Skip to main content
Log in

Improved Manufacturing Methods of Extracellular Vesicles Pseudotyped with the Vesicular Stomatitis Virus Glycoprotein

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Extracellular vesicles (EV), which expose the vesicular stomatitis virus glycoprotein (VSVG) on their surface, are used for delivery of nucleic acids and proteins in human cell lines. These particles are biomanufactured using methods that are difficult to scale up. Here, we describe the development of the first EV-VSVG production process in serum-free media using polyethylenimine (PEI)-based transient transfection of HEK293 suspension cells, as well as the first EV-VSVG purification process to utilize both ultracentrifugation and chromatography. Three parameters were investigated for EV-VSVG production: cell density, DNA concentration, and DNA:PEI ratio. The best production titer was obtained with 3 × 106 cells/mL, a plasmid concentration of 2 µg/mL, and a DNA:PEI ratio of 1:4. The production kinetics of VSVG was performed and showed that the highest amount of VSVG was obtained 3 days after transfection. Addition of cell culture supplements during the transfection resulted in an increase in VSVG production, with a maximum yield obtained with 2 mM of sodium butyrate added 18 h after transfection. Moreover, the absence of EV-VSVG during cell transfection with a GFP-coding plasmid revealed to be ineffective, with no fluorescent cells. An efficient EV-VSVG purification procedure consisting of a two-step concentration by low-speed centrifugation and sucrose cushion ultracentrifugation followed by a heparin affinity chromatography purification was also developed. Purified bioactive EV-VSVG preparations were characterized and revealed that EV-VSVG are spherical particles of 176.4 ± 88.32 nm with 91.4% of protein similarity to exosomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The data analyzed in this study are available from the corresponding author on reasonable request.

References

  1. Maurisse, R., De Semir, D., Emamekhoo, H., Bedayat, B., Abdolmohammadi, A., Parsi, H., & Gruenert, D. C. (2010). Comparative transfection of DNA into primary and transformed mammalian cells from different lineages. BMC Biotechnology, 10, 9. https://doi.org/10.1186/1472-6750-10-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Slivac, I., Guay, D., Mangion, M., Champeil, J., & Gaillet, B. (2017). Non-viral nucleic acid delivery methods. Expert Opinion on Biological Therapy, 17(1), 105–118. https://doi.org/10.1080/14712598.2017.1248941

    Article  CAS  PubMed  Google Scholar 

  3. Cronin, J., Zhang, X.-Y., & Reiser, J. (2005). Altering the tropism of lentiviral vectors through pseudotyping. Current Gene Therapy, 5(4), 387–398.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Farley, D. C., Iqball, S., Smith, J. C., Miskin, J. E., Kingsman, S. M., & Mitrophanous, K. A. (2007). Factors that influence VSV-G pseudotyping and transduction efficiency of lentiviral vectors—in vitro and in vivo implications. The Journal of Gene Medicine, 9(5), 345–356. https://doi.org/10.1002/jgm.1022

    Article  CAS  PubMed  Google Scholar 

  5. Abe, A., Miyanohara, A., & Friedmann, T. (1998). Enhanced gene transfer with fusogenic liposomes containing vesicular stomatitis virus G glycoprotein. Journal of Virology, 72(7), 6159–6163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Okimoto, T., Friedmann, T., & Miyanohara, A. (2001). VSV-G envelope glycoprotein forms complexes with plasmid DNA and MLV retrovirus-like particles in cell-free conditions and enhances DNA transfection. Molecular Therapy: The Journal of the American Society of Gene Therapy, 4(3), 232–238. https://doi.org/10.1006/mthe.2001.0443

    Article  CAS  PubMed  Google Scholar 

  7. Mangeot, P.-E., Dollet, S., Girard, M., Ciancia, C., Joly, S., Peschanski, M., & Lotteau, V. (2011). Protein transfer into human cells by VSV-G-induced nanovesicles. Molecular Therapy: The Journal of the American Society of Gene Therapy, 19(9), 1656–1666. https://doi.org/10.1038/mt.2011.138

    Article  CAS  PubMed  Google Scholar 

  8. Hung, M. E., & Leonard, J. N. (2016). A platform for actively loading cargo RNA to elucidate limiting steps in EV-mediated delivery. Journal of Extracellular Vesicles, 5, 31027. https://doi.org/10.3402/jev.v5.31027

    Article  CAS  PubMed  Google Scholar 

  9. Zhitnyuk, Y., Gee, P., Lung, M. S. Y., Sasakawa, N., Xu, H., Saito, H., & Hotta, A. (2018). Efficient mRNA delivery system utilizing chimeric VSVG-L7Ae virus-like particles. Biochemical and Biophysical Research Communications, 505(4), 1097–1102. https://doi.org/10.1016/j.bbrc.2018.09.113

    Article  CAS  PubMed  Google Scholar 

  10. Campbell, L. A., Coke, L. M., Richie, C. T., Fortuno, L. V., Park, A. Y., & Harvey, B. K. (2019). Gesicle-mediated delivery of CRISPR/Cas9 ribonucleoprotein complex for inactivating the HIV provirus. Molecular Therapy, 27(1), 151–163. https://doi.org/10.1016/j.ymthe.2018.10.002

    Article  CAS  PubMed  Google Scholar 

  11. Mangion, M., Robert, M.-A., Slivac, I., Gilbert, R., & Gaillet, B. (2022). Production and use of gesicles for nucleic acid delivery. Molecular Biotechnology, 64(3), 278–292. https://doi.org/10.1007/s12033-021-00389-6

    Article  CAS  PubMed  Google Scholar 

  12. Baldi, L., Muller, N., Picasso, S., Jacquet, R., Girard, P., Thanh, H. P., Derow, E., & Wurm, F. M. (2005). Transient gene expression in suspension HEK-293 cells: Application to large-scale protein production. Biotechnology Progress, 21(1), 148–153. https://doi.org/10.1021/bp049830x

    Article  CAS  PubMed  Google Scholar 

  13. Toledo, J. R., Prieto, Y., Oramas, N., & Sánchez, O. (2009). Polyethylenimine-Based transfection method as a simple and effective way to produce recombinant lentiviral vectors. Applied Biochemistry and Biotechnology, 157(3), 538–544. https://doi.org/10.1007/s12010-008-8381-2

    Article  CAS  PubMed  Google Scholar 

  14. Huang, X., Hartley, A.-V., Yin, Y., Herskowitz, J. H., Lah, J. J., & Ressler, K. J. (2013). AAV2 production with optimized N/P ratio and PEI-mediated transfection results in low toxicity and high titer for in vitro and in vivo applications. Journal of Virological Methods, 193(2), 270–277. https://doi.org/10.1016/j.jviromet.2013.06.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tang, Y., Garson, K., Li, L., & Vanderhyden, B. C. (2015). Optimization of lentiviral vector production using polyethylenimine-mediated transfection. Oncology Letters, 9(1), 55–62. https://doi.org/10.3892/ol.2014.2684

    Article  PubMed  Google Scholar 

  16. Valkama, A. J., Leinonen, H. M., Lipponen, E. M., Turkki, V., Malinen, J., Heikura, T., Ylä-Herttuala, S., & Lesch, H. P. (2018). Optimization of lentiviral vector production for scale-up in fixed-bed bioreactor. Gene Therapy, 25(1), 39–46. https://doi.org/10.1038/gt.2017.91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Merten, O.-W. (2015). Advances in cell culture: Anchorage dependence. Philosophical Transactions of the Royal Society B: Biological Sciences, 370(1661), 20140040. https://doi.org/10.1098/rstb.2014.0040

    Article  CAS  Google Scholar 

  18. Shupe, J., Zhang, A., Odenwelder, D. C., & Dobrowsky, T. (2022). Gene therapy: Challenges in cell culture scale-up. Current Opinion in Biotechnology, 75, 102721. https://doi.org/10.1016/j.copbio.2022.102721

    Article  CAS  PubMed  Google Scholar 

  19. Chimenti, I., Gaetani, R., Forte, E., Angelini, F., De Falco, E., Zoccai, G. B., Messina, E., Frati, G., & Giacomello, A. (2014). Serum and supplement optimization for EU GMP-compliance in cardiospheres cell culture. Journal of Cellular and Molecular Medicine, 18(4), 624–634. https://doi.org/10.1111/jcmm.12210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yamada, K., McCarty, D. M., Madden, V. J., & Walsh, C. E. (2003). Lentivirus vector purification using anion exchange HPLC leads to improved gene transfer. BioTechniques, 34(5), 1074–1078, 1080.

    Article  CAS  PubMed  Google Scholar 

  21. Transfiguracion, J., Jaalouk, D. E., Ghani, K., Galipeau, J., & Kamen, A. (2003). Size-exclusion chromatography purification of high-titer vesicular stomatitis virus G glycoprotein-pseudotyped retrovectors for cell and gene therapy applications. Human Gene Therapy, 14(12), 1139–1153. https://doi.org/10.1089/104303403322167984

    Article  CAS  PubMed  Google Scholar 

  22. Segura, M. M., Kamen, A., Trudel, P., & Garnier, A. (2005). A novel purification strategy for retrovirus gene therapy vectors using heparin affinity chromatography. Biotechnology and Bioengineering, 90(4), 391–404. https://doi.org/10.1002/bit.20301

    Article  CAS  PubMed  Google Scholar 

  23. Segura, M. M., Mangion, M., Gaillet, B., & Garnier, A. (2013). New developments in lentiviral vector design, production and purification. Expert Opinion on Biological Therapy, 13(7), 987–1011. https://doi.org/10.1517/14712598.2013.779249

    Article  CAS  PubMed  Google Scholar 

  24. Rodrigues, T., Carvalho, A., Roldão, A., Carrondo, M. J. T., Alves, P. M., & Cruz, P. E. (2006). Screening anion-exchange chromatographic matrices for isolation of onco-retroviral vectors. Journal of Chromatography B, 837(1–2), 59–68. https://doi.org/10.1016/j.jchromb.2006.03.061

    Article  CAS  Google Scholar 

  25. Balaj, L., Atai, N. A., Chen, W., Mu, D., Tannous, B. A., Breakefield, X. O., Skog, J., & Maguire, C. A. (2015). Heparin affinity purification of extracellular vesicles. Scientific Reports, 5, 10266. https://doi.org/10.1038/srep10266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Steppert, P., Burgstaller, D., Klausberger, M., Berger, E., Aguilar, P. P., Schneider, T. A., Kramberger, P., Tover, A., Nöbauer, K., Razzazi-Fazeli, E., & Jungbauer, A. (2016). Purification of HIV-1 gag virus-like particles and separation of other extracellular particles. Journal of Chromatography A, 1455, 93–101. https://doi.org/10.1016/j.chroma.2016.05.053

    Article  CAS  PubMed  Google Scholar 

  27. Cervera, L., Gutiérrez, S., Gòdia, F., & Segura, M. M. (2011). Optimization of HEK 293 cell growth by addition of non-animal derived components using design of experiments. BMC Proceedings, 5(Suppl 8), P126. https://doi.org/10.1186/1753-6561-5-S8-P126

    Article  PubMed  PubMed Central  Google Scholar 

  28. Cervera, L., Gutiérrez-Granados, S., Martínez, M., Blanco, J., Gòdia, F., & Segura, M. M. (2013). Generation of HIV-1 Gag VLPs by transient transfection of HEK 293 suspension cell cultures using an optimized animal-derived component free medium. Journal of Biotechnology, 166(4), 152–165. https://doi.org/10.1016/j.jbiotec.2013.05.001

    Article  CAS  PubMed  Google Scholar 

  29. Cervera, L., Fuenmayor, J., González-Domínguez, I., Gutiérrez-Granados, S., Segura, M. M., & Gòdia, F. (2015). Selection and optimization of transfection enhancer additives for increased virus-like particle production in HEK293 suspension cell cultures. Applied Microbiology and Biotechnology, 99(23), 9935–9949. https://doi.org/10.1007/s00253-015-6842-4

    Article  CAS  PubMed  Google Scholar 

  30. Bauler, M., Roberts, J. K., Wu, C.-C., Fan, B., Ferrara, F., Yip, B. H., Diao, S., Kim, Y.-I., Moore, J., Zhou, S., Wielgosz, M. M., Ryu, B., & Throm, R. E. (2019). Production of lentiviral vectors using suspension cells grown in serum-free media. Molecular Therapy – Methods & Clinical Development, 17, 58–68. https://doi.org/10.1016/j.omtm.2019.11.011

    Article  CAS  Google Scholar 

  31. Jiang, W., Hua, R., Wei, M., Li, C., Qiu, Z., Yang, X., & Zhang, C. (2015). An optimized method for high-titer lentivirus preparations without ultracentrifugation. Scientific Reports, 5, 13875. https://doi.org/10.1038/srep13875

    Article  PubMed  PubMed Central  Google Scholar 

  32. Nikitin, N., Trifonova, E., Evtushenko, E., Kirpichnikov, M., Atabekov, J., & Karpova, O. (2015). Comparative Study of non-enveloped icosahedral viruses size. PLoS ONE, 10(11), e0142415. https://doi.org/10.1371/journal.pone.0142415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Maguire, C. M., Rösslein, M., Wick, P., & Prina-Mello, A. (2018). Characterisation of particles in solution—A perspective on light scattering and comparative technologies. Science and Technology of Advanced Materials, 19(1), 732–745. https://doi.org/10.1080/14686996.2018.1517587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhang, X., Xu, Q., Zi, Z., Liu, Z., Wan, C., Crisman, L., Shen, J., & Liu, X. (2020). Programmable extracellular vesicles for macromolecule delivery and genome modifications. Developmental Cell, 55(6), 784-801.e9. https://doi.org/10.1016/j.devcel.2020.11.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Graner, M. W. (2018). 18—Extracellular vesicles as vehicles of B cell antigen presentation: Implications for cancer vaccine therapies. In M. Amiji & R. Ramesh (Eds.), Diagnostic and therapeutic applications of exosomes in cancer (pp. 325–341). Academic Press.https://doi.org/10.1016/B978-0-12-812774-2.00018-3

    Chapter  Google Scholar 

  36. Kalra, H., Simpson, R. J., Ji, H., Aikawa, E., Altevogt, P., Askenase, P., Bond, V. C., Borràs, F. E., Breakefield, X., Budnik, V., Buzas, E., Camussi, G., Clayton, A., Cocucci, E., Falcon-Perez, J. M., Gabrielsson, S., Gho, Y. S., Gupta, D., Harsha, H. C., … Mathivanan, S. (2012). Vesiclepedia: A compendium for extracellular vesicles with continuous community annotation. PLoS Biology, 10(12), e1001450. https://doi.org/10.1371/journal.pbio.1001450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lötvall, J., Hill, A. F., Hochberg, F., Buzás, E. I., Di Vizio, D., Gardiner, C., Gho, Y. S., IV., Kurochkin, S. M., Quesenberry, P., Sahoo, S., Tahara, H., Wauben, M. H., Witwer, K. W., & Théry, C. (2014). Minimal experimental requirements for definition of extracellular vesicles and their functions: A position statement from the International Society for Extracellular Vesicles. Journal of Extracellular Vesicles, 3, 26913. https://doi.org/10.3402/jev.v3.26913

    Article  PubMed  Google Scholar 

  38. Bandu, R., Oh, J. W., & Kim, K. P. (2019). Mass spectrometry-based proteome profiling of extracellular vesicles and their roles in cancer biology. Experimental & Molecular Medicine, 51(3), 1–10. https://doi.org/10.1038/s12276-019-0218-2

    Article  CAS  Google Scholar 

  39. Lavado-García, J., Pérez-Rubio, P., Cervera, L., & Gòdia, F. (2022). The cell density effect in animal cell-based bioprocessing: Questions, insights and perspectives. Biotechnology Advances, 60, 108017. https://doi.org/10.1016/j.biotechadv.2022.108017

    Article  CAS  PubMed  Google Scholar 

  40. Kamen, A., & Henry, O. (2004). Development and optimization of an adenovirus production process. The Journal of Gene Medicine, 6(S1), S184–S192. https://doi.org/10.1002/jgm.503

    Article  CAS  PubMed  Google Scholar 

  41. Robert, M.-A., Lytvyn, V., Deforet, F., Gilbert, R., & Gaillet, B. (2017). Virus-like particles derived from HIV-1 for delivery of nuclear proteins: Improvement of production and activity by protein engineering. Molecular Biotechnology, 59(1), 9–23. https://doi.org/10.1007/s12033-016-9987-1

    Article  CAS  PubMed  Google Scholar 

  42. Meyer, C., Losacco, J., Stickney, Z., Li, L., Marriott, G., & Lu, B. (2017). Pseudotyping exosomes for enhanced protein delivery in mammalian cells. International Journal of Nanomedicine, 12, 3153–3170. https://doi.org/10.2147/IJN.S133430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Jaalouk, D. E., Crosato, M., Brodt, P., & Galipeau, J. (2006). Inhibition of histone deacetylation in 293GPG packaging cell line improves the production of self-inactivating MLV-derived retroviral vectors. Virology Journal, 3, 27. https://doi.org/10.1186/1743-422X-3-27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Merten, O.-W., Hebben, M., & Bovolenta, C. (2016). Production of lentiviral vectors. Molecular Therapy – Methods & Clinical Development, 3, 16017. https://doi.org/10.1038/mtm.2016.17

    Article  CAS  Google Scholar 

  45. Broussau, S., Lytvyn, V., Simoneau, M., Guilbault, C., Leclerc, M., Nazemi-Moghaddam, N., Coulombe, N., Elahi, S. M., McComb, S., & Gilbert, R. (2023). Packaging cells for lentiviral vectors generated using the cumate and coumermycin gene induction systems and nanowell single-cell cloning. Molecular Therapy - Methods & Clinical Development, 29, 40–57. https://doi.org/10.1016/j.omtm.2023.02.013

    Article  CAS  Google Scholar 

  46. Lamotte, D., Buckberry, L., Monaco, L., Soria, M., Jenkins, N., Engasser, J. M., & Marc, A. (1999). Na-butyrate increases the production and alpha2,6-sialylation of recombinant interferon-gamma expressed by alpha2,6- sialyltransferase engineered CHO cells. Cytotechnology, 29(1), 55–64. https://doi.org/10.1023/A:1008080432681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Crowell, C. K., Qin, Q., Grampp, G. E., Radcliffe, R. A., Rogers, G. N., & Scheinman, R. I. (2008). Sodium butyrate alters erythropoietin glycosylation via multiple mechanisms. Biotechnology and Bioengineering, 99(1), 201–213. https://doi.org/10.1002/bit.21539

    Article  CAS  PubMed  Google Scholar 

  48. Rehman, S., Bishnoi, S., Roy, R., Kumari, A., Jayakumar, H., Gupta, S., Kar, P., Pattnaik, A. K., & Nayak, D. (2022). Emerging biomedical applications of the vesicular stomatitis virus glycoprotein. ACS Omega, 7(37), 32840–32848. https://doi.org/10.1021/acsomega.2c03517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Pham, P. L., Perret, S., Doan, H. C., Cass, B., St-Laurent, G., Kamen, A., & Durocher, Y. (2003). Large-scale transient transfection of serum-free suspension-growing HEK293 EBNA1 cells: Peptone additives improve cell growth and transfection efficiency. Biotechnology and Bioengineering, 84(3), 332–342. https://doi.org/10.1002/bit.10774

    Article  CAS  PubMed  Google Scholar 

  50. Backliwal, G., Hildinger, M., Kuettel, I., Delegrange, F., Hacker, D. L., & Wurm, F. M. (2008). Valproic acid: A viable alternative to sodium butyrate for enhancing protein expression in mammalian cell cultures. Biotechnology and Bioengineering, 101(1), 182–189. https://doi.org/10.1002/bit.21882

    Article  CAS  PubMed  Google Scholar 

  51. Jiang, Z., & Sharfstein, S. T. (2008). Sodium butyrate stimulates monoclonal antibody over-expression in CHO cells by improving gene accessibility. Biotechnology and Bioengineering, 100(1), 189–194. https://doi.org/10.1002/bit.21726

    Article  CAS  PubMed  Google Scholar 

  52. Ye, J., Kober, V., Tellers, M., Naji, Z., Salmon, P., & Markusen, J. F. (2009). High-level protein expression in scalable CHO transient transfection. Biotechnology and Bioengineering, 103(3), 542–551. https://doi.org/10.1002/bit.22265

    Article  CAS  PubMed  Google Scholar 

  53. Ellis, B. L., Potts, P. R., & Porteus, M. H. (2011). Creating higher titer lentivirus with caffeine. Human Gene Therapy, 22(1), 93–100. https://doi.org/10.1089/hum.2010.068

    Article  CAS  PubMed  Google Scholar 

  54. Almo, S. C., & Love, J. D. (2014). Better and faster: Improvements and optimization for mammalian recombinant protein production. Current Opinion in Structural Biology, 26, 39–43. https://doi.org/10.1016/j.sbi.2014.03.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Broussau, S., Jabbour, N., Lachapelle, G., Durocher, Y., Tom, R., Transfiguracion, J., Gilbert, R., & Massie, B. (2008). Inducible packaging cells for large-scale production of lentiviral vectors in serum-free suspension culture. Molecular Therapy: The Journal of the American Society of Gene Therapy, 16(3), 500–507. https://doi.org/10.1038/sj.mt.6300383

    Article  CAS  PubMed  Google Scholar 

  56. Guibinga, G. H., Miyanohara, A., Esko, J. D., & Friedmann, T. (2002). Cell surface heparan sulfate is a receptor for attachment of envelope protein-free retrovirus-like particles and VSV-G pseudotyped MLV-derived retrovirus vectors to target cells. Molecular Therapy: The Journal of the American Society of Gene Therapy, 5(5 Pt 1), 538–546. https://doi.org/10.1006/mthe.2002.0578

    Article  CAS  PubMed  Google Scholar 

  57. Segura, M. M., Garnier, A., Durocher, Y., Coelho, H., & Kamen, A. (2007). Production of lentiviral vectors by large-scale transient transfection of suspension cultures and affinity chromatography purification. Biotechnology and Bioengineering, 98(4), 789–799. https://doi.org/10.1002/bit.21467

    Article  CAS  PubMed  Google Scholar 

  58. Yu, J. H., & Schaffer, D. V. (2006). Selection of novel vesicular stomatitis virus glycoprotein variants from a peptide insertion library for enhanced purification of retroviral and lentiviral vectors. Journal of Virology, 80(7), 3285–3292. https://doi.org/10.1128/JVI.80.7.3285-3292.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Moreira, A. S., Bezemer, S., Faria, T. Q., Detmers, F., Hermans, P., Sierkstra, L., Coroadinha, A. S., & Peixoto, C. (2023). Implementation of novel affinity ligand for lentiviral vector purification. International Journal of Molecular Sciences, 24(4), 3354. https://doi.org/10.3390/ijms24043354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ha, D., Yang, N., & Nadithe, V. (2016). Exosomes as therapeutic drug carriers and delivery vehicles across biological membranes: Current perspectives and future challenges. Acta Pharmaceutica Sinica B, 6(4), 287–296. https://doi.org/10.1016/j.apsb.2016.02.001

    Article  PubMed  PubMed Central  Google Scholar 

  61. Venereo-Sánchez, A., Fulton, K., Koczka, K., Twine, S., Chahal, P., Ansorge, S., Gilbert, R., Henry, O., & Kamen, A. (2019). Characterization of influenza H1N1 Gag virus-like particles and extracellular vesicles co-produced in HEK-293SF. Vaccine, 37(47), 7100–7107. https://doi.org/10.1016/j.vaccine.2019.07.057

    Article  CAS  PubMed  Google Scholar 

  62. Wu, C.-Y., Yeh, Y.-C., Yang, Y.-C., Chou, C., Liu, M.-T., Wu, H.-S., Chan, J.-T., & Hsiao, P.-W. (2010). Mammalian expression of virus-like particles for advanced mimicry of authentic influenza virus. PLoS ONE, 5(3), e9784. https://doi.org/10.1371/journal.pone.0009784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Jalaludin, I., Lubman, D. M., & Kim, J. (2023). A guide to mass spectrometric analysis of extracellular vesicle proteins for biomarker discovery. Mass Spectrometry Reviews, 42(2), 844–872. https://doi.org/10.1002/mas.21749

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge the Bioimaging platform of the Infectious Disease Research Centre, which is funded by an equipment and infrastructure grant from the Canadian Foundation for Innovation (CFI).

Funding

This work was supported by the Natural Sciences and Engineering Research Council (NSERC) and the Canadian Institute of Health Research (CIHR) (Collaborative Health Research Projects, CHRP program 315642).

Author information

Authors and Affiliations

Authors

Contributions

JC and BG conceived the idea of this study. Material preparation, data collection, and analysis were performed by JC. BG supervised the conduct of this study. The first draft of the manuscript was written by JC. RG and BG acquired the funding. All authors reviewed the manuscript draft and approved the final version for submission.

Corresponding author

Correspondence to Bruno Gaillet.

Ethics declarations

Conflict of Interest

The authors have no conflict of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Champeil, J., Mangion, M., Gilbert, R. et al. Improved Manufacturing Methods of Extracellular Vesicles Pseudotyped with the Vesicular Stomatitis Virus Glycoprotein. Mol Biotechnol 66, 1116–1131 (2024). https://doi.org/10.1007/s12033-023-01007-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1007/s12033-023-01007-3

Keywords