regulating the PI3K/Akt pathway [J]. Human Exp Toxicol 41:9603271221125928

    Article  CAS  Google Scholar 

  103. Li Z, Cao X, Xiao L et al (2021) Aloperine protects against cerebral ischemia/reperfusion injury via activating the PI3K/AKT signaling pathway in rats [J]. Exp Ther Med 22(4):1045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Li X, Hu X, Wang J et al (2016) Short-term hesperidin pretreatment attenuates rat myocardial ischemia/reperfusion injury by inhibiting high mobility group box 1 protein expression via the PI3K/Akt pathway [J]. Cell Physiol Biochem : international journal of experimental cellular physiology, biochemistry, and pharmacology 39(5):1850–1862

    Article  CAS  Google Scholar 

  105. Pan T, Shi X, Chen H et al (2019) Correction to: geniposide suppresses interleukin-1β-induced inflammation and apoptosis in rat chondrocytes via the PI3K/Akt/NF-κB signaling pathway [J]. Inflammation 42(1):404–405

    Article  PubMed  Google Scholar 

  106. Lavelle EC, Murphy C, O’Neill LA et al (2010) The role of TLRs, NLRs, and RLRs in mucosal innate immunity and homeostasis [J]. Mucosal Immunol 3(1):17–28

    Article  CAS  PubMed  Google Scholar 

  107. Cheong MH, Lee SR, Yoo HS et al (2011) Anti-inflammatory effects of polygala tenuifolia root through inhibition of NF-κB activation in lipopolysaccharide-induced BV2 microglial cells [J]. J Ethnopharmacol 137(3):1402–1408

    Article  PubMed  Google Scholar 

  108. Lawrence T (2009) The nuclear factor NF-kappaB pathway in inflammation [J]. Cold Spring Harb Perspect Biol 1(6):a001651

    Article  PubMed  PubMed Central  Google Scholar 

  109. Xian M, Cai J, Zheng K et al (2021) Aloe-emodin prevents nerve injury and neuroinflammation caused by ischemic stroke via the PI3K/AKT/mTOR and NF-κB pathway [J]. Food Funct 12(17):8056–8067

    Article  CAS  PubMed  Google Scholar 

  110. Lopez-Neblina F, Toledo AH, Toledo-Pereyra LH (2005) Molecular biology of apoptosis in ischemia and reperfusion [J]. J Investig Surg : the official journal of the Academy of Surgical Research 18(6):335–350

    Article  Google Scholar 

  111. Zhu J, Yao K, Wang Q et al (2016) Ischemic postconditioning-regulated miR-499 protects the rat heart against ischemia/reperfusion injury by inhibiting apoptosis through PDCD4 [J]. Cell Physiol Biochem : international journal of experimental cellular physiology, biochemistry, and pharmacology 39(6):2364–2380

    Article  CAS  Google Scholar 

  112. Zhang QZ, Guo YD, Li HM et al (2017) Protection against cerebral infarction by Withaferin A involves inhibition of neuronal apoptosis, activation of PI3K/Akt signaling pathway, and reduced intimal hyperplasia via inhibition of VSMC migration and matrix metalloproteinases [J]. Adv Med Sci 62(1):186–192

    Article  PubMed  Google Scholar 

  113. Tomita T (2017) Apoptosis of pancreatic β-cells in type 1 diabetes [J]. Bosn J Basic Med Sci 17(3):183–193

    PubMed  PubMed Central  Google Scholar 

  114. Kalogeris T, Bao Y, Korthuis RJ (2014) Mitochondrial reactive oxygen species: a double edged sword in ischemia/reperfusion vs preconditioning [J]. Redox Biol 2:702–14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Liu H, Jing X, Dong A et al (2017) Overexpression of TIMP3 protects against cardiac ischemia/reperfusion injury by inhibiting myocardial apoptosis through ROS/Mapks pathway [J]. Cell Physiol Biochem : international journal of experimental cellular physiology, biochemistry, and pharmacology 44(3):1011–1023

    Article  CAS  Google Scholar 

  116. Shi J, Xiao H, Li J et al (2018) Wild-type p53-modulated autophagy and autophagic fibroblast apoptosis inhibit hypertrophic scar formation [J]. Lab Investig: a journal of technical methods and pathology 98(11):1423–37

    Article  CAS  Google Scholar 

  117. Ma S, Wang Y, Chen Y et al (2015) The role of the autophagy in myocardial ischemia/reperfusion injury [J]. Biochem Biophys Acta 1852(2):271–276

    CAS  PubMed  Google Scholar 

  118. Ajoolabady A, Wang S, Kroemer G et al (2021) Targeting autophagy in ischemic stroke: From molecular mechanisms to clinical therapeutics [J]. Pharmacol Ther 225:107848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Newton K, Dugger DL, Maltzman A et al (2016) RIPK3 deficiency or catalytically inactive RIPK1 provides greater benefit than MLKL deficiency in mouse models of inflammation and tissue injury [J]. Cell Death Differ 23(9):1565–1576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Liao S, Apaijai N, Chattipakorn N et al (2020) The possible roles of necroptosis during cerebral ischemia and ischemia / reperfusion injury [J]. Arch Biochem Biophys 695:108629

    Article  CAS  PubMed  Google Scholar 

  121. Pasparakis M, Vandenabeele P (2015) Necroptosis and its role in inflammation [J]. Nature 517(7534):311–320

    Article  CAS  PubMed  Google Scholar 

  122. Liu L, Liu X, Zhao L et al (2021) 1,8-cineole alleviates bisphenol A-induced apoptosis and necroptosis in bursa of Fabricius in chicken through regulating oxidative stress and PI3K/AKT pathway [J]. Ecotoxicol Environ Safety 226:112877

    Article  CAS  PubMed  Google Scholar 

  123. Noshita N, Lewén A, Sugawara T et al (2001) Evidence of phosphorylation of Akt and neuronal survival after transient focal cerebral ischemia in mice [J]. J Cereb Blood Flow Metab : official journal of the International Society of Cerebral Blood Flow and Metabolism 21(12):1442–50

    Article  CAS  Google Scholar 

  124. Kaleağasıoğlu F, Ali DM, Berger MR (2020) Multiple facets of autophagy and the emerging role of alkylphosphocholines as autophagy modulators [J]. Front Pharmacol 11:547

    Article  PubMed  PubMed Central  Google Scholar 

  125. Li Y, Guo S, Liu W et al (2019) Silencing of SNHG12 enhanced the effectiveness of MSCs in alleviating ischemia/reperfusion injuries via the PI3K/AKT/mTOR signaling pathway [J]. Front Neurosci 13:645

    Article  PubMed  PubMed Central  Google Scholar 

  126. Martinou JC, Youle RJ (2011) Mitochondria in apoptosis: Bcl-2 family members and mitochondrial dynamics [J]. Dev Cell 21(1):92–101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Badr G, Sayed EA, Waly H et al (2019) The therapeutic mechanisms of propolis against CCl(4) -mediated liver injury by mediating apoptosis of activated hepatic stellate cells and improving the hepatic architecture through PI3K/AKT/mTOR, TGF-β/Smad2, Bcl2/BAX/P53 and iNOS signaling pathways [J]. Cell Physiol Biochem : international journal of experimental cellular physiology, biochemistry, and pharmacology 53(2):301–322

    Article  Google Scholar 

  128. Wang PC, Wang SX, Yan XL et al (2022) Combination of paeoniflorin and calycosin-7-glucoside alleviates ischaemic stroke injury via the PI3K/AKT signalling pathway [J]. Pharm Biol 60(1):1469–1477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Chen X, Chen H, He Y et al (2020) Proteomics-guided study on buyang huanwu decoction for its neuroprotective and neurogenic mechanisms for transient ischemic stroke: involvements of EGFR/PI3K/Akt/Bad/14-3-3 and Jak2/Stat3/Cyclin D1 signaling cascades [J]. Mol Neurobiol 57(10):4305–4321

    Article  CAS  PubMed  Google Scholar 

  130. Wang M, Liang X, Cheng M et al (2019) Homocysteine enhances neural stem cell autophagy in in vivo and in vitro model of ischemic stroke [J]. Cell Death Dis 10(8):561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Wu C, Yang M, Liu R et al (2020) Nicotine reduces human brain microvascular endothelial cell response to Escherichia coli K1 infection by inhibiting autophagy [J]. Front Cell Infect Microbiol 10:484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Che H, Li H, Li Y et al (2020) Melatonin exerts neuroprotective effects by inhibiting neuronal pyroptosis and autophagy in STZ-induced diabetic mice [J]. FASEB J : official publication of the Federation of American Societies for Experimental Biology 34(10):14042–14054

    Article  CAS  Google Scholar 

  133. Li R, Zheng Y, Zhang J et al (2023) Gomisin N attenuated cerebral ischemia-reperfusion injury through inhibition of autophagy by activating the PI3K/AKT/mTOR pathway [J]. Phytomedicine : international journal of phytotherapy and phytopharmacology 110:154644

    Article  CAS  PubMed  Google Scholar 

  134. Peluffo H, Unzueta U, Negro-Demontel ML et al (2015) BBB-targeting, protein-based nanomedicines for drug and nucleic acid delivery to the CNS [J]. Biotechnol Adv 33(2):277–287

    Article  CAS  PubMed  Google Scholar 

  135. Nian K, Harding IC, Herman IM et al (2020) Blood-brain barrier damage in ischemic stroke and its regulation by endothelial mechanotransduction [J]. Front Physiol 11:605398

    Article  PubMed  PubMed Central  Google Scholar 

  136. Okada T, Suzuki H, Travis ZD et al (2020) The stroke-induced blood-brain barrier disruption: current progress of inspection technique, mechanism, and therapeutic target [J]. Curr Neuropharmacol 18(12):1187–1212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Huang L, Chen C, Zhang X et al (2018) Neuroprotective effect of curcumin against cerebral ischemia-reperfusion via mediating autophagy and inflammation [J]. J Mol Neurosci : MN 64(1):129–139

    Article  CAS  PubMed  Google Scholar 

  138. Moskowitz MA, Lo EH, Iadecola C (2010) The science of stroke: mechanisms in search of treatments [J]. Neuron 67(2):181–198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Chen H, He Y, Chen S et al (2020) Therapeutic targets of oxidative/nitrosative stress and neuroinflammation in ischemic stroke: applications for natural product efficacy with omics and systemic biology [J]. Pharmacol Res 158:104877

    Article  CAS  PubMed  Google Scholar 

  140. Lochhead JJ, Ronaldson PT, Davis TP (2017) Hypoxic stress and inflammatory pain disrupt blood-brain barrier tight junctions: implications for drug delivery to the central nervous system [J]. AAPS J 19(4):910–920

    Article  CAS  PubMed  Google Scholar 

  141. Abdullahi W, Tripathi D, Ronaldson PT (2018) Blood-brain barrier dysfunction in ischemic stroke: targeting tight junctions and transporters for vascular protection [J]. Am J Physiol Cell Physiol 315(3):C343–C356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Rosenberg GA, Estrada EY, Dencoff JE (1998) Matrix metalloproteinases and TIMPs are associated with blood-brain barrier opening after reperfusion in rat brain [J]. Stroke 29(10):2189–2195

    Article  CAS  PubMed  Google Scholar 

  143. Asahi M, Wang X, Mori T et al (2001) Effects of matrix metalloproteinase-9 gene knock-out on the proteolysis of blood-brain barrier and white matter components after cerebral ischemia [J]. J Neurosci : the official journal of the Society for Neuroscience 21(19):7724–7732

    Article  CAS  Google Scholar 

  144. Yang Z, Lin P, Chen B et al (2021) Autophagy alleviates hypoxia-induced blood-brain barrier injury via regulation of CLDN5 (claudin 5) [J]. Autophagy 17(10):3048–3067

    Article  CAS  PubMed  Google Scholar 

  145. Kim KA, Kim D, Kim JH et al (2020) Autophagy-mediated occludin degradation contributes to blood-brain barrier disruption during ischemia in bEnd.3 brain endothelial cells and rat ischemic stroke models [J]. Fluids Barriers CNS 17(1):21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Chi OZ, Mellender SJ, Kiss GK et al (2017) Blood -brain barrier disruption was less under isoflurane than pentobarbital anesthesia via a PI3K/Akt pathway in early cerebral ischemia [J]. Brain Res Bull 131:1–6

    Article  CAS  PubMed  Google Scholar 

  147. Hu S, Wu Y, Zhao B et al (2018) Panax notoginseng saponins protect cerebral microvascular endothelial cells against oxygen-glucose deprivation/reperfusion-induced barrier dysfunction via activation of PI3K/Akt/Nrf2 antioxidant signaling pathway [J]. Molecules (Basel) 23(11)

  148. Yang B, Li Y, Ma Y et al (2021) Selenium attenuates ischemia/reperfusion injury‑induced damage to the blood‑brain barrier in hyperglycemia through PI3K/AKT/mTOR pathway‑mediated autophagy inhibition [J]. Int J Mol Med 48(3)

  149. Michels M, Ávila P, Pescador B et al (2019) Microglial cells depletion increases inflammation and modifies microglial phenotypes in an animal model of severe sepsis [J]. Mol Neurobiol 56(11):7296–7304

    Article  CAS  PubMed  Google Scholar 

  150. Jing Y, Zhang L, Xu Z et al (2019) Phosphatase actin regulator-1 (PHACTR-1) knockdown suppresses cell proliferation and migration and promotes cell apoptosis in the bEnd. 3 Mouse Brain Capillary Endothelial Cell Line [J]. Med Sci Monit : international medical journal of experimental and clinical research 25:1291–300

    Article  CAS  Google Scholar 

  151. Paul D, Baena V, Ge S et al (2016) Appearance of claudin-5(+) leukocytes in the central nervous system during neuroinflammation: a novel role for endothelial-derived extracellular vesicles [J]. J Neuroinflammation 13(1):292

    Article  PubMed  PubMed Central  Google Scholar 

  152. Kilic E, Kilic U, Wang Y et al (2006) The phosphatidylinositol-3 kinase/Akt pathway mediates VEGF’s neuroprotective activity and induces blood brain barrier permeability after focal cerebral ischemia [J]. FASEB J : official publication of the Federation of American Societies for Experimental Biology 20(8):1185–1187

    Article  CAS  Google Scholar 

  153. Diaz-Cañestro C, Merlini M, Bonetti NR et al (2018) Sirtuin 5 as a novel target to blunt blood-brain barrier damage induced by cerebral ischemia/reperfusion injury [J]. Int J Cardiol 260:148–55

    Article  PubMed  Google Scholar 

  154. Liang J, Cai J, Zhang Y et al (2022) Cyclo-(Phe-Tyr) reduces cerebral ischemia/reperfusion-induced blood-brain barrier dysfunction through regulation of autophagy [J]. Food Funct 13(23):12278–12290

    Article  CAS  PubMed  Google Scholar 

  155. Cui Y, Liu M, Zuo L et al (2022) Fraxetin protects rat brains from the cerebral stroke via promoting angiogenesis and activating PI3K/Akt pathway [J]. Immunopharmacol Immunotoxicol 44(3):400–409

    Article  CAS  PubMed  Google Scholar 

  156. Zhu JR, Lu HD, Guo C et al (2018) Berberine attenuates ischemia-reperfusion injury through inhibiting HMGB1 release and NF-κB nuclear translocation [J]. Acta Pharmacol Sin 39(11):1706–1715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Liu H, Wu X, Luo J et al (2019) Pterostilbene attenuates astrocytic inflammation and neuronal oxidative injury after ischemia-reperfusion by inhibiting NF-κB phosphorylation [J]. Front Immunol 10:2408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Liu H, Wei X, Kong L et al (2015) NOD2 is involved in the inflammatory response after cerebral ischemia-reperfusion injury and triggers NADPH oxidase 2-derived reactive oxygen species [J]. Int J Biol Sci 11(5):525–535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Ye Y, Jin T, Zhang X et al (2019) Meisoindigo protects against focal cerebral ischemia-reperfusion injury by inhibiting NLRP3 inflammasome activation and regulating microglia/macrophage polarization via TLR4/NF-κB signaling pathway [J]. Front Cell Neurosci 13:553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Dong X, Wang L, Song G et al (2021) Physcion protects rats against cerebral ischemia-reperfusion injury via inhibition of TLR4/NF-kB signaling pathway [J]. Drug Des Dev Ther 15:277–87

    Article  Google Scholar 

  161. Zhu Q, Enkhjargal B, Huang L et al (2018) Aggf1 attenuates neuroinflammation and BBB disruption via PI3K/Akt/NF-κB pathway after subarachnoid hemorrhage in rats [J]. J Neuroinflammation 15(1):178

    Article  PubMed  PubMed Central  Google Scholar 

  162. Kong Y, Le Y (2011) Toll-like receptors in inflammation of the central nervous system [J]. Int Immunopharmacol 11(10):1407–1414

    Article  CAS  PubMed  Google Scholar 

  163. Zhang R, Xu M, Wang Y et al (2017) Nrf2-a promising therapeutic target for defensing against oxidative stress in stroke [J]. Mol Neurobiol 54(8):6006–6017

    Article  CAS  PubMed  Google Scholar 

  164. Deshmukh P, Unni S, Krishnappa G et al (2017) The Keap1-Nrf2 pathway: promising therapeutic target to counteract ROS-mediated damage in cancers and neurodegenerative diseases [J]. Biophys Rev 9(1):41–56

    Article  CAS  PubMed  Google Scholar 

  165. Nakaso K, Yano H, Fukuhara Y et al (2003) PI3K is a key molecule in the Nrf2-mediated regulation of antioxidative proteins by hemin in human neuroblastoma cells [J]. FEBS Lett 546(2–3):181–184

    Article  CAS  PubMed  Google Scholar 

  166. Liu Q, Jin Z, Xu Z et al (2019) Antioxidant effects of ginkgolides and bilobalide against cerebral ischemia injury by activating the Akt/Nrf2 pathway in vitro and in vivo [J]. Cell Stress Chaperones 24(2):441–452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Ji K, Xue L, Cheng J et al (2016) Preconditioning of H2S inhalation protects against cerebral ischemia/reperfusion injury by induction of HSP70 through PI3K/Akt/Nrf2 pathway [J]. Brain Res Bull 121:68–74

    Article  CAS  PubMed  Google Scholar 

  168. Cen J, Zhao N, Huang WW et al (2019) Polyamine analogue QMA attenuated ischemic injury in MCAO rats via ERK and Akt activated Nrf2/HO-1 signaling pathway [J]. Euro J Pharmacol 844:165–74

    Article  CAS  Google Scholar 

  169. Li Y, Chen L, Zheng D et al (2023) Echinocystic acid alleviated hypoxic-ischemic brain damage in neonatal mice by activating the PI3K/Akt/Nrf2 signaling pathway [J]. Front Pharmacol 14:1103265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Asl ER, Amini M, Najafi S et al (2021) Interplay between MAPK/ERK signaling pathway and MicroRNAs: a crucial mechanism regulating cancer cell metabolism and tumor progression [J]. Life Sci 278:119499

    Article  CAS  PubMed  Google Scholar 

  171. Lu M, Wang Y, Zhan X (2019) The MAPK pathway-based drug therapeutic targets in pituitary adenomas [J]. Front Endocrinol 10:330

    Article  Google Scholar 

  172. Wei J, Liu R, Hu X et al (2021) MAPK signaling pathway-targeted marine compounds in cancer therapy [J]. J Cancer Res Clin Oncol 147(1):3–22

    Article  CAS  PubMed  Google Scholar 

  173. Kovalska M, Kovalska L, Pavlikova M et al (2012) Intracellular signaling MAPK pathway after cerebral ischemia-reperfusion injury [J]. Neurochem Res 37(7):1568–1577

    Article  CAS  PubMed  Google Scholar 

  174. Pan B, Sun J, Liu Z et al (2021) Longxuetongluo capsule protects against cerebral ischemia/reperfusion injury through endoplasmic reticulum stress and MAPK-mediated mechanisms [J]. J Adv Res 33:215–25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Sun J, Nan G (2016) The Mitogen-Activated Protein Kinase (MAPK) Signaling pathway as a discovery target in stroke [J]. J Mol Neurosci : MN 59(1):90–98

    Article  CAS  PubMed  Google Scholar 

  176. Yao X, Wang Y, Zhang D (2018) microRNA-21 confers neuroprotection against cerebral ischemia-reperfusion injury and alleviates blood-brain barrier disruption in rats via the MAPK signaling pathway [J]. J Mol Neurosci : MN 65(1):43–53

    Article  CAS  PubMed  Google Scholar 

  177. Zhou J, Du T, Li B et al (2015) Crosstalk between MAPK/ERK and PI3K/AKT signal pathways during brain ischemia/reperfusion [J]. ASN Neuro 7(5)

  178. Li C, Sui C, Wang W et al (2021) Baicalin attenuates oxygen-glucose deprivation/reoxygenation-induced injury by modulating the BDNF-TrkB/PI3K/Akt and MAPK/Erk1/2 signaling axes in neuron-astrocyte cocultures [J]. Front Pharmacol 12:599543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Liang W, Lin C, Yuan L et al (2019) Preactivation of Notch1 in remote ischemic preconditioning reduces cerebral ischemia-reperfusion injury through crosstalk with the NF-κB pathway [J]. J Neuroinflammation 16(1):181

    Article  PubMed  PubMed Central  Google Scholar 

  180. Hausenloy DJ, Yellon DM (2011) The therapeutic potential of ischemic conditioning: an update [J]. Nat Rev Cardiol 8(11):619–629

    Article  CAS  PubMed  Google Scholar 

  181. Yu H, Shi L, Zhao S et al (2016) Triptolide attenuates myocardial ischemia/reperfusion injuries in rats by inducing the activation of Nrf2/HO-1 defense pathway [J]. Cardiovasc Toxicol 16(4):325–335

    Article  CAS  PubMed  Google Scholar 

  182. Gidday JM (2006) Cerebral preconditioning and ischaemic tolerance [J]. Nat Rev Neurosci 7(6):437–448

    Article  CAS  PubMed  Google Scholar 

  183. Rehni AK, Singh N (2007) Role of phosphoinositide 3-kinase in ischemic postconditioning-induced attenuation of cerebral ischemia-evoked behavioral deficits in mice [J]. Pharmacological Rep : PR 59(2):192–198

    CAS  PubMed  Google Scholar 

  184. Prasad SS, Russell M, Nowakowska M (2011) Neuroprotection induced in vitro by ischemic preconditioning and postconditioning: modulation of apoptosis and PI3K-Akt pathways [J]. J Mol Neurosci : MN 43(3):428–442

    Article  CAS  PubMed  Google Scholar 

  185. Xu X, Chua CC, Gao J et al (2008) Neuroprotective effect of humanin on cerebral ischemia/reperfusion injury is mediated by a PI3K/Akt pathway [J]. Brain Res 1227:12–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Yan W, Chen Z, Chen J et al (2016) Isoflurane preconditioning protects rat brain from ischemia reperfusion injury via up-regulating the HIF-1α expression through Akt/mTOR/s6K activation [J]. Cell Mol Biol (Noisy-le-Grand, France) 62(2):38–44

    CAS  Google Scholar 

  187. Tuo QZ, Zhang ST, Lei P (2022) Mechanisms of neuronal cell death in ischemic stroke and their therapeutic implications [J]. Med Res Rev 42(1):259–305

    Article  PubMed  Google Scholar 

  188. Xue X, Wang H, Su J (2020) Inhibition of MiR-122 decreases cerebral ischemia-reperfusion injury by upregulating DJ-1-phosphatase and tensin homologue deleted on chromosome 10 (PTEN)/phosphonosinol-3 kinase (PI3K)/AKT [J]. Med Sci Monit : international medical journal of experimental and clinical research 26:e915825

    Article  CAS  Google Scholar 

  189. Wang Y, Pan W, Wang Y et al (2021) MicroRNA-32-5p attenuates cerebral ischemia/reperfusion injuries by modulating the phosphatase and tensin homologous protein [J]. Metab Brain Dis 36(8):2495–2504

    Article  CAS  PubMed  Google Scholar 

  190. Li L, Zhu X, Shou T et al (2018) MicroRNA-28 promotes cell proliferation and invasion in gastric cancer via the PTEN/PI3K/AKT signalling pathway [J]. Mol Med Rep 17(3):4003–4010

    CAS  PubMed  Google Scholar 

  191. Cipollone F, Felicioni L, Sarzani R et al (2011) A unique microRNA signature associated with plaque instability in humans [J]. Stroke 42(9):2556–2563

    Article  PubMed  Google Scholar 

  192. Wei R, Zhang L, Hu W et al (2019) Long non-coding RNA AK038897 aggravates cerebral ischemia/reperfusion injury via acting as a ceRNA for miR-26a-5p to target DAPK1 [J]. Exp Neurol 314:100–10

    Article  CAS  PubMed  Google Scholar 

  193. Wang J, Li Y, Ding M et al (2017) Molecular mechanisms and clinical applications of miR-22 in regulating malignant progression in human cancer (Review) [J]. Int J Oncol 50(2):345–355

    Article  PubMed  Google Scholar 

  194. Min XL, He M, Shi Y et al (2020) miR-18b attenuates cerebral ischemia/reperfusion injury through regulation of ANXA3 and PI3K/Akt signaling pathway [J]. Brain Res Bull 161:55–64

    Article  CAS  PubMed  Google Scholar 

  195. Yu H, Wu M, Zhao P et al (2015) Neuroprotective effects of viral overexpression of microRNA-22 in rat and cell models of cerebral ischemia-reperfusion injury [J]. J Cell Biochem 116(2):233–241

    Article  CAS  PubMed  Google Scholar 

  196. Wang X, Shi C, Pan H et al (2020) MicroRNA-22 exerts its neuroprotective and angiogenic functions via regulating PI3K/Akt signaling pathway in cerebral ischemia-reperfusion rats [J]. J Neural Transm 127(1):35–44

    Article  CAS  PubMed  Google Scholar 

  197. Miao W, Yan Y, Bao TH et al (2020) Ischemic postconditioning exerts neuroprotective effect through negatively regulating PI3K/Akt2 signaling pathway by microRNA-124 [J]. Biomed Pharmacother 126:109786

    Article  CAS  PubMed  Google Scholar 

  198. Zheng Y, Zhao P, Lian Y et al (2020) MiR-340–5p alleviates oxygen-glucose deprivation/reoxygenation-induced neuronal injury via PI3K/Akt activation by targeting PDCD4 [J]. Neurochem Int 134:104650

    Article  CAS  PubMed  Google Scholar 

  199. Fresno Vara JA, Casado E, De Castro J et al (2004) PI3K/Akt signalling pathway and cancer [J]. Cancer Treat Rev 30(2):193–204

    Article  PubMed  Google Scholar 

  200. Hu M, Zhu S, Xiong S et al (2019) MicroRNAs and the PTEN/PI3K/Akt pathway in gastric cancer (Review) [J]. Oncol Rep 41(3):1439–1454

    CAS  PubMed  Google Scholar 

  201. Farajdokht F, Mohaddes G, Karimi-Sales E et al (2018) Inhibition of PTEN protects PC12 cells against oxygen-glucose deprivation induced cell death through mitoprotection [J]. Brain research 1692:100–9

    Article  CAS  PubMed  Google Scholar 

  202. Ren X, Jing YX, Zhou ZW et al (2022) MiR-17-5p inhibits cerebral hypoxia/reoxygenationinjury by targeting PTEN through regulation of PI3K/AKT/mTOR signaling pathway [J]. Int J Neurosci 132(2):192–200

    Article  CAS  PubMed  Google Scholar 

  203. Zheng T, Shi Y, Zhang J et al (2019) MiR-130a exerts neuroprotective effects against ischemic stroke through PTEN/PI3K/AKT pathway [J]. Biomed Pharmacother 117:109117

    Article  CAS  PubMed  Google Scholar 

  204. Huang Y (2018) The novel regulatory role of lncRNA-miRNA-mRNA axis in cardiovascular diseases [J]. J Cell Mol Med 22(12):5768–5775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Chen LL, Zhao JC (2014) Functional analysis of long noncoding RNAs in development and disease [J]. Adv Exp Med Biol 825:129–58

    Article  CAS  PubMed  Google Scholar 

  206. Shi Z, Pan B, Feng S (2018) The emerging role of long non-coding RNA in spinal cord injury [J]. J Cell Mol Med 22(4):2055–2061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Wang H, Zheng X, Jin J et al (2020) LncRNA MALAT1 silencing protects against cerebral ischemia-reperfusion injury through miR-145 to regulate AQP4 [J]. J Biomed Sci 27(1):40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Gao N, Tang H, Gao L et al (2020) LncRNA H19 aggravates cerebral ischemia/reperfusion injury by functioning as a ceRNA for miR-19a-3p to Target PTEN [J]. Neuroscience 437:117–29

    Article  CAS  PubMed  Google Scholar 

  209. Zhang H, Liu Y, Li M et al (2022) The long non-coding RNA SNHG12 functions as a competing endogenous RNA to modulate the progression of cerebral ischemia/reperfusion injury [J]. Mol Neurobiol 59(2):1073–1087

    Article  CAS  PubMed  Google Scholar 

  210. Wen ZJ, Xin H, Wang YC et al (2021) Emerging roles of circRNAs in the pathological process of myocardial infarction [J]. Mol Ther Nucleic Acids 26:828–48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Yang L, Du H, Zhang X et al (2023) Circ VRK1/microRNA-17/PTEN axis modulates the angiogenesis of human brain microvascular endothelial cells to affect injury induced by oxygen-glucose deprivation/reperfusion [J]. BMC Neurosci 24(1):8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Nunes RR, DuvalNeto GF, De Alencar JC et al (2013) Anesthetics, cerebral protection and preconditioning [J]. Braz J Anesthesiol (Elsevier) 63(1):119–28

    Article  Google Scholar 

  213. Bunte S, Behmenburg F, Majewski N et al (2020) Characteristics of dexmedetomidine postconditioning in the field of myocardial ischemia-reperfusion injury [J]. Anesth Analg 130(1):90–98

    Article  CAS  PubMed  Google Scholar 

  214. Cai Y, Xu H, Yan J et al (2014) Molecular targets and mechanism of action of dexmedetomidine in treatment of ischemia/reperfusion injury [J]. Mol Med Rep 9(5):1542–1550

    Article  CAS  PubMed  Google Scholar 

  215. Luo C, Ouyang MW, Fang YY et al (2017) Dexmedetomidine protects mouse brain from ischemia-reperfusion injury via inhibiting neuronal autophagy through up-regulating HIF-1α [J]. Front Cell Neurosci 11:197

    Article  PubMed  PubMed Central  Google Scholar 

  216. Jin L, Mo Y, Yue EL et al (2021) Ibrutinib ameliorates cerebral ischemia/reperfusion injury through autophagy activation and PI3K/Akt/mTOR signaling pathway in diabetic mice [J]. Bioengineered 12(1):7432–7445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Li J, Wang K, Liu M et al (2023) Dexmedetomidine alleviates cerebral ischemia-reperfusion injury via inhibiting autophagy through PI3K/Akt/mTOR pathway [J]. J Mol Histol 54(3):173–181

    Article  PubMed  Google Scholar 

  218. Matsuda H, Shigemoto Y, Sato N (2019) Neuroimaging of Alzheimer’s disease: focus on amyloid and tau PET [J]. Jpn J Radiol 37(11):735–749

    Article  PubMed  Google Scholar 

  219. Dai YW, Zhang CC, Zhao HX et al (2016) Chikusetsusaponin V attenuates lipopolysaccharide-induced liver injury in mice [J]. Immunopharmacol Immunotoxicol 38(3):167–174

    Article  CAS  PubMed  Google Scholar 

  220. Han LK, Morimoto C, Yu RH et al (2005) Effects of Coleus forskohlii on fat storage in ovariectomized rats] [J. Yakugaku zasshi : Journal of the Pharmaceutical Society of Japan 125(5):449–453

    Article  CAS  PubMed  Google Scholar 

  221. Ruan C, Guo H, Gao J et al (2021) Neuroprotective effects of metformin on cerebral ischemia-reperfusion injury by regulating PI3K/Akt pathway [J]. Brain Behav 11(10):e2335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Chen Y, Li Z (2021) Protective effects of propofol on rats with cerebral ischemia-reperfusion injury via the PI3K/Akt pathway [J]. J Mol Neurosci : MN 71(4):810–820

    Article  CAS  PubMed  Google Scholar 

  223. Abdel Mageed SS, Ammar RM, Nassar NN et al (2022) Role of PI3K/Akt axis in mitigating hippocampal ischemia-reperfusion injury via CB1 receptor stimulation by paracetamol and FAAH inhibitor in rat [J]. Neuropharmacology 207:108935

    Article  CAS  PubMed  Google Scholar 

  224. Zhao M, Hou S, Feng L et al (2020) Vinpocetine protects against cerebral ischemia-reperfusion injury by targeting astrocytic connexin43 via the PI3K/AKT signaling pathway [J]. Front Neurosci 14:223

    Article  PubMed  PubMed Central  Google Scholar 

  225. Zuo W, Yan F, Zhang B et al (2018) Salidroside improves brain ischemic injury by activating PI3K/Akt pathway and reduces complications induced by delayed tPA treatment [J]. Euro J Pharmacol 830:128–38

    Article  CAS  Google Scholar 

  226. Zhao P, Zhou R, Zhu XY et al (2015) Matrine attenuates focal cerebral ischemic injury by improving antioxidant activity and inhibiting apoptosis in mice [J]. Int J Mol Med 36(3):633–644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Xie W, Zhu T, Dong X et al (2019) HMGB1-triggered inflammation inhibition of notoginseng leaf triterpenes against cerebral ischemia and reperfusion injury via MAPK and NF-κB signaling pathways [J]. Biomolecules 9(10)

  228. Lu T, Li H, Zhou Y et al (2022) Neuroprotective effects of alisol A 24-acetate on cerebral ischaemia-reperfusion injury are mediated by regulating the PI3K/AKT pathway [J]. J Neuroinflammation 19(1):37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Li TF, Ma J, Han XW et al (2019) Chrysin ameliorates cerebral ischemia/reperfusion (I/R) injury in rats by regulating the PI3K/Akt/mTOR pathway [J]. Neurochem Int 129:104496

    Article  CAS  PubMed  Google Scholar 

  230. Sun X, Cui X (2020) Isorhapontigenin alleviates cerebral ischemia/reperfusion injuries in rats and modulated the PI3K/Akt signaling pathway [J]. Naunyn-Schmiedeberg’s Arch Pharmacol 393(9):1753–1760

    Article  CAS  Google Scholar 

  231. Qiu Z, Wang K, Jiang C et al (2020) Trigonelline protects hippocampal neurons from oxygen-glucose deprivation-induced injury through activating the PI3K/Akt pathway [J]. Chemico Biol Interact 317:108946

    Article  CAS  Google Scholar 

  232. Tatemoto K, Hosoya M, Habata Y et al (1998) Isolation and characterization of a novel endogenous peptide ligand for the human APJ receptor [J]. Biochem Biophys Res Commun 251(2):471–476

    Article  CAS  PubMed  Google Scholar 

  233. Shao ZQ, Dou SS, Zhu JG et al (2021) Apelin-13 inhibits apoptosis and excessive autophagy in cerebral ischemia/reperfusion injury [J]. Neural Regen Res 16(6):1044–1051

    Article  CAS  PubMed  Google Scholar 

  234. Yook JS, Rakwal R, Shibato J et al (2019) Leptin in hippocampus mediates benefits of mild exercise by an antioxidant on neurogenesis and memory [J]. Proc Natl Acad Sci USA 116(22):10988–10993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Calió ML, Mosini AC, Marinho DS et al (2021) Leptin enhances adult neurogenesis and reduces pathological features in a transgenic mouse model of Alzheimer’s disease [J]. Neurobiol Dis 148:105219

    Article  PubMed  Google Scholar 

  236. Zhang Y, Cheng D, Jie C et al (2022) Leptin alleviates endoplasmic reticulum stress induced by cerebral ischemia/reperfusion injury via the PI3K/Akt signaling pathway [J]. Biosci Rep 42(12)

  237. Yang JP, Liu HJ, Yang H et al (2011) Therapeutic time window for the neuroprotective effects of NGF when administered after focal cerebral ischemia [J]. Neurol Sci : official journal of the Italian Neurological Society and of the Italian Society of Clinical Neurophysiology 32(3):433–441

    Article  Google Scholar 

  238. Cheng S, Ma M, Ma Y et al (2009) Combination therapy with intranasal NGF and electroacupuncture enhanced cell proliferation and survival in rats after stroke [J]. Neurol Res 31(7):753–758

    Article  PubMed  Google Scholar 

  239. Li Y, Wu F, Zhou M et al (2022) ProNGF/NGF modulates autophagy and apoptosis through PI3K/Akt/mTOR and ERK signaling pathways following cerebral ischemia-reperfusion in rats [J]. Oxid Med Cell Longev 2022:6098191

    PubMed  PubMed Central  Google Scholar 

  240. Jia Q, Zhang X, Zhang A et al (2020) rLj-RGD4, the shortened peptide of rLj-RGD3 from Lampetra japonica, protects against cerebral ischemia/reperfusion injury via the PI3K/Akt pathway [J]. Peptides 129:170310

    Article  CAS  PubMed  Google Scholar 

  241. Li Y, Sun J, Gu L et al (2020) Protective effect of CTRP6 on cerebral ischemia/reperfusion injury by attenuating inflammation, oxidative stress and apoptosis in PC12 cells [J]. Mol Med Rep 22(1):344–352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Yang L, Zhu J, Yang L et al (2020) SCO-spondin-derived peptide NX210 rescues neurons from cerebral ischemia/reperfusion injury through modulating the Integrin-β1 mediated PI3K/Akt pathway [J]. Int Immunopharmacol 111:109079

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful the support from Cuiying Scientific and Techhnological Innovationn Program of The Second Hospital & Clinical Medical School, Lanzhou University.

Funding

This work has been co-financed by Research project of Traditional Chinese Medicine in Gansu province [GZKZ-2021-9]; Cuiying Scientific and Technological Innovation Program of' The Second Hospital & Clinical Medical School, Lanzhou University(CY2022-MS-A17, CY2021-MS18, CY2023-QN-B02); The Science and Technology Plan Project of Chengguan District of Lanzhou City(2019RCCX0068) and Lanzhou Talent Innovation and Entrepreneurship Project Foundation of China (2021-RC-98)..

Author information

Authors and Affiliations

Authors

Contributions

Ting Zheng and Taotao Jiang wrote the manuscript. Manxia Wang conceived and designed the review; Ting Zheng drafted the manuscript; Hongxiang Ma and Yanping Zhu assisted in the preparation of the charts. All authors contributed to the article and approved the submitted version.

Corresponding author

Correspondence to Manxia Wang.

Ethics declarations

Ethics Approval and Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Ting Zheng is the first author.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, T., Jiang, T., Ma, H. et al. Targeting PI3K/Akt in Cerebral Ischemia Reperfusion Injury Alleviation: From Signaling Networks to Targeted Therapy. Mol Neurobiol 61, 7930–7949 (2024). https://doi.org/10.1007/s12035-024-04039-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1007/s12035-024-04039-1

Keywords