Skip to main content
Log in

Systems Medicine for Precise Targeting of Glioblastoma

  • Review Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

A Correction to this article was published on 15 March 2023

This article has been updated

Abstract

Glioblastoma (GBM) is a malignant cancer that is fatal even after standard therapy and the effects of current available therapeutics are not promising due its complex and evolving epigenetic and genetic profile. The mysteries that lead to GBM intratumoral heterogeneity and subtype transitions are not entirely clear. Systems medicine is an approach to view the patient in a whole picture integrating systems biology and synthetic biology along with computational techniques. Since the GBM oncogenesis involves genetic mutations, various therapies including gene therapeutics based on CRISPR-Cas technique, MicroRNAs, and implanted synthetic cells endowed with synthetic circuits against GBM with neural stem cells and mesenchymal stem cells acting as potential vehicles carrying therapeutics via the intranasal route, avoiding the risks of invasive methods in order to reach the GBM cells in the brain are discussed and proposed in this review. Systems medicine approach is a rather novel strategy, and since the GBM of a patient is complex and unique, thus to devise an individualized treatment strategy to tailor personalized multimodal treatments for the individual patient taking into account the phenotype of the GBM, the unique body health profile of the patient and individual responses according to the systems medicine concept might show potential to achieve optimum effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

Not applicable.

Change history

References

  1. Louis, D. N., Perry, A., Reifenberger, G., von Deimling, A., Figarella-Branger, D., Cavenee, W. K., Ohgaki, H., Wiestler, O. D., Kleihues, P., & Ellison, D. W. (2016). The 2016 World Health Organization Classification of Tumors of the Central Nervous System: A summary. Acta Neuropathologica, 131(6), 803–820. https://doi.org/10.1007/s00401-016-1545-1. Epub 2016 May 9.

    Article  PubMed  Google Scholar 

  2. Alifieris, C., & Trafalis, D. T. (2015). Glioblastoma multiforme: Pathogenesis and treatment. Pharmacology and Therapeutics, 152, 63–82. https://doi.org/10.1016/j.pharmthera.2015.05.005. Epub 2015 May 2.

    Article  CAS  PubMed  Google Scholar 

  3. Stupp, R., Mason, W. P., Van den Bent, M. J., Weller, M., Fisher, B., Taphoorn, M. J., Belanger, K., Brandes, A. A., Marosi, C., Bogdahn, U., Curschmann, J., Janzer, R. C., Ludwin, S. K., Gorlia, T., Allgeier, A., Lacombe, D., Cairncross, J. G., Eisenhauer, E., Mirimanoff, R. O., European Organisation for Research and Treatment of Cancer Brain Tumor and Radiotherapy Groups; National Cancer Institute of Canada Clinical Trials Group. (2005). Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. New England Journal of Medicine, 352(10), 987–996. https://doi.org/10.1056/NEJMoa043330

    Article  CAS  PubMed  Google Scholar 

  4. Wiesner, S. M., Freese, A., & Ohlfest, J. R. (2005). Emerging concepts in glioma biology: Implications for clinical protocols and rational treatment strategies. Neurosurgery Focus, 19, E3. https://doi.org/10.3171/foc.2005.19.4.4

    Article  Google Scholar 

  5. Cohen, M. H., Shen, Y. L., Keegan, P., & Pazdur, R. (2009). FDA drug approval summary: Bevacizumab (Avastin) as treatment of recurrent glioblastoma multiforme. The Oncologist, 14, 1131–1138.

    Article  CAS  PubMed  Google Scholar 

  6. Friedman, H. S., Prados, M. D., Wen, P. Y., et al. (2009). Bevacizumab alone and in combination with irinotecan in recurrent glioblastoma. Journal of Clinical Oncology, 27, 4733–4740.

    Article  CAS  PubMed  Google Scholar 

  7. Kreisl, T. N., Kim, L., Moore, K., et al. (2009). Phase II trial of single-agent bevacizumab followed by bevacizumab plus irinotecan at tumor progression in recurrent glioblastoma. Journal of Clinical Oncology, 27, 740–745.

    Article  CAS  PubMed  Google Scholar 

  8. Chinot, O. L., de La Motte, R. T., Moore, N., Zeaiter, A., Das, A., Phillips, H., Modrusan, Z., & Cloughesy, T. (2011). AVAglio: Phase 3 trial of bevacizumab plus temozolomide and radiotherapy in newly diagnosed glioblastoma multiforme. Advances in Therapy, 28(4), 334–340. https://doi.org/10.1007/s12325-011-0007-3. Epub 2011 March 14.

    Article  CAS  PubMed  Google Scholar 

  9. Zeng, X. X., Zeng, J., & Zhu, B. (2021). Future generation of combined multimodal approach to treat brain glioblastoma multiforme and potential impact on micturition control. Reviews in Neuroscience. https://doi.org/10.1515/revneuro-2021-0068. Epub ahead of print.

    Article  Google Scholar 

  10. Trinh, A., & Polyak, K. (2019). Tumor neoantigens: When too much of a good thing is bad. Cancer Cell, 36, 466–467.

    Article  CAS  PubMed  Google Scholar 

  11. Ebben, J. D., Treisman, D. M., Zorniak, M., Kutty, R. G., Clark, P. A., & Kuo, J. S. (2010). The cancer stem cell paradigm: A new understanding of tumor development and treatment. Expert Opinion on Therapeutic Targets, 14, 621–632. https://doi.org/10.1517/14712598.2010.485186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Friedmann-Morvinski, D., Bushong, E. A., Ke, E., Soda, Y., Marumoto, T., Singer, O., Ellisman, M. H., & Verma, I. M. (2012). Dedifferentiation of neurons and astrocytes by oncogenes can induce gliomas in mice. Science, 338(6110), 1080–1084. https://doi.org/10.1126/science.1226929. Epub 2012 Oct 18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zong, H., Parada, L. F., & Baker, S. J. (2015). Cell of origin for malignant gliomas and its implication in therapeutic development. Cold Spring Harbor Perspectives in Biology, 7, a020610. https://doi.org/10.1101/cshperspect.a020610

    Article  PubMed  PubMed Central  Google Scholar 

  14. Lee, J. H., Lee, J. E., Kahng, J. Y., Kim, S. H., Park, J. S., Yoon, S. J., Um, J.-Y., Kim, W. K., Lee, J.-K., & Park, J. (2018). Human glioblastoma arises from subventricular zone cells with low-level driver mutations. Nature, 560, 243. https://doi.org/10.1038/s41586-018-0389-3

    Article  CAS  PubMed  Google Scholar 

  15. Stopschinski, B. E., Beier, C. P., & Beier, D. (2013). Glioblastoma cancer stem cells—From concept to clinical application. Cancer Letters, 338, 32–40.

    Article  CAS  PubMed  Google Scholar 

  16. Gupta, P. B., Chaffer, C. L., & Weinberg, R. A. (2009). Cancer stem cells: Mirage or reality? Nature Medicine, 15, 1010–1012. https://doi.org/10.1038/nm0909-1010

    Article  CAS  PubMed  Google Scholar 

  17. Rath, B. H., Fair, J. M., Jamal, M., Camphausen, K., & Tofilon, P. J. (2013). Astrocytes enhance the invasion potential of glioblastoma stem-like cells. PLoS ONE, 8(1), e54752. https://doi.org/10.1371/journal.pone.0054752. Epub 2013 Jan 22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Verhaak, R. G., Hoadley, K. A., Purdom, E., Wang, V, Qi, Y., Wilkerson, M. D, Miller, C. R., Ding, L., Golub, T., Mesirov, J. P., Alexe, G., Lawrence, M., O’Kelly, M., Tamayo, P., Weir, B. A., Gabriel, S., Winckler, W., Gupta, S., Jakkula, L., Feiler, H. S., Hodgson, J. G., James, C, D., Sarkaria, J. N., Brennan, C., Kahn, A., Spellman, P. T., Wilson, R. K., Speed, T. P., Gray, J. W., Meyerson, M,. Getz, G., Perou, C. M., Hayes, D. N. Cancer Genome Atlas Research Network. (2010). Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell, 17(1). 98–110. https://doi.org/10.1016/j.ccr.2009.12.020.

  19. Ohgaki, H., & Kleihues, P. (2013). The definition of primary and secondary glioblastoma. Clinical Cancer Research, 19(4), 764–772. https://doi.org/10.1158/1078-0432.CCR-12-3002. Epub 2012 Dec 3.

    Article  CAS  PubMed  Google Scholar 

  20. Brennan, C. W., Verhaak, R. G., McKenna, A., Campos, B., Noushmehr, H., Salama, S. R., Zheng, S., Chakravarty, D., Sanborn, J. Z., Berman, S. H., Beroukhim, R., Bernard, B., Wu, C. J., Genovese, G., Shmulevich, I., Barnholtz-Sloan, J., Zou, L., Vegesna, R., Shukla, S. A., … TCGA Research Network. (2013). The somatic genomic landscape of glioblastoma. Cell, 155(2), 462–477. https://doi.org/10.1016/j.cell.2013.09.034. Erratum in: Cell 2014;157(3):753.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Cancer Genome Atlas Research Network. (2008). Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature, 455(7216), 1061–1068. https://doi.org/10.1038/nature07385. Epub 2008 Sep 4. Erratum in: Nature 2013;494(7438):506.

    Article  CAS  Google Scholar 

  22. Furnari, F. B., Fenton, T., Bachoo, R. M., Mukasa, A., Stommel, J. M., Stegh, A., Hahn, W. C., Ligon, K. L., Louis, D. N., Brennan, C., Chin, L., DePinho, R. A., & Cavenee, W. K. (2007). Malignant astrocytic glioma: Genetics, biology, and paths to treatment. Genes and Development, 21(21), 2683–2710. https://doi.org/10.1101/gad.1596707

    Article  CAS  PubMed  Google Scholar 

  23. Neilsen, B. K., Sleightholm, R., McComb, R., Ramkissoon, S. H., Ross, J. S., Corona, R. J., Miller, V. A., Cooke, M., & Aizenberg, M. R. (2019). Comprehensive genetic alteration profiling in primary and recurrent glioblastoma. Journal of Neurooncology, 142(1), 111–118. https://doi.org/10.1007/s11060-018-03070-2. Epub 2018 Dec 9.

    Article  CAS  Google Scholar 

  24. Ortiz, B., Fabius, A. W., Wu, W. H., Pedraza, A., Brennan, C. W., Schultz, N., Pitter, K. L., Bromberg, J. F., Huse, J. T., Holland, E. C., & Chan, T. A. (2014). Loss of the tyrosine phosphatase PTPRD leads to aberrant STAT3 activation and promotes gliomagenesis. Proceedings of the National Academy of Sciences of USA, 111(22), 8149–8154. https://doi.org/10.1073/pnas.1401952111. Epub 2014 May 19.

    Article  CAS  Google Scholar 

  25. Piccioni, D. E., Achrol, A. S., Kiedrowski, L. A., Banks, K. C., Boucher, N., Barkhoudarian, G., Kelly, D. F., Juarez, T., Lanman, R. B., Raymond, V. M., Nguyen, M., Truong, J. D., Heng, A., Gill, J., Saria, M., Pingle, S. C., & Kesari, S. (2019). Analysis of cell-free circulating tumor DNA in 419 patients with glioblastoma and other primary brain tumors. CNS Oncology, 8(2), CNS34. https://doi.org/10.2217/cns-2018-0015. Epub 2019 March 11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Patel, V., & Hathout, L. (2017). Image-driven modeling of the proliferation and necrosis of glioblastoma multiforme. Theoretical Biology and Medical Modelling, 14(1), 10. https://doi.org/10.1186/s12976-017-0056-7

    Article  PubMed  PubMed Central  Google Scholar 

  27. Xie, Y., Bergström, T., Jiang, Y., Johansson, P., Marinescu, V. D., Lindberg, N., Segerman, A., Wicher, G., Niklasson, M., Baskaran, S., Sreedharan, S., Everlien, I., Kastemar, M., Hermansson, A., Elfineh, L., Libard, S., Holland, E. C., Hesselager, G., Alafuzoff, I., … Uhrbom, L. (2015). The human glioblastoma cell culture resource: Validated cell models representing all molecular subtypes. eBioMedicine, 2(10), 1351–1363. https://doi.org/10.1016/j.ebiom.2015.08.026

    Article  PubMed  PubMed Central  Google Scholar 

  28. Charles, N. A., Holland, E. C., Gilbertson, R., Glass, R., & Kettenmann, H. (2011). The brain tumor microenvironment. Glia, 59, 1169–1180.

    Article  PubMed  Google Scholar 

  29. Segerman, A., Niklasson, M., Haglund, C., Bergström, T., Jarvius, M., Xie, Y., Westermark, A., Sönmez, D., Hermansson, A., Kastemar, M., Naimaie-Ali, Z., Nyberg, F., Berglund, M., Sundström, M., Hesselager, G., Uhrbom, L., Gustafsson, M., Larsson, R., Fryknäs, M., … Westermark, B. (2016). Clonal variation in drug and radiation response among glioma-initiating cells is linked to proneural–mesenchymal transition. Cell Reports, 17(11), 2994–3009. https://doi.org/10.1016/j.celrep.2016.11.056

    Article  CAS  PubMed  Google Scholar 

  30. Halliday, J., Helmy, K., Pattwell, S. S., Pitter, K. L., LaPlant, Q., Ozawa, T., & Holland, E. C. (2014). In vivo radiation response of proneural glioma characterized by protective p53 transcriptional program and proneural–mesenchymal shift. Proceedings of the National Academy of Sciences of USA, 111(14), 5248–5253. https://doi.org/10.1073/pnas.1321014111. Epub 2014 March 24.

    Article  CAS  Google Scholar 

  31. Lau, J., Ilkhanizadeh, S., Wang, S., Miroshnikova, Y. A., Salvatierra, N. A., Wong, R. A., Schmidt, C., Weaver, V. M., Weiss, W. A., & Persson, A. I. (2015). STAT3 blockade inhibits radiation-induced malignant progression in glioma. Cancer Research, 75(20), 4302–4311. https://doi.org/10.1158/0008-5472.CAN-14-3331. Epub 2015 Aug 17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zeng, J. (2010). Applied micro-fluidic biochips in systems and synthetic biology. Journal of Biotechnology, 150(Supplement), 541. https://www.sciencedirect.com/science/article/pii/S0168165610017979

  33. Mardinoglu, A., & Nielsen, J. (2012). Systems medicine and metabolic modelling. Journal of Internal Medicine, 271(2), 142–154. https://doi.org/10.1111/j.1365-2796.2011.02493.x

    Article  CAS  PubMed  Google Scholar 

  34. Park, J. H., de Lomana, A. L. G., Marzese, D. M., Juarez, T., Feroze, A., Hothi, P., Cobbs, C., Patel, A. P., Kesari, S., Huang, S., & Baliga, N. S. (2021). A systems approach to brain tumor treatment. Cancers (Basel), 13(13), 3152. https://doi.org/10.3390/cancers13133152

    Article  CAS  PubMed  Google Scholar 

  35. Zeng, J. (2008). Synthetic biology and transgenic system biotechnology. Journal of Biotechnology, 136(Supplement), S32. https://www.sciencedirect.com/science/article/pii/S0168165608003283

  36. Wen, P. Y., Lee, E. Q., Reardon, D. A., Ligon, K. L., & Alfred Yung, W. K. (2012). Current clinical development of PI3K pathway inhibitors in glioblastoma. Neuro-Oncology, 14(7), 819–829. https://doi.org/10.1093/neuonc/nos117. Epub 2012 May 22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhao, H. F., Wang, J., Shao, W., Wu, C. P., Chen, Z. P., To, S. T., & Li, W. P. (2017). Recent advances in the use of PI3K inhibitors for glioblastoma multiforme: Current preclinical and clinical development. Molecular Cancer, 16(1), 100. https://doi.org/10.1186/s12943-017-0670-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Cong, Y., Li, Q., Zhang, X., Chen, Y., & Yu, K. (2020). mTOR promotes tissue factor expression and activity in EGFR-mutant cancer. Frontiers in Oncology, 10, 1615. https://doi.org/10.3389/fonc.2020.01615

    Article  PubMed  PubMed Central  Google Scholar 

  39. Hegi, M. E., Diserens, A. C., Bady, P., Kamoshima, Y., Kouwenhoven, M. C., Delorenzi, M., Lambiv, W. L., Hamou, M. F., Matter, M. S., Koch, A., Heppner, F. L., Yonekawa, Y., Merlo, A., Frei, K., Mariani, L., & Hofer, S. (2011). Pathway analysis of glioblastoma tissue after preoperative treatment with the EGFR tyrosine kinase inhibitor gefitinib—A phase II trial. Molecular Cancer Therapeutics, 10(6), 1102–1112. https://doi.org/10.1158/1535-7163.MCT-11-0048. Epub 2011 April 6.

    Article  CAS  PubMed  Google Scholar 

  40. Van den Bent, M. J., Brandes, A. A., Rampling, R., Kouwenhoven, M. C., Kros, J. M., Carpentier, A. F., Clement, P. M., Frenay, M., Campone, M., Baurain, J. F., Armand, J. P., Taphoorn, M. J., Tosoni, A., Kletzl, H., Klughammer, B., Lacombe, D., & Gorlia, T. (2009). Randomized phase II trial of erlotinib versus temozolomide or carmustine in recurrent glioblastoma: EORTC brain Tumor Group Study 26034. Journal of Clinical Oncology, 27(8), 1268–1274. https://doi.org/10.1200/JCO.2008.17.5984. Epub 2009 Feb 9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Cloughesy, T. F., Yoshimoto, K., Nghiemphu, P., Brown, K., Dang, J., Zhu, S., Hsueh, T., Chen, Y., Wang, W., Youngkin, D., Liau, L., Martin, N., Becker, D., Bergsneider, M., Lai, A., Green, R., Oglesby, T., Koleto, M., Trent, J., … Sawyers, C. L. (2008). Antitumor activity of rapamycin in a Phase I trial for patients with recurrent PTEN-deficient glioblastoma. PLoS Medicine, 5(1), e8. https://doi.org/10.1371/journal.pmed.0050008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Venkatesan, S., Lamfers, M. L., Dirven, C. M., & Leenstra, S. (2016). Genetic biomarkers of drug response for small-molecule therapeutics targeting the RTK/Ras/PI3K, p53 or Rb pathway in glioblastoma. CNS Oncology, 5(2), 77–90. https://doi.org/10.2217/cns-2015-0005. Epub 2016 March 17. Erratum in: CNS Oncology 2016;5(3):188.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wang, M. Y., Lu, K. V., Zhu, S., Dia, E. Q., Vivanco, I., Shackleford, G. M., Cavenee, W. K., Mellinghoff, I. K., Cloughesy, T. F., Sawyers, C. L., & Mischel, P. S. (2006). Mammalian target of rapamycin inhibition promotes response to epidermal growth factor receptor kinase inhibitors in PTEN-deficient and PTEN-intact glioblastoma cells. Cancer Research, 66(16), 7864–7869. https://doi.org/10.1158/0008-5472.CAN-04-4392

    Article  CAS  PubMed  Google Scholar 

  44. Michaud, K., Solomon, D. A., Oermann, E., Kim, J. S., Zhong, W. Z., Prados, M. D., Ozawa, T., James, C. D., & Waldman, T. (2010). Pharmacologic inhibition of cyclin-dependent kinases 4 and 6 arrests the growth of glioblastoma multiforme intracranial xenografts. Cancer Research, 70(8), 3228–3238. https://doi.org/10.1158/0008-5472.CAN-09-4559. Epub 2010 March 30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Cen, L., Carlson, B. L., Schroeder, M. A., Ostrem, J. L., Kitange, G. J., Mladek, A. C., Fink, S. R., Decker, P. A., Wu, W., Kim, J. S., Waldman, T., Jenkins, R. B., & Sarkaria, J. N. (2012). p16-Cdk4-Rb axis controls sensitivity to a cyclin-dependent kinase inhibitor PD0332991 in glioblastoma xenograft cells. Neuro-Oncology, 14(7), 870–881. https://doi.org/10.1093/neuonc/nos114. Epub 2012 June 18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. England, B., Huang, T., & Karsy, M. (2013). Current understanding of the role and targeting of tumor suppressor p53 in glioblastoma multiforme. Tumour Biology, 34(4), 2063–2074. https://doi.org/10.1007/s13277-013-0871-3. Epub 2013 June 5.

    Article  CAS  PubMed  Google Scholar 

  47. Sarisozen, C., Tan, Y., Liu, J., Bilir, C., Shen, L., Filipczak, N., Porter, T. M., & Torchilin, V. P. (2019). MDM2 antagonist-loaded targeted micelles in combination with doxorubicin: Effective synergism against human glioblastoma via p53 re-activation. Journal of Drug Targets, 27(5–6), 624–633. https://doi.org/10.1080/1061186X.2019.1570518. Epub 2019 Jan 25.

    Article  CAS  Google Scholar 

  48. Rahme, G. J., Zhang, Z., Young, A. L., Cheng, C., Bivona, E. J., Fiering, S. N., Hitoshi, Y., & Israel, M. A. (2016). PDGF engages an E2F-USP1 signaling pathway to support ID2-mediated survival of proneural glioma cells. Cancer Research, 76(10), 2964–2976. https://doi.org/10.1158/0008-5472.CAN-15-2157. Epub 2016 March 7.

    Article  CAS  PubMed  Google Scholar 

  49. Moreno, M., Pedrosa, L., Paré, L., Pineda, E., Bejarano, L., Martínez, J., Balasubramaniyan, V., Ezhilarasan, R., Kallarackal, N., Kim, S. H., Wang, J., Audia, A., Conroy, S., Marin, M., Ribalta, T., Pujol, T., Herreros, A., Tortosa, A., Mira, H., … de la Iglesia, N. (2017). GPR56/ADGRG1 inhibits mesenchymal differentiation and radioresistance in glioblastoma. Cell Reports, 21(8), 2183–2197. https://doi.org/10.1016/j.celrep.2017.10.083

    Article  CAS  PubMed  Google Scholar 

  50. Sampetrean, O., & Saya, H. (2013). Characteristics of glioma stem cells. Brain Tumor Pathology, 30(4), 209–214. https://doi.org/10.1007/s10014-013-0141-5. Epub 2013 April 13.

    Article  CAS  PubMed  Google Scholar 

  51. Pallini, R., Ricci-Vitiani, L., Montano, N., Mollinari, C., Biffoni, M., Cenci, T., Pierconti, F., Martini, M., De Maria, R., & Larocca, L. M. (2016). Expression of the stem cell marker CD133 in recurrent glioblastoma and its value for prognosis. Cancer 2011;117:162–174. Cancer, 122(19), 3090. https://doi.org/10.1002/cncr.30147. Erratum for: Cancer 2011;117(1):162–174.

    Article  Google Scholar 

  52. Gilbertson, R. J., & Rich, J. N. (2007). Making a tumour’s bed: Glioblastoma stem cells and the vascular niche. Nature Reviews Cancer, 7, 733–736.

    Article  CAS  PubMed  Google Scholar 

  53. Sharifzad, F., Ghavami, S., Verdi, J., Mardpour, S., Mollapour Sisakht, M., Azizi, Z., Taghikhani, A., Łos, M. J., Fakharian, E., Ebrahimi, M., & Hamidieh, A. A. (2019). Glioblastoma cancer stem cell biology: Potential theranostic targets. Drug Resistance Update, 42, 35–45. https://doi.org/10.1016/j.drup.2018.03.003. Epub 2019 March 8.

    Article  Google Scholar 

  54. Calabrese, C., Poppleton, H., Kocak, M., Hogg, T. L., Fuller, C., Hamner, B., Oh, E. Y., Gaber, M. W., Finklestein, D., Allen, M., Frank, A., Bayazitov, I. T., Zakharenko, S. S., Gajjar, A., Davidoff, A., & Gilbertson, R. J. (2007). A perivascular niche for brain tumor stem cells. Cancer Cell, 11(1), 69–82. https://doi.org/10.1016/j.ccr.2006.11.020

    Article  CAS  PubMed  Google Scholar 

  55. Vieira de Castro, J., Gonçalves, C. S., Hormigo, A., & Costa, B. M. (2020). Exploiting the complexities of glioblastoma stem cells: Insights for cancer initiation and therapeutic targeting. International Journal of Molecular Sciences, 21(15), 5278. https://doi.org/10.3390/ijms21155278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Wang, H., Tan, Y., Jia, H., Liu, D., & Liu, R. (2022). Posaconazole inhibits the stemness of cancer stem-like cells by inducing autophagy and suppressing the Wnt/β-catenin/survivin signaling pathway in glioblastoma. Frontiers in Pharmacology, 13, 905082. https://doi.org/10.3389/fphar.2022.905082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Sunayama, J., Sato, A., Matsuda, K., Tachibana, K., Suzuki, K., Narita, Y., Shibui, S., Sakurada, K., Kayama, T., Tomiyama, A., & Kitanaka, C. (2010). Dual blocking of mTOR and PI3K elicits a prodifferentiation effect on glioblastoma stem-like cells. Neuro-Oncology, 12(12), 1205–1219. https://doi.org/10.1093/neuonc/noq103. Epub 2010 Sep 22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Nanta, R., Shrivastava, A., Sharma, J., Shankar, S., & Srivastava, R. K. (2019). Inhibition of sonic hedgehog and PI3K/Akt/mTOR pathways cooperate in suppressing survival, self-renewal and tumorigenic potential of glioblastoma-initiating cells. Molecular and Cellular Biochemistry, 454(1–2), 11–23. https://doi.org/10.1007/s11010-018-3448-z. Epub 2018 Sep 24.

    Article  CAS  PubMed  Google Scholar 

  59. Daniele, S., Costa, B., Zappelli, E., Da Pozzo, E., Sestito, S., Nesi, G., Campiglia, P., Marinelli, L., Novellino, E., Rapposelli, S., & Martini, C. (2015). Combined inhibition of AKT/mTOR and MDM2 enhances Glioblastoma Multiforme cell apoptosis and differentiation of cancer stem cells. Scientific Reports, 5, 9956. https://doi.org/10.1038/srep09956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Jensen, K. V., Hao, X., Aman, A., Luchman, H. A., & Weiss, S. (2020). EGFR blockade in GBM brain tumor stem cells synergizes with JAK2/STAT3 pathway inhibition to abrogate compensatory mechanisms in vitro and in vivo. Neurooncology Advances, 2(1), vdaa020. https://doi.org/10.1093/noajnl/vdaa020. Epub 2020 Feb 18.

    Article  Google Scholar 

  61. Ma, Y., Cheng, Z., Liu, J., Torre-Healy, L., Lathia, J. D., Nakano, I., Guo, Y., Thompson, R. C., Freeman, M. L., & Wang, J. (2017). Inhibition of farnesyltransferase potentiates NOTCH-targeted therapy against glioblastoma stem cells. Stem Cell Reports, 9(6), 1948–1960. https://doi.org/10.1016/j.stemcr.2017.10.028. Epub 2017 Nov 30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Piccirillo, S. G., Reynolds, B. A., Zanetti, N., Lamorte, G., Binda, E., Broggi, G., Brem, H., Olivi, A., Dimeco, F., & Vescovi, A. L. (2006). Bone morphogenetic proteins inhibit the tumorigenic potential of human brain tumour-initiating cells. Nature, 444(7120), 761–765. https://doi.org/10.1038/nature05349

    Article  CAS  PubMed  Google Scholar 

  63. Tate, C. M., Pallini, R., Ricci-Vitiani, L., Dowless, M., Shiyanova, T., D’Alessandris, G. Q., Morgante, L., Giannetti, S., Larocca, L. M., di Martino, S., Rowlinson, S. W., De Maria, R., & Stancato, L. (2012). A BMP7 variant inhibits the tumorigenic potential of glioblastoma stem-like cells. Cell Death and Differentiation, 19(10), 1644–1654. https://doi.org/10.1038/cdd.2012.44. Epub 2012 April 27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Sato, A., Sunayama, J., Okada, M., Watanabe, E., Seino, S., Shibuya, K., Suzuki, K., Narita, Y., Shibui, S., Kayama, T., & Kitanaka, C. (2012). Glioma-initiating cell elimination by metformin activation of FOXO3 via AMPK. Stem Cells Translational Medicine, 1(11), 811–824. https://doi.org/10.5966/sctm.2012-0058. Epub 2012 Nov 15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Sachamitr, P., Ho, J. C., Ciamponi, F. E., Ba-Alawi, W., Coutinho, F. J., Guilhamon, P., Kushida, M. M., Cavalli, F. M. G., Lee, L., Rastegar, N., Vu, V., Sánchez-Osuna, M., Coulombe-Huntington, J., Kanshin, E., Whetstone, H., Durand, M., Thibault, P., Hart, K., Mangos, M., … Dirks, P. B. (2021). PRMT5 inhibition disrupts splicing and stemness in glioblastoma. Nature Communications, 12(1), 979. https://doi.org/10.1038/s41467-021-21204-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Seifert, C., Balz, E., Herzog, S., Korolev, A., Gaßmann, S., Paland, H., Fink, M. A., Grube, M., Marx, S., Jedlitschky, G., Tzvetkov, M. V., Rauch, B. H., Schroeder, H. W. S., & Bien-Möller, S. (2021). PIM1 inhibition affects glioblastoma stem cell behavior and kills glioblastoma stem-like cells. International Journal of Molecular Sciences, 22(20), 11126. https://doi.org/10.3390/ijms222011126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Vora, P., Venugopal, C., Salim, S. K., Tatari, N., Bakhshinyan, D., Singh, M., Seyfrid, M., Upreti, D., Rentas, S., Wong, N., Williams, R., Qazi, M. A., Chokshi, C., Ding, A., Subapanditha, M., Savage, N., Mahendram, S., Ford, E., Adile, A. A., … Singh, S. (2020). The rational development of CD133-targeting immunotherapies for glioblastoma. Cell Stem Cell, 26(6), 832-844.e6. https://doi.org/10.1016/j.stem.2020.04.008. Epub 2020 May 27.

    Article  CAS  PubMed  Google Scholar 

  68. Porčnik, A., Novak, M., Breznik, B., Majc, B., Hrastar, B., Šamec, N., Zottel, A., Jovčevska, I., Vittori, M., Rotter, A., Komel, R., & Lah, T. T. (2021). TRIM28 selective nanobody reduces glioblastoma stem cell invasion. Molecules, 26(17), 5141. https://doi.org/10.3390/molecules26175141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Carthew, R. W., & Sontheimer, E. J. (2009). Origins and mechanisms of miRNAs and siRNAs. Cell, 136(4), 642–655. https://doi.org/10.1016/j.cell.2009.01.035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Suh, S. S., Yoo, J. Y., Nuovo, G. J., Jeon, Y. J., Kim, S., Lee, T. J., Kim, T., Bakàcs, A., Alder, H., Kaur, B., Aqeilan, R. I., Pichiorri, F., & Croce, C. M. (2012). MicroRNAs/TP53 feedback circuitry in glioblastoma multiforme. Proceedings of National Academy of Sciences of USA, 109(14), 5316–5321. https://doi.org/10.1073/pnas.1202465109. Epub 2012 March 19.

    Article  Google Scholar 

  71. Lopez-Bertoni, H., Lal, B., Michelson, N., Guerrero-Cázares, H., Quiñones-Hinojosa, A., Li, Y., & Laterra, J. (2016). Epigenetic modulation of a miR-296-5p:HMGA1 axis regulates Sox2 expression and glioblastoma stem cells. Oncogene, 35(37), 4903–4913. https://doi.org/10.1038/onc.2016.22. Epub 2016 Feb 22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Ofek, P., Calderón, M., Mehrabadi, F. S., Krivitsky, A., Ferber, S., Tiram, G., Yerushalmi, N., Kredo-Russo, S., Grossman, R., Ram, Z., Haag, R., & Satchi-Fainaro, R. (2016). Restoring the oncosuppressor activity of microRNA-34a in glioblastoma using a polyglycerol-based polyplex. Nanomedicine, 12(7), 2201–2214. https://doi.org/10.1016/j.nano.2016.05.016. Epub 2016 June 1.

    Article  CAS  PubMed  Google Scholar 

  73. Li, W., Liu, Y., Yang, W., Han, X., Li, S., Liu, H., Gerweck, L. E., Fukumura, D., Loeffler, J. S., Yang, B. B., Jain, R. K., & Huang, P. (2018). MicroRNA-378 enhances radiation response in ectopic and orthotopic implantation models of glioblastoma. Journal of Neurooncology, 136(1), 63–71. https://doi.org/10.1007/s11060-017-2646-y. Epub 2017 Oct 28.

    Article  CAS  Google Scholar 

  74. Shatsberg, Z., Zhang, X., Ofek, P., Malhotra, S., Krivitsky, A., Scomparin, A., Tiram, G., Calderón, M., Haag, R., & Satchi-Fainaro, R. (2016). Functionalized nanogels carrying an anticancer microRNA for glioblastoma therapy. Journal of Controlled Release, 239, 159–168. https://doi.org/10.1016/j.jconrel.2016.08.029. Epub 2016 Aug 26.

    Article  CAS  PubMed  Google Scholar 

  75. Shi, L., Yuan, Y., & Li, H. Y. (2019). MicroRNA-139-3p suppresses growth and metastasis of glioblastoma via inhibition of NIN1/RPNI2 binding protein 1 homolog. European Review for Medical and Pharmacological Sciences, 23(10), 4264–4274. https://doi.org/10.26355/eurrev_201905_17931

    Article  CAS  PubMed  Google Scholar 

  76. Mahjoor, M., Afkhami, H., Mollaei, M., Nasr, A., Shahriary, S., & Khorrami, S. (2021). MicroRNA-30c delivered by bone marrow-mesenchymal stem cells induced apoptosis and diminished cell invasion in U-251 glioblastoma cell line. Life Sciences, 279, 119643. https://doi.org/10.1016/j.lfs.2021.119643. Epub 2021 May 25.

    Article  CAS  PubMed  Google Scholar 

  77. Gasparello, J., Papi, C., Zurlo, M., Gambari, L., Rozzi, A., Manicardi, A., Corradini, R., Gambari, R., & Finotti, A. (2022). Treatment of human glioblastoma U251 cells with sulforaphane and a peptide nucleic acid (PNA) targeting miR-15b-5p: Synergistic effects on induction of apoptosis. Molecules, 27(4), 1299. https://doi.org/10.3390/molecules27041299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Gheidari, F., Arefian, E., Adegani, F. J., Kalhori, M. R., Seyedjafari, E., Kabiri, M., Teimoori-Toolabi, L., & Soleimani, M. (2021). miR-424 induces apoptosis in glioblastoma cells and targets AKT1 and RAF1 oncogenes from the ERBB signaling pathway. European Journal of Pharmacology, 906, 174273. https://doi.org/10.1016/j.ejphar.2021.174273. Epub 2021 June 18.

    Article  CAS  PubMed  Google Scholar 

  79. Wang, K., Kumar, U. S., Sadeghipour, N., Massoud, T. F., & Paulmurugan, R. (2021). A microfluidics-based scalable approach to generate extracellular vesicles with enhanced therapeutic microRNA loading for intranasal delivery to mouse glioblastomas. ACS Nano. https://doi.org/10.1021/acsnano.1c07587. Epub ahead of print.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Nieland, L., van Solinge, T. S., Cheah, P. S., Morsett, L. M., El Khoury, J., Rissman, J. I., Kleinstiver, B. P., Broekman, M. L. D., Breakefield, X. O., & Abels, E. R. (2022). CRISPR-Cas knockout of miR21 reduces glioma growth. Molecular Therapy Oncolytics, 25, 121–136. https://doi.org/10.1016/j.omto.2022.04.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Singh, A., Srivastava, N., Yadav, A., & Ateeq, B. (2020). Targeting AGTR1/NF-κB/CXCR4 axis by miR-155 attenuates oncogenesis in glioblastoma. Neoplasia, 22(10), 497–510. https://doi.org/10.1016/j.neo.2020.08.002. Epub 2020 Sep 5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Zurlo, M., Romagnoli, R., Oliva, P., Gasparello, J., Finotti, A., & Gambari, R. (2022). Synergistic effects of a combined treatment of glioblastoma U251 cells with an anti-miR-10b-5p molecule and an anticancer agent based on 1-(3′,4′,5′-trimethoxyphenyl)-2-aryl-1H-imidazole scaffold. International Journal of Molecular Sciences, 23(11), 5991. https://doi.org/10.3390/ijms23115991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. He, H., Liu, J., Li, W., Yao, X., Ren, Q., Shen, B., Xue, C., Zou, L., Zhao, H., Qin, J., & Jin, G. (2020). miR-210-3p inhibits proliferation and migration of C6 cells by targeting Iscu. Neurochemical Research, 45(8), 1813–1824. https://doi.org/10.1007/s11064-020-03043-w. Epub 2020 May 9.

    Article  CAS  PubMed  Google Scholar 

  84. Li, S. Z., Ren, K. X., Zhao, J., Wu, S., Li, J., Zang, J., Fei, Z., & Zhao, J. L. (2021). miR-139/PDE2A-Notch1 feedback circuit represses stemness of gliomas by inhibiting Wnt/β-catenin signaling. International Journal of Biological Sciences, 17(13), 3508–3521. https://doi.org/10.7150/ijbs.62858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Mei, J., Bachoo, R., & Zhang, C. L. (2011). MicroRNA-146a inhibits glioma development by targeting Notch1. Molecular Cell Biology, 31(17), 3584–3592. https://doi.org/10.1128/MCB.05821-11. Epub 2011 July 5.

    Article  CAS  Google Scholar 

  86. Altman, J., & Das, G. D. (1965). Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats. Journal of Comparative Neurology, 124, 319–336.

    Article  CAS  PubMed  Google Scholar 

  87. Altman, J., & Das, G. D. (1966). Autoradiographic and histological studies of postnatal neurogenesis. I. A longitudinal investigation of the kinetics, migration and transformation of cells incorporating tritiated thymidine in neonate rats, with special reference to postnatal neurogenesis in some brain regions. Journal of Comparative Neurology, 126, 337–390.

    Article  CAS  PubMed  Google Scholar 

  88. Ming, G. L., & Song, H. (2011). Adult neurogenesis in the mammalian brain: Significant answers and significant questions. Neuron, 70(4), 687–702. https://doi.org/10.1016/j.neuron.2011.05.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Eckenhoff, M. F., & Rakic, P. (1984). Radial organization of the hippocampal dentate gyrus: A Golgi, ultrastructural, and immunocytochemical analysis in the developing rhesus monkey. Journal of Comparative Neurology, 223(1), 1–21. https://doi.org/10.1002/cne.902230102

    Article  CAS  PubMed  Google Scholar 

  90. Bagó, J. R., Alfonso-Pecchio, A., Okolie, O., Dumitru, R., Rinkenbaugh, A., Baldwin, A. S., Miller, C. R., Magness, S. T., & Hingtgen, S. D. (2016). Therapeutically engineered induced neural stem cells are tumour-homing and inhibit progression of glioblastoma. Nature Communications, 7, 10593. https://doi.org/10.1038/ncomms10593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Reitz, M., Demestre, M., Sedlacik, J., Meissner, H., Fiehler, J., Kim, S. U., Westphal, M., & Schmidt, N. O. (2012). Intranasal delivery of neural stem/progenitor cells: A noninvasive passage to target intracerebral glioma. Stem Cells Translational Medicine, 1(12), 866–873. https://doi.org/10.5966/sctm.2012-0045. Epub 2012 Nov 27. Erratum in: Stem Cells Translational Medicine 2013;2(2):following 158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Spencer, D., Yu, D., Morshed, R. A., Li, G., Pituch, K. C., Gao, D. X., Bertolino, N., Procissi, D., Lesniak, M. S., & Balyasnikova, I. V. (2019). Pharmacologic modulation of nasal epithelium augments neural stem cell targeting of glioblastoma. Theranostics, 9(7), 2071–2083. https://doi.org/10.7150/thno.29581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Bhere, D., Khajuria, R. K., Hendriks, W. T., Bandyopadhyay, A., Bagci-Onder, T., & Shah, K. (2018). Stem cells engineered during different stages of reprogramming reveal varying therapeutic efficacies. Stem Cells, 36(6), 932–942. https://doi.org/10.1002/stem.2805. Epub 2018 April 1.

    Article  CAS  PubMed  Google Scholar 

  94. Bomba, H. N., Sheets, K. T., Valdivia, A., Khagi, S., Ruterbories, L., Mariani, C. L., Borst, L. B., Tokarz, D. A., & Hingtgen, S. D. (2020). Personalized-induced neural stem cell therapy: Generation, transplant, and safety in a large animal model. Bioengineering and Translational Medicine, 6(1), e10171. https://doi.org/10.1002/btm2.10171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Tamura, R., Miyoshi, H., Morimoto, Y., Oishi, Y., Sampetrean, O., Iwasawa, C., Mine, Y., Saya, H., Yoshida, K., Okano, H., & Toda, M. (2020). Gene therapy using neural stem/progenitor cells derived from human induced pluripotent stem cells: Visualization of migration and bystander killing effect. Human Gene Therapy, 31(5–6), 352–366. https://doi.org/10.1089/hum.2019.326

    Article  CAS  PubMed  Google Scholar 

  96. Sheng, C., Jungverdorben, J., Wiethoff, H., Lin, Q., Flitsch, L. J., Eckert, D., Hebisch, M., Fischer, J., Kesavan, J., Weykopf, B., Schneider, L., Holtkamp, D., Beck, H., Till, A., Wüllner, U., Ziller, M. J., Wagner, W., Peitz, M., & Brüstle, O. (2018). A stably self-renewing adult blood-derived induced neural stem cell exhibiting pattern ability and epigenetic rejuvenation. Nature Communications, 9(1), 4047. https://doi.org/10.1038/s41467-018-06398-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Wang, J., Liu, J., Meng, H., Guan, Y., Yin, Y., Zhao, Z., Sun, G., Wu, A., Chen, L., & Yu, X. (2019). Neural stem cells promote glioblastoma formation in nude mice. Clinical and Translational Oncology, 21(11), 1551–1560. https://doi.org/10.1007/s12094-019-02087-x. Epub 2019 April 3.

    Article  CAS  PubMed  Google Scholar 

  98. Chamberlain, G., Fox, J., Ashton, B., & Middleton, J. (2007). Concise review: Mesenchymal stem cells: Their phenotype, differentiation capacity, immunological features, and potential for homing. Stem Cells, 25(11), 2739–2749. https://doi.org/10.1634/stemcells.2007-0197. Epub 2007 July 26.

    Article  CAS  PubMed  Google Scholar 

  99. Sonabend, A. M., Ulasov, I. V., Tyler, M. A., Rivera, A. A., Mathis, J. M., & Lesniak, M. S. (2008). Mesenchymal stem cells effectively deliver an oncolytic adenovirus to intracranial glioma. Stem Cells, 26(3), 831–841. https://doi.org/10.1634/stemcells.2007-0758. Epub 2008 Jan 10.

    Article  CAS  PubMed  Google Scholar 

  100. Yong, R. L., Shinojima, N., Fueyo, J., Gumin, J., Vecil, G. G., Marini, F. C., Bogler, O., Andreeff, M., & Lang, F. F. (2009). Human bone marrow-derived mesenchymal stem cells for intravascular delivery of oncolytic adenovirus Delta24-RGD to human gliomas. Cancer Research, 69(23), 8932–8940. https://doi.org/10.1158/0008-5472.CAN-08-3873. Epub 2009 Nov 17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Allahverdi, A., Arefian, E., Soleimani, M., Ai, J., Nahanmoghaddam, N., Yousefi-Ahmadipour, A., & Ebrahimi-Barough, S. (2020). MicroRNA-4731-5p delivered by AD-mesenchymal stem cells induces cell cycle arrest and apoptosis in glioblastoma. Journal of Cellular Physiology, 235(11), 8167–8175. https://doi.org/10.1002/jcp.29472. Epub 2020 Jan 19.

    Article  CAS  PubMed  Google Scholar 

  102. Ahmed, A. U., Tyler, M. A., Thaci, B., Alexiades, N. G., Han, Y., Ulasov, I. V., & Lesniak, M. S. (2011). A comparative study of neural and mesenchymal stem cell-based carriers for oncolytic adenovirus in a model of malignant glioma. Molecular Pharmaceutics, 8(5), 1559–1572. https://doi.org/10.1021/mp200161f. Epub 2011 June 30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Pavon, L. F., Sibov, T. T., de Souza, A. V., da Cruz, E. F., Malheiros, S. M. F., Cabral, F. R., de Souza, J. G., Boufleur, P., de Oliveira, D. M., de Toledo, S. R. C., Marti, L. C., Malheiros, J. M., Paiva, F. F., Tannús, A., de Oliveira, S. M., Chudzinski-Tavassi, A. M., de Paiva Neto, M. A., & Cavalheiro, S. (2018). Tropism of mesenchymal stem cell toward CD133+ stem cell of glioblastoma in vitro and promote tumor proliferation in vivo. Stem Cell Research and Therapy, 9(1), 310. https://doi.org/10.1186/s13287-018-1049-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Bhere, D., Choi, S. H., van de Donk, P., Hope, D., Gortzak, K., Kunnummal, A., Khalsa, J., Revai Lechtich, E., Reinshagen, C., Leon, V., Nissar, N., Bi, W. L., Feng, C., Li, H., Zhang, Y. S., Liang, S. H., Vasdev, N., Essayed, W., Quevedo, P. V., … Shah, K. (2022). Target receptor identification and subsequent treatment of resected brain tumors with encapsulated and engineered allogeneic stem cells. Nature Communications, 13(1), 2810. https://doi.org/10.1038/s41467-022-30558-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Menon, L. G., Kelly, K., Yang, H. W., Kim, S. K., Black, P. M., & Carroll, R. S. (2009). Human bone marrow-derived mesenchymal stromal cells expressing S-TRAIL as a cellular delivery vehicle for human glioma therapy. Stem Cells, 27(9), 2320–2330. https://doi.org/10.1002/stem.136

    Article  CAS  PubMed  Google Scholar 

  106. Martinez-Quintanilla, J., Bhere, D., Heidari, P., He, D., Mahmood, U., & Shah, K. (2013). Therapeutic efficacy and fate of bimodal engineered stem cells in malignant brain tumors. Stem Cells, 31(8), 1706–1714. https://doi.org/10.1002/stem.1355

    Article  CAS  PubMed  Google Scholar 

  107. Wildburger, N. C., Wood, P. L., Gumin, J., Lichti, C. F., Emmett, M. R., Lang, F. F., & Nilsson, C. L. (2015). ESI-MS/MS and MALDI-IMS localization reveal alterations in phosphatidic acid, diacylglycerol, and DHA in glioma stem cell xenografts. Journal of Proteome Research, 14(6), 2511–2519. https://doi.org/10.1021/acs.jproteome.5b00076. Epub 2015 April 29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Tyciakova, S., Matuskova, M., Bohovic, R., Polakova, K., Toro, L., Skolekova, S., & Kucerova, L. (2015). Genetically engineered mesenchymal stromal cells producing TNFα have tumour suppressing effect on human melanoma xenograft. The Journal of Gene Medicine, 17(1–2), 54–67. https://doi.org/10.1002/jgm.2823

    Article  CAS  PubMed  Google Scholar 

  109. Lang, F. M., Hossain, A., Gumin, J., Momin, E. N., Shimizu, Y., Ledbetter, D., Shahar, T., Yamashita, S., Parker Kerrigan, B., Fueyo, J., Sawaya, R., & Lang, F. F. (2018). Mesenchymal stem cells as natural biofactories for exosomes carrying miR-124a in the treatment of gliomas. Neuro-Oncology, 20(3), 380–390. https://doi.org/10.1093/neuonc/nox152

    Article  CAS  PubMed  Google Scholar 

  110. Mohme, M., Maire, C. L., Geumann, U., Schliffke, S., Dührsen, L., Fita, K., Akyüz, N., Binder, M., Westphal, M., Guenther, C., Lamszus, K., Hermann, F. G., & Schmidt, N. O. (2020). Local intracerebral immunomodulation using interleukin-expressing mesenchymal stem cells in glioblastoma. Clinical Cancer Research, 26(11), 2626–2639. https://doi.org/10.1158/1078-0432.CCR-19-0803. Epub 2020 Jan 27.

    Article  CAS  PubMed  Google Scholar 

  111. Doudna, J. A., & Charpentier, E. (2014). Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science, 346(6213), 1258096. https://doi.org/10.1126/science.1258096

    Article  CAS  PubMed  Google Scholar 

  112. Colic, M., & Hart, T. (2021). Common computational tools for analyzing CRISPR screens. Emerging Topics in Life Sciences, 5(6), 779–788. https://doi.org/10.1042/ETLS20210222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Lin, K., Shen, S. H., Lu, F., Zheng, P., Wu, S., Liao, J., Jiang, X., Zeng, G., & Wei, D. (2022). CRISPR screening of E3 ubiquitin ligases reveals Ring Finger Protein 185 as a novel tumor suppressor in glioblastoma repressed by promoter hypermethylation and miR-587. Journal of Translational Medicine, 20(1), 96. https://doi.org/10.1186/s12967-022-03284-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Chen, S., Sanjana, N. E., Zheng, K., Shalem, O., Lee, K., Shi, X., Scott, D. A., Song, J., Pan, J. Q., Weissleder, R., Lee, H., Zhang, F., & Sharp, P. A. (2015). Genome-wide CRISPR screen in a mouse model of tumor growth and metastasis. Cell, 160(6), 1246–1260. https://doi.org/10.1016/j.cell.2015.02.038. Epub 2015 March 5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Chen, Y., Zheng, Y., Kang, Y., Yang, W., Niu, Y., Guo, X., Tu, Z., Si, C., Wang, H., Xing, R., Pu, X., Yang, S. H., Li, S., Ji, W., & Li, X. J. (2015). Functional disruption of the dystrophin gene in rhesus monkey using CRISPR/Cas9. Human Molecular Genetics, 24(13), 3764–3774. https://doi.org/10.1093/hmg/ddv120. Epub 2015 April 9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Park, I. H., Arora, N., Huo, H., Maherali, N., Ahfeldt, T., Shimamura, A., Lensch, M. W., Cowan, C., Hochedlinger, K., & Daley, G. Q. (2008). Disease-specific induced pluripotent stem cells. Cell, 134(5), 877–886. https://doi.org/10.1016/j.cell.2008.07.041. Epub 2008 Aug 7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Soldner, F., Hockemeyer, D., Beard, C., Gao, Q., Bell, G. W., Cook, E. G., Hargus, G., Blak, A., Cooper, O., Mitalipova, M., Isacson, O., & Jaenisch, R. (2009). Parkinson’s disease patient-derived induced pluripotent stem cells free of viral reprogramming factors. Cell, 136(5), 964–977. https://doi.org/10.1016/j.cell.2009.02.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. MacLeod, G., Bozek, D. A., Rajakulendran, N., Monteiro, V., Ahmadi, M., Steinhart, Z., Kushida, M. M., Yu, H., Coutinho, F. J., Cavalli, F. M. G., Restall, I., Hao, X., Hart, T., Luchman, H. A., Weiss, S., Dirks, P. B., & Angers, S. (2019). Genome-wide CRISPR-Cas9 screens expose genetic vulnerabilities and mechanisms of temozolomide sensitivity in glioblastoma stem cells. Cell Reports, 27(3), 971-986.e9. https://doi.org/10.1016/j.celrep.2019.03.047

    Article  CAS  PubMed  Google Scholar 

  119. Prolo, L. M., Li, A., Owen, S. F., Parker, J. J., Foshay, K., Nitta, R. T., Morgens, D. W., Bolin, S., Wilson, C. M., Vega, L. J. C. M., Luo, E. J., Nwagbo, G., Waziri, A., Li, G., Reimer, R. J., Bassik, M. C., & Grant, G. A. (2019). Targeted genomic CRISPR-Cas9 screen identifies MAP4K4 as essential for glioblastoma invasion. Scientific Reports, 9(1), 14020. https://doi.org/10.1038/s41598-019-50160-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Lenoir, W. F., Lim, T. L., & Hart, T. (2018). PICKLES: The database of pooled in vitro CRISPR knockout library essentiality screens. Nucleic Acids Research, 46(D1), D776–D780. https://doi.org/10.1093/nar/gkx993

    Article  CAS  PubMed  Google Scholar 

  121. Onishi, I., Yamamoto, K., Kinowaki, Y., Kitagawa, M., & Kurata, M. (2021). To discover the efficient and novel drug targets in human cancers using CRISPR/Cas screening and databases. International Journal of Molecular Sciences, 22(22), 12322. https://doi.org/10.3390/ijms222212322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Chow, R. D., Guzman, C. D., Wang, G., Schmidt, F., Youngblood, M. W., Ye, L., Errami, Y., Dong, M. B., Martinez, M. A., Zhang, S., Renauer, P., Bilguvar, K., Gunel, M., Sharp, P. A., Zhang, F., Platt, R. J., & Chen, S. (2017). AAV-mediated direct in vivo CRISPR screen identifies functional suppressors in glioblastoma. Nature Neuroscience, 20(10), 1329–1341. https://doi.org/10.1038/nn.4620. Epub 2017 Aug 14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Chaicharoenaudomrung, N., Kunhorm, P., Promjantuek, W., Rujanapun, N., Heebkaew, N., Soraksa, N., & Noisa, P. (2020). Transcriptomic profiling of 3D glioblastoma tumoroids for the identification of mechanisms involved in anticancer drug resistance. In Vivo, 34(1), 199–211. https://doi.org/10.21873/invivo.11762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Toledo, C. M., Ding, Y., Hoellerbauer, P., Davis, R. J., Basom, R., Girard, E. J., Lee, E., Corrin, P., Hart, T., Bolouri, H., Davison, J., Zhang, Q., Hardcastle, J., Aronow, B. J., Plaisier, C. L., Baliga, N. S., Moffat, J., Lin, Q., Li, X. N., … Paddison, P. J. (2015). Genome-wide CRISPR-Cas9 screens reveal loss of redundancy between PKMYT1 and WEE1 in glioblastoma stem-like cells. Cell Reports, 13(11), 2425–2439. https://doi.org/10.1016/j.celrep.2015.11.021. Epub 2015 Dec 7.

    Article  CAS  PubMed  Google Scholar 

  125. Al-Sammarraie, N., & Ray, S. K. (2021). Applications of CRISPR-Cas9 technology to genome editing in glioblastoma multiforme. Cells, 10(9), 2342. https://doi.org/10.3390/cells10092342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Quinn, C., Anthousi, A., Wondji, C., & Nolan, T. (2021). CRISPR-mediated knock-in of transgenes into the malaria vector Anopheles funestus. G3 (Bethesda), 11(8), jkab201. https://doi.org/10.1093/g3journal/jkab201

    Article  CAS  PubMed  Google Scholar 

  127. Fierro, J., Jr., DiPasquale, J., Perez, J., Chin, B., Chokpapone, Y., Tran, A. M., Holden, A., Factoriza, C., Sivagnanakumar, N., Aguilar, R., Mazal, S., Lopez, M., & Dou, H. (2022). Dual-sgRNA CRISPR/Cas9 knockout of PD-L1 in human U87 glioblastoma tumor cells inhibits proliferation, invasion, and tumor-associated macrophage polarization. Scientific Reports, 12(1), 2417. https://doi.org/10.1038/s41598-022-06430-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Kwon, T., Ra, J. S., Lee, S., Baek, I. J., Khim, K. W., Lee, E. A., Song, E. K., Otarbayev, D., Jung, W., Park, Y. H., Wie, M., Bae, J., Cheng, H., Park, J. H., Kim, N., Seo, Y., Yun, S., Kim, H. E., Moon, H. E., … Myung, K. (2022). Precision targeting tumor cells using cancer-specific InDel mutations with CRISPR-Cas9. Proceedings of the National Academy of Sciences of USA, 119(9), e2103532119. https://doi.org/10.1073/pnas.2103532119

    Article  CAS  Google Scholar 

  129. Głów, D., Maire, C. L., Schwarze, L. I., Lamszus, K., & Fehse, B. (2021). CRISPR-to-Kill (C2K)-employing the bacterial immune system to kill cancer cells. Cancers (Basel), 13(24), 6306. https://doi.org/10.3390/cancers13246306

    Article  CAS  PubMed  Google Scholar 

  130. Hu, Z., Yu, L., Zhu, D., Ding, W., Wang, X., Zhang, C., Wang, L., Jiang, X., Shen, H., He, D., Li, K., Xi, L., Ma, D., & Wang, H. (2014). Disruption of HPV16-E7 by CRISPR/Cas system induces apoptosis and growth inhibition in HPV16 positive human cervical cancer cells. BioMed Research International, 2014, 612823. https://doi.org/10.1155/2014/612823. Epub 2014 July 20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Gier, R. A., Budinich, K. A., Evitt, N. H., Cao, Z., Freilich, E. S., Chen, Q., Qi, J., Lan, Y., Kohli, R. M., & Shi, J. (2020). High-performance CRISPR-Cas12a genome editing for combinatorial genetic screening. Nature Communications, 11(1), 3455. https://doi.org/10.1038/s41467-020-17209-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. El Fatimy, R., Subramanian, S., Uhlmann, E. J., & Krichevsky, A. M. (2017). Genome editing reveals glioblastoma addiction to MicroRNA-10b. Molecular Therapy, 25(2), 368–378. https://doi.org/10.1016/j.ymthe.2016.11.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Quéré, M., Alberto, J. M., Broly, F., Hergalant, S., Christov, C., Gauchotte, G., Guéant, J. L., Namour, F., & Battaglia-Hsu, S. F. (2022). ALDH1L2 knockout in U251 glioblastoma cells reduces tumor sphere formation by increasing oxidative stress and suppressing methionine dependency. Nutrients, 14(9), 1887. https://doi.org/10.3390/nu14091887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Zou, Y., Sun, X., Yang, Q., Zheng, M., Shimoni, O., Ruan, W., Wang, Y., Zhang, D., Yin, J., Huang, X., Tao, W., Park, J. B., Liang, X. J., Leong, K. W., & Shi, B. (2022). Blood–brain barrier-penetrating single CRISPR-Cas9 nanocapsules for effective and safe glioblastoma gene therapy. Science Advances, 8(16), eabm8011. https://doi.org/10.1126/sciadv.abm8011. Epub 2022 April 20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. He, X., & Zeng, X. X. (2022). Immunotherapy and CRISPR Cas systems: Potential cure of COVID-19? Drug Design, Development and Therapy. https://doi.org/10.2147/DDDT.S347297

    Article  PubMed  PubMed Central  Google Scholar 

  136. Schmidt, F., & Grimm, D. (2015). CRISPR genome engineering and viral gene delivery: A case of mutual attraction. Biotechnology Journal, 10(2), 258–272. https://doi.org/10.1002/biot.201400529. Epub 2015 Feb 6.

    Article  CAS  PubMed  Google Scholar 

  137. Zetsche, B., Volz, S. E., & Zhang, F. (2015). A split-Cas9 architecture for inducible genome editing and transcription modulation. Nature Biotechnology, 33(2), 139–142. https://doi.org/10.1038/nbt.3149

    Article  CAS  PubMed  Google Scholar 

  138. Zuris, J. A., Thompson, D. B., Shu, Y., Guilinger, J. P., Bessen, J. L., Hu, J. H., Maeder, M. L., Joung, J. K., Chen, Z. Y., & Liu, D. R. (2015). Cationic lipid-mediated delivery of proteins enables efficient protein-based genome editing in vitro and in vivo. Nature Biotechnology, 33(1), 73–80. https://doi.org/10.1038/nbt.3081. Epub 2014 Oct 30.

    Article  CAS  PubMed  Google Scholar 

  139. Falato, L., Vunk, B., & Langel, Ü. (2022). CRISPR/Cas9 plasmid delivery through the CPP: PepFect14. Methods in Molecular Biology, 2383, 587–593. https://doi.org/10.1007/978-1-0716-1752-6_38

    Article  CAS  PubMed  Google Scholar 

  140. Serajian, S., Ahmadpour, E., Oliveira, S. M. R., Pereira, M. L., & Heidarzadeh, S. (2021). CRISPR-Cas technology: Emerging applications in clinical microbiology and infectious diseases. Pharmaceuticals (Basel), 14(11), 1171. https://doi.org/10.3390/ph14111171

    Article  CAS  PubMed  Google Scholar 

  141. Pattanayak, V., Lin, S., Guilinger, J. P., Ma, E., Doudna, J. A., & Liu, D. R. (2013). High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity. Nature Biotechnology, 31(9), 839–843. https://doi.org/10.1038/nbt.2673. Epub 2013 Aug 11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Doench, J. G., Fusi, N., Sullender, M., Hegde, M., Vaimberg, E. W., Donovan, K. F., Smith, I., Tothova, Z., Wilen, C., Orchard, R., Virgin, H. W., Listgarten, J., & Root, D. E. (2016). Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nature Biotechnology, 34(2), 184–191. https://doi.org/10.1038/nbt.3437. Epub 2016 Jan 18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Coelho, M. A., De Braekeleer, E., Firth, M., Bista, M., Lukasiak, S., Cuomo, M. E., & Taylor, B. J. M. (2020). CRISPR GUARD protects off-target sites from Cas9 nuclease activity using short guide RNAs. Nature Communications, 11(1), 4132. https://doi.org/10.1038/s41467-020-17952-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Pawluk, A., Davidson, A. R., & Maxwell, K. L. (2018). Anti-CRISPR: Discovery, mechanism and function. Nature Reviews Microbiology, 16(1), 12–17. https://doi.org/10.1038/nrmicro.2017.120. Epub 2017 Oct 24.

    Article  CAS  PubMed  Google Scholar 

  145. Chen, Z., & Elowitz, M. B. (2021). Programmable protein circuit design. Cell, 184(9), 2284–2301. https://doi.org/10.1016/j.cell.2021.03.007. Epub 2021 April 12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Xia, P. F., Ling, H., Foo, J. L., & Chang, M. W. (2019). Synthetic genetic circuits for programmable biological functionalities. Biotechnology Advances, 37(6), 107393. https://doi.org/10.1016/j.biotechadv.2019.04.015. Epub 2019 April 30.

    Article  PubMed  Google Scholar 

  147. Cubillos-Ruiz, A., Guo, T., Sokolovska, A., Miller, P. F., Collins, J. J., Lu, T. K., & Lora, J. M. (2021). Engineering living therapeutics with synthetic biology. Nature Reviews Drug Discovery, 20(12), 941–960. https://doi.org/10.1038/s41573-021-00285-3. Epub 2021 Oct 6.

    Article  CAS  PubMed  Google Scholar 

  148. Xie, M., & Fussenegger, M. (2018). Designing cell function: Assembly of synthetic gene circuits for cell biology applications. Nature Reviews Molecular Cell Biology, 19(8), 507–525. https://doi.org/10.1038/s41580-018-0024-z

    Article  CAS  PubMed  Google Scholar 

  149. Miyamoto, T., Razavi, S., DeRose, R., & Inoue, T. (2013). Synthesizing biomolecule-based Boolean logic gates. ACS Synthetic Biology, 2(2), 72–82. https://doi.org/10.1021/sb3001112

    Article  CAS  PubMed  Google Scholar 

  150. Singh, V. (2014). Recent advances and opportunities in synthetic logic gates engineering in living cells. Systems and Synthetic Biology, 8(4), 271–282. https://doi.org/10.1007/s11693-014-9154-6. Epub 2014 Aug 28.

    Article  PubMed  PubMed Central  Google Scholar 

  151. Li, H. S., Israni, D. V., Gagnon, K. A., Gan, K. A., Raymond, M. H., Sander, J. D., Roybal, K. T., Joung, J. K., Wong, W. W., & Khalil, A. S. (2022). Multidimensional control of therapeutic human cell function with synthetic gene circuits. Science, 378(6625), 1227–1234. https://doi.org/10.1126/science.ade0156. Epub 2022 Dec 15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Lim, W. A. (2010). Designing customized cell signalling circuits. Nature Reviews Molecular Cell Biology, 11(6), 393–403. https://doi.org/10.1038/nrm2904. Epub 2010 May 19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Kemmer, C., Gitzinger, M., Daoud-El Baba, M., Djonov, V., Stelling, J., & Fussenegger, M. (2010). Self-sufficient control of urate homeostasis in mice by a synthetic circuit. Nature Biotechnology, 28(4), 355–360. https://doi.org/10.1038/nbt.1617. Epub 2010 March 28.

    Article  CAS  PubMed  Google Scholar 

  154. Rössger, K., Charpin-El-Hamri, G., & Fussenegger, M. (2013). A closed-loop synthetic gene circuit for the treatment of diet-induced obesity in mice. Nature Communications, 4, 2825. https://doi.org/10.1038/ncomms3825

    Article  CAS  PubMed  Google Scholar 

  155. Schukur, L., & Fussenegger, M. (2016). Engineering of synthetic gene circuits for (re-) balancing physiological processes in chronic diseases. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 8, 402–422. Epub 2016 Jan 19.

    CAS  PubMed  Google Scholar 

  156. Saxena, P., Charpin-El Hamri, G., Folcher, M., Zulewski, H., & Fussenegger, M. (2016). Synthetic gene network restoring endogenous pituitary–thyroid feedback control in experimental Graves’ disease. Proceedings of National Academy of Sciences of USA, 113(5), 1244–1249. https://doi.org/10.1073/pnas.1514383113

    Article  CAS  Google Scholar 

  157. Saxena, P., Heng, B. C., Bai, P., Folcher, M., Zulewski, H., & Fussenegger, M. (2016). A programmable synthetic lineage-control network that differentiates human IPSCs into glucose-sensitive insulin-secreting beta-like cells. Nature Communications, 7, 11247. https://doi.org/10.1038/ncomms11247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Wang, L. B., Karpova, A., Gritsenko, M. A., Kyle, J. E., Cao, S., Li, Y., Rykunov, D., Colaprico, A., Rothstein, J. H., Hong, R., Stathias, V., Cornwell, M., Petralia, F., Wu, Y., Reva, B., Krug, K., Pugliese, P., Kawaler, E., Olsen, L. K., … Clinical Proteomic Tumor Analysis Consortium. (2021). Proteogenomic and metabolomic characterization of human glioblastoma. Cancer Cell, 39(4), 509-528.e20. https://doi.org/10.1016/j.ccell.2021.01.006. Epub 2021 Feb 11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Simion, V., Loussouarn, C., Laurent, Y., Roncali, L., Gosset, D., Reverchon, F., Rousseau, A., Martin, F., Midoux, P., Pichon, C., Garcion, E., & Baril, P. (2021). LentiRILES, a miRNA-ON sensor system for monitoring the functionality of miRNA in cancer biology and therapy. RNA Biology, 18(sup1), 198–214. https://doi.org/10.1080/15476286.2021.1978202. Epub 2021 Sep 27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Shah, D., Comba, A., Faisal, S. M., Kadiyala, P., Baker, G. J., Alghamri, M. S., Doherty, R., Zamler, D., Nuñez, G., Castro, M. G., & Lowenstein, P. R. (2021). A novel miR1983-TLR7-IFNβ circuit licenses NK cells to kill glioma cells, and is under the control of galectin-1. Oncoimmunology, 10(1), 1939601. https://doi.org/10.1080/2162402X.2021.1939601

    Article  PubMed  PubMed Central  Google Scholar 

  161. Huang, T., Alvarez, A. A., Pangeni, R. P., Horbinski, C. M., Lu, S., Kim, S. H., James, C. D., Raizer, J. J., Kessler, A. J., Brenann, C. W., Sulman, E. P., Finocchiaro, G., Tan, M., Nishikawa, R., Lu, X., Nakano, I., Hu, B., & Cheng, S. Y. (2016). A regulatory circuit of miR-125b/miR-20b and Wnt signalling controls glioblastoma phenotypes through FZD6-modulated pathways. Nature Communications, 7, 12885. https://doi.org/10.1038/ncomms12885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Goetz, L. H., & Schork, N. J. (2018). Personalized medicine: Motivation, challenges, and progress. Fertility and Sterility, 109(6), 952–963. https://doi.org/10.1016/j.fertnstert.2018.05.006

    Article  PubMed  PubMed Central  Google Scholar 

  163. Lazutkin, A., Podgorny, O., & Enikolopov, G. (2019). Modes of division and differentiation of neural stem cells. Behavioral Brain Research, 374, 112118. https://doi.org/10.1016/j.bbr.2019.112118. Epub 2019 July 29.

    Article  CAS  Google Scholar 

  164. Bertassoni, L. E. (2022). Bioprinting of complex multicellular organs with advanced functionality—Recent progress and challenges ahead. Advanced Materials, 34(3), e2101321. https://doi.org/10.1002/adma.202101321. Epub 2021 Nov 5.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

No funding.

Author information

Authors and Affiliations

Authors

Contributions

Both XXZ and (B)JZ made substantial contributions to the conceptualization, draft, and revision of the manuscript; agreed to submit to the current journal; gave final approval of the version to be published; and agree to be accountable for all aspects of the work.

Corresponding author

Correspondence to Xiao Xue Zeng.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, J., Zeng, X.X. Systems Medicine for Precise Targeting of Glioblastoma. Mol Biotechnol 65, 1565–1584 (2023). https://doi.org/10.1007/s12033-023-00699-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1007/s12033-023-00699-x

Keywords