Skip to main content
Log in

The Ambivalent Role of lncRNA Xist in Carcinogenesis

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Long non-coding RNA (lncRNA) Xist has emerged as a key modulator in dosage compensation by randomly inactivating one of the X chromosomes in mammals during embryonic development. Dysregulation of X chromosome inactivation (XCI) due to deletion of Xist has been proven to induce hematologic cancer in mice. However, this phenomenon is not consistent in humans as growing evidence suggests Xist can suppress or promote cancer growth in different organs of the human body. In this review, we discuss recent advances of XCI in human embryonic stem cells and provide an explanation for the seemingly contradictory roles of Xist in development of human cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Graves, J. A. (2006). Sex chromosome specialization and degeneration in mammals. Cell, 124(5), 901–914.

    Article  CAS  PubMed  Google Scholar 

  2. Heard, E. (2006). Dosage compensation in mammals: fine-tuning the expression of the X chromosome. Genes & Development, 20(14), 1848–1867.

    Article  CAS  Google Scholar 

  3. Crews, D. (2003). Sex determination: Where environment and genetics meet. Evolution & Development, 5, 50–55.

    Article  Google Scholar 

  4. Payer, B., & Lee, J. T. (2008). X chromosome dosage compensation: How mammals keep the balance. Annual Review of Genetics, 42, 733–772.

    Article  CAS  PubMed  Google Scholar 

  5. Lyon, M. F. (1961). Gene action in the X-chromosome of the mouse (Mus musculus L.). Nature, 190, 372–373.

    Article  CAS  PubMed  Google Scholar 

  6. Wutz, A., Rasmussen, T. P., & Jaenisch, R. (2002). Chromosomal silencing and localization are mediated by different domains of Xist RNA. Nature Genetics, 30, 167–174.

    Article  CAS  PubMed  Google Scholar 

  7. Lee, J. T., & Bartolomei, M. S. (2013). X-inactivation, imprinting, and long noncoding RNAs in health and disease. Cell, 152, 1308–1323.

    Article  CAS  PubMed  Google Scholar 

  8. Sakaguchi, T., Hasegawa, Y., Brockdorff, N., Tsutsui, K., Tsutsui, K. M., Sado, T., & Nakagawa, S. (2016). Control of chromosomal localization of Xist by hnRNP U family molecules. Developmental Cell, 39, 11–12.

    Article  CAS  PubMed  Google Scholar 

  9. Chen, C. K., Blanco, M., Jackson, C., Aznauryan, E., Ollikainen, N., Surka, C., Chow, A., Cerase, A., McDonel, P., & Guttman, M. (2016). Xist recruits the X chromosome to the nuclear lamina to enable chromosome-wide silencing. Science, 354, 468–472.

    Article  CAS  PubMed  Google Scholar 

  10. Chu, C., Zhang, Q. C., da Rocha, S. T., Flynn, R. A., Bharadwaj, M., Calabrese, J. M., Magnuson, T., Heard, E., & Chang, H. Y. (2015). Systematic discovery of Xist RNA binding proteins. Cell, 161, 404–416.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. McHugh, C. A., Chen, C. K., Chow, A., et al. (2015). The Xist lncRNA interacts directly with SHARP to silence transcription through HDAC3. Nature, 521, 232–236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. da Rocha, S. T., & Heard, E. (2017). Novel players in X inactivation: Insights into Xist-mediated gene silencing and chromosome conformation. Nature Structural & Molecular Biology, 24, 197–204.

    Article  CAS  Google Scholar 

  13. Patil, D. P., Chen, C. K., Pickering, B. F., Chow, A., Jackson, C., Guttman, M., & Jaffrey, S. R. (2016). m(6)A RNA methylation promotes XIST-mediated transcriptional repression. Nature, 537, 369–373.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mira-Bontenbal, H., & Gribnau, J. (2016). New Xist-interacting proteins in X-chromosome inactivation. Current Biology, 26, R338–R342.

    Article  CAS  PubMed  Google Scholar 

  15. Keniry, A., & Blewitt, M. E. (2018). Studying X chromosome inactivation in the single-cell genomic era. Biochemical Society Transactions, 46, 577–586.

    Article  CAS  PubMed  Google Scholar 

  16. Patrat, C., Okamoto, I., Diabangouaya, P., Vialon, V., le Baccon, P., Chow, J., & Heard, E. (2009). Dynamic changes in paternal X-chromosome activity during imprinted X-chromosome inactivation in mice. Proceedings of the National Academy of Sciences of the United States of America, 106, 5198–5203.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Takagi, N., & Sasaki, M. (1975). Preferential inactivation of the paternally derived X chromosome in the extraembryonic membranes of the mouse. Nature, 256, 640–642.

    Article  CAS  PubMed  Google Scholar 

  18. Sahakyan, A., Yang, Y., & Plath, K. (2018). The role of Xist in X-chromosome dosage compensation. Trends in Cell Biology, 28, 999–1013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Okamoto, I., Otte, A. P., Allis, C. D., Reinberg, D., & Heard, E. (2004). Epigenetic dynamics of imprinted X inactivation during early mouse development. Science, 303, 644–649.

    Article  CAS  PubMed  Google Scholar 

  20. Nora, E. P., Lajoie, B. R., Schulz, E. G., Giorgetti, L., Okamoto, I., Servant, N., Piolot, T., van Berkum, N. L., Meisig, J., Sedat, J., Gribnau, J., Barillot, E., Blüthgen, N., Dekker, J., & Heard, E. (2012). Spatial partitioning of the regulatory landscape of the X-inactivation Centre. Nature, 485, 381–385.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Robert Finestra, T., & Gribnau, J. (2017). X chromosome inactivation: Silencing, topology and reactivation. Current Opinion in Cell Biology, 46, 54–61.

    Article  CAS  PubMed  Google Scholar 

  22. Navarro, P., Chambers, I., Karwacki-Neisius, V., Chureau, C., Morey, C., Rougeulle, C., & Avner, P. (2008). Molecular coupling of Xist regulation and pluripotency. Science, 321, 1693–1695.

    Article  CAS  PubMed  Google Scholar 

  23. Donohoe, M. E., Silva, S. S., Pinter, S. F., Xu, N., & Lee, J. T. (2009). The pluripotency factor Oct4 interacts with Ctcf and also controls X-chromosome pairing and counting. Nature, 460, 128–132.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Navarro, P., Oldfield, A., Legoupi, J., Festuccia, N., Dubois, A., Attia, M., Schoorlemmer, J., Rougeulle, C., Chambers, I., & Avner, P. (2010). Molecular coupling of Tsix regulation and pluripotency. Nature, 468, 457–460.

    Article  CAS  PubMed  Google Scholar 

  25. Maduro, C., de Hoon, B., & Gribnau, J. (2016). Fitting the puzzle pieces: The bigger picture of XCI. Trends in Biochemical Sciences, 41, 138–147.

    Article  CAS  PubMed  Google Scholar 

  26. Sahakyan A, Yang Y, Plath K. The Role of Xist in X-Chromosome Dosage Compensation. Trends Cell Biol 2018.

  27. van den Berg, I. M., Laven, J. S., Stevens, M., et al. (2009). X chromosome inactivation is initiated in human preimplantation embryos. American Journal of Human Genetics, 84, 771–779.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Okamoto, I., Patrat, C., Thepot, D., et al. (2011). Eutherian mammals use diverse strategies to initiate X-chromosome inactivation during development. Nature, 472, 370–374.

    Article  CAS  PubMed  Google Scholar 

  29. Saiba, R., Arava, M., & Gayen, S. (2018). Dosage compensation in human pre-implantation embryos: X-chromosome inactivation or dampening? EMBO Reports, 19, e46294.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Vallot, C., Patrat, C., Collier, A. J., Huret, C., Casanova, M., Liyakat Ali, T. M., Tosolini, M., Frydman, N., Heard, E., Rugg-Gunn, P. J., & Rougeulle, C. (2017). XACT noncoding RNA competes with XIST in the control of X chromosome activity during human early development. Cell Stem Cell, 20, 102–111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Moreira de Mello, J. C., Fernandes, G. R., Vibranovski, M. D., & Pereira, L. V. (2017). Early X chromosome inactivation during human preimplantation development revealed by single-cell RNA-sequencing. Scientific Reports, 7, 10794.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sahakyan, A., Kim, R., Chronis, C., Sabri, S., Bonora, G., Theunissen, T. W., Kuoy, E., Langerman, J., Clark, A. T., Jaenisch, R., & Plath, K. (2017). Human naive pluripotent stem cells model X chromosome dampening and X inactivation. Cell Stem Cell, 20, 87–101.

    Article  CAS  PubMed  Google Scholar 

  33. Migeon, B. R., Lee, C. H., Chowdhury, A. K., & Carpenter, H. (2002). Species differences in TSIX/Tsix reveal the roles of these genes in X-chromosome inactivation. American Journal of Human Genetics, 71, 286–293.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Vallot, C., Huret, C., Lesecque, Y., Resch, A., Oudrhiri, N., Bennaceur-Griscelli, A., Duret, L., & Rougeulle, C. (2013). XACT, a long noncoding transcript coating the active X chromosome in human pluripotent cells. Nature Genetics, 45, 239–241.

    Article  CAS  PubMed  Google Scholar 

  35. Deng, X., Berletch, J. B., Nguyen, D. K., & Disteche, C. M. (2014). X chromosome regulation: Diverse patterns in development, tissues and disease. Nature Reviews. Genetics, 15, 367–378.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Vallot, C., Ouimette, J. F., Makhlouf, M., Féraud, O., Pontis, J., Côme, J., Martinat, C., Bennaceur-Griscelli, A., Lalande, M., & Rougeulle, C. (2015). Erosion of X chromosome inactivation in human pluripotent cells initiates with XACT coating and depends on a specific heterochromatin landscape. Cell Stem Cell, 16, 533–546.

    Article  CAS  PubMed  Google Scholar 

  37. Mekhoubad, S., Bock, C., de Boer, A. S., Kiskinis, E., Meissner, A., & Eggan, K. (2012). Erosion of dosage compensation impacts human iPSC disease modeling. Cell Stem Cell, 10, 595–609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Patel, S., Bonora, G., Sahakyan, A., Kim, R., Chronis, C., Langerman, J., Fitz-Gibbon, S., Rubbi, L., Skelton, R. J. P., Ardehali, R., Pellegrini, M., Lowry, W. E., Clark, A. T., & Plath, K. (2017). Human embryonic stem cells do not change their X inactivation status during differentiation. Cell Reports, 18, 54–67.

    Article  CAS  PubMed  Google Scholar 

  39. Bruck, T., Yanuka, O., & Benvenisty, N. (2013). Human pluripotent stem cells with distinct X inactivation status show molecular and cellular differences controlled by the X-linked ELK-1 gene. Cell Reports, 4, 262–270.

    Article  CAS  PubMed  Google Scholar 

  40. Sahakyan, A., Plath, K., & Rougeulle, C. (2017). Regulation of X-chromosome dosage compensation in human: Mechanisms and model systems. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 372.

  41. Pageau, G. J., Hall, L. L., Ganesan, S., Livingston, D. M., & Lawrence, J. B. (2007). The disappearing Barr body in breast and ovarian cancers. Nature Reviews. Cancer, 7, 628–633.

    Article  CAS  PubMed  Google Scholar 

  42. Rosen, P. P., Savino, A., Menendez-Botet, C., Urban, J. A., Mike, V., Schwartz, M. K., & Melamed, M. R. (1977). Barr body distribution and estrogen receptor protein in mammary carcinoma. Annals of Clinical and Laboratory Science, 7, 491–499.

    CAS  PubMed  Google Scholar 

  43. Jazaeri, A. A., Yee, C. J., Sotiriou, C., Brantley, K. R., Boyd, J., & Liu, E. T. (2002). Gene expression profiles of BRCA1-linked, BRCA2-linked, and sporadic ovarian cancers. Journal of the National Cancer Institute, 94, 990–1000.

    Article  CAS  PubMed  Google Scholar 

  44. Jazaeri, A. A., Chandramouli, G. V., Aprelikova, O., et al. (2004). BRCA1-mediated repression of select X chromosome genes. Journal of Translational Medicine, 2, 32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ganesan, S., Silver, D. P., Greenberg, R. A., Avni, D., Drapkin, R., Miron, A., Mok, S. C., Randrianarison, V., Brodie, S., Salstrom, J., Rasmussen, T. P., Klimke, A., Marrese, C., Marahrens, Y., Deng, C. X., Feunteun, J., & Livingston, D. M. (2002). BRCA1 supports XIST RNA concentration on the inactive X chromosome. Cell, 111, 393–405.

    Article  CAS  PubMed  Google Scholar 

  46. Xiao, C., Sharp, J. A., Kawahara, M., Davalos, A. R., Difilippantonio, M. J., Hu, Y., Li, W., Cao, L., Buetow, K., Ried, T., Chadwick, B. P., Deng, C. X., & Panning, B. (2007). The XIST noncoding RNA functions independently of BRCA1 in X inactivation. Cell, 128, 977–989.

    Article  CAS  PubMed  Google Scholar 

  47. Chaligne, R., Popova, T., Mendoza-Parra, M. A., et al. (2015). The inactive X chromosome is epigenetically unstable and transcriptionally labile in breast cancer. Genome Research, 25, 488–503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Jager, N., Schlesner, M., Jones, D. T., et al. (2013). Hypermutation of the inactive X chromosome is a frequent event in cancer. Cell, 155, 567–581.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Yildirim, E., Kirby, J. E., Brown, D. E., Mercier, F. E., Sadreyev, R. I., Scadden, D. T., & Lee, J. T. (2013). Xist RNA is a potent suppressor of hematologic cancer in mice. Cell, 152, 727–742.

    Article  CAS  PubMed  Google Scholar 

  50. Zhang, R., & Xia, T. (2017). Long non-coding RNA XIST regulates PDCD4 expression by interacting with miR-21-5p and inhibits osteosarcoma cell growth and metastasis. International Journal of Oncology, 51, 1460–1470.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Du, Y., Weng, X. D., Wang, L., et al. (2017). LncRNA XIST acts as a tumor suppressor in prostate cancer through sponging miR-23a to modulate RKIP expression. Oncotarget, 8, 94358–94370.

    PubMed  PubMed Central  Google Scholar 

  52. Chang, S., Chen, B., Wang, X., Wu, K., & Sun, Y. (2017). Long non-coding RNA XIST regulates PTEN expression by sponging miR-181a and promotes hepatocellular carcinoma progression. BMC Cancer, 17, 248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kobayashi, R., Miyagawa, R., Yamashita, H., Morikawa, T., Okuma, K., Fukayama, M., Ohtomo, K., & Nakagawa, K. (2016). Increased expression of long non-coding RNA XIST predicts favorable prognosis of cervical squamous cell carcinoma subsequent to definitive chemoradiation therapy. Oncology Letters, 12, 3066–3074.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Huang, Y. S., Chang, C. C., Lee, S. S., Jou, Y. S., & Shih, H. M. (2016). Xist reduction in breast cancer upregulates AKT phosphorylation via HDAC3-mediated repression of PHLPP1 expression. Oncotarget, 7, 43256–43266.

    PubMed  PubMed Central  Google Scholar 

  55. Zheng, R., Lin, S., Guan, L., Yuan, H., Liu, K., Liu, C., Ye, W., Liao, Y., Jia, J., & Zhang, R. (2018). Long non-coding RNA XIST inhibited breast cancer cell growth, migration, and invasion via miR-155/CDX1 axis. Biochemical and Biophysical Research Communications, 498, 1002–1008.

    Article  CAS  PubMed  Google Scholar 

  56. Chen, D. L., Ju, H. Q., Lu, Y. X., Chen, L. Z., Zeng, Z. L., Zhang, D. S., Luo, H. Y., Wang, F., Qiu, M. Z., Wang, D. S., Xu, D. Z., Zhou, Z. W., Pelicano, H., Huang, P., Xie, D., Wang, F. H., Li, Y. H., & Xu, R. H. (2016). Long non-coding RNA XIST regulates gastric cancer progression by acting as a molecular sponge of miR-101 to modulate EZH2 expression. Journal of Experimental & Clinical Cancer Research, 35, 142.

    Article  CAS  Google Scholar 

  57. Ma, L., Zhou, Y., Luo, X., Gao, H., Deng, X., & Jiang, Y. (2017). Long non-coding RNA XIST promotes cell growth and invasion through regulating miR-497/MACC1 axis in gastric cancer. Oncotarget, 8, 4125–4135.

    PubMed  Google Scholar 

  58. Xu, Y., Wang, J., & Wang, J. (2018). Long noncoding RNA XIST promotes proliferation and invasion by targeting miR-141 in papillary thyroid carcinoma. Onco Targets Ther, 11, 5035–5043.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Sun, N., Zhang, G., & Liu, Y. (2018). Long non-coding RNA XIST sponges miR-34a to promotes colon cancer progression via Wnt/beta-catenin signaling pathway. Gene, 665, 141–148.

    Article  CAS  PubMed  Google Scholar 

  60. Zhu, J., Zhang, R., Yang, D., Li, J., Yan, X., Jin, K., Li, W., Liu, X., Zhao, J., Shang, W., & Yu, T. (2018). Knockdown of long non-coding RNA XIST inhibited doxorubicin resistance in colorectal Cancer by upregulation of miR-124 and downregulation of SGK1. Cellular Physiology and Biochemistry, 51, 113–128.

    Article  CAS  PubMed  Google Scholar 

  61. Li, C., Wan, L., Liu, Z., Xu, G., Wang, S., Su, Z., Zhang, Y., Zhang, C., Liu, X., Lei, Z., & Zhang, H. T. (2018). Long non-coding RNA XIST promotes TGF-beta-induced epithelial-mesenchymal transition by regulating miR-367/141-ZEB2 axis in non-small-cell lung cancer. Cancer Letters, 418, 185–195.

    Article  CAS  PubMed  Google Scholar 

  62. Xu, R., Zhu, X., Chen, F., Huang, C., Ai, K., Wu, H., Zhang, L., & Zhao, X. (2018). LncRNA XIST/miR-200c regulates the stemness properties and tumourigenicity of human bladder cancer stem cell-like cells. Cancer Cell International, 18, 41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Sun, Z., Zhang, B., & Cui, T. (2018). Long non-coding RNA XIST exerts oncogenic functions in pancreatic cancer via miR-34a-5p. Oncology Reports, 39, 1591–1600.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Kong, Q., Zhang, S., Liang, C., Zhang, Y., Kong, Q., Chen, S., Qin, J., & Jin, Y. (2018). LncRNA XIST functions as a molecular sponge of miR-194-5p to regulate MAPK1 expression in hepatocellular carcinoma cell. Journal of Cellular Biochemistry, 119, 4458–4468.

    Article  CAS  PubMed  Google Scholar 

  65. Cheng, Q., Xu, X., Jiang, H., Xu, L., & Li, Q. (2018). Knockdown of long non-coding RNA XIST suppresses nasopharyngeal carcinoma progression by activating miR-491-5p. Journal of Cellular Biochemistry, 119, 3936–3944.

    Article  CAS  PubMed  Google Scholar 

  66. Cheng, Z., Li, Z., Ma, K., Li, X., Tian, N., Duan, J., Xiao, X., & Wang, Y. (2017). Long non-coding RNA XIST promotes glioma Tumorigenicity and angiogenesis by acting as a molecular sponge of miR-429. Journal of Cancer, 8, 4106–4116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Tukiainen, T., Villani, A. C., Yen, A., Rivas, M. A., Marshall, J. L., Satija, R., Aguirre, M., Gauthier, L., Fleharty, M., Kirby, A., Cummings, B. B., Castel, S. E., Karczewski, K. J., Aguet, F., Byrnes, A., Aguet, F., Ardlie, K. G., Cummings, B. B., Gelfand, E. T., Getz, G., Hadley, K., Handsaker, R. E., Huang, K. H., Kashin, S., Karczewski, K. J., Lek, M., Li, X., MacArthur, D. G., Nedzel, J. L., Nguyen, D. T., Noble, M. S., Segrè, A. V., Trowbridge, C. A., Tukiainen, T., Abell, N. S., Balliu, B., Barshir, R., Basha, O., Battle, A., Bogu, G. K., Brown, A., Brown, C. D., Castel, S. E., Chen, L. S., Chiang, C., Conrad, D. F., Cox, N. J., Damani, F. N., Davis, J. R., Delaneau, O., Dermitzakis, E. T., Engelhardt, B. E., Eskin, E., Ferreira, P. G., Frésard, L., Gamazon, E. R., Garrido-Martín, D., Gewirtz, A. D. H., Gliner, G., Gloudemans, M. J., Guigo, R., Hall, I. M., Han, B., He, Y., Hormozdiari, F., Howald, C., Kyung Im, H., Jo, B., Yong Kang, E., Kim, Y., Kim-Hellmuth, S., Lappalainen, T., Li, G., Li, X., Liu, B., Mangul, S., McCarthy, M. I., McDowell, I. C., Mohammadi, P., Monlong, J., Montgomery, S. B., Muñoz-Aguirre, M., Ndungu, A. W., Nicolae, D. L., Nobel, A. B., Oliva, M., Ongen, H., Palowitch, J. J., Panousis, N., Papasaikas, P., Park, Y. S., Parsana, P., Payne, A. J., Peterson, C. B., Quan, J., Reverter, F., Sabatti, C., Saha, A., Sammeth, M., Scott, A. J., Shabalin, A. A., Sodaei, R., Stephens, M., Stranger, B. E., Strober, B. J., Sul, J. H., Tsang, E. K., Urbut, S., van de Bunt, M., Wang, G., Wen, X., Wright, F. A., Xi, H. S., Yeger-Lotem, E., Zappala, Z., Zaugg, J. B., Zhou, Y. H., Akey, J. M., Bates, D., Chan, J., Chen, L. S., Claussnitzer, M., Demanelis, K., Diegel, M., Doherty, J. A., Feinberg, A. P., Fernando, M. S., Halow, J., Hansen, K. D., Haugen, E., Hickey, P. F., Hou, L., Jasmine, F., Jian, R., Jiang, L., Johnson, A., Kaul, R., Kellis, M., Kibriya, M. G., Lee, K., Li, J. B., Li, Q., Li, X., Lin, J., Lin, S., Linder, S., Linke, C., Liu, Y., Maurano, M. T., Molinie, B., Montgomery, S. B., Nelson, J., Neri, F. J., Oliva, M., Park, Y., Pierce, B. L., Rinaldi, N. J., Rizzardi, L. F., Sandstrom, R., Skol, A., Smith, K. S., Snyder, M. P., Stamatoyannopoulos, J., Stranger, B. E., Tang, H., Tsang, E. K., Wang, L., Wang, M., van Wittenberghe, N., Wu, F., Zhang, R., Nierras, C. R., Branton, P. A., Carithers, L. J., Guan, P., Moore, H. M., Rao, A., Vaught, J. B., Gould, S. E., Lockart, N. C., Martin, C., Struewing, J. P., Volpi, S., Addington, A. M., Koester, S. E., Little, A. R., Brigham, L. E., Hasz, R., Hunter, M., Johns, C., Johnson, M., Kopen, G., Leinweber, W. F., Lonsdale, J. T., McDonald, A., Mestichelli, B., Myer, K., Roe, B., Salvatore, M., Shad, S., Thomas, J. A., Walters, G., Washington, M., Wheeler, J., Bridge, J., Foster, B. A., Gillard, B. M., Karasik, E., Kumar, R., Miklos, M., Moser, M. T., Jewell, S. D., Montroy, R. G., Rohrer, D. C., Valley, D. R., Davis, D. A., Mash, D. C., Undale, A. H., Smith, A. M., Tabor, D. E., Roche, N. V., McLean, J. A., Vatanian, N., Robinson, K. L., Sobin, L., Barcus, M. E., Valentino, K. M., Qi, L., Hunter, S., Hariharan, P., Singh, S., Um, K. S., Matose, T., Tomaszewski, M. M., Barker, L. K., Mosavel, M., Siminoff, L. A., Traino, H. M., Flicek, P., Juettemann, T., Ruffier, M., Sheppard, D., Taylor, K., Trevanion, S. J., Zerbino, D. R., Craft, B., Goldman, M., Haeussler, M., Kent, W. J., Lee, C. M., Paten, B., Rosenbloom, K. R., Vivian, J., Zhu, J., Lappalainen, T., Regev, A., Ardlie, K. G., Hacohen, N., & MacArthur, D. G. (2017). Landscape of X chromosome inactivation across human tissues. Nature, 550, 244–248.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Anguera, M. C., Sadreyev, R., Zhang, Z., Szanto, A., Payer, B., Sheridan, S. D., Kwok, S., Haggarty, S. J., Sur, M., Alvarez, J., Gimelbrant, A., Mitalipova, M., Kirby, J. E., & Lee, J. T. (2012). Molecular signatures of human induced pluripotent stem cells highlight sex differences and cancer genes. Cell Stem Cell, 11, 75–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Sousa, E. J., Stuart, H. T., Bates, L. E., Ghorbani, M., Nichols, J., Dietmann, S., & Silva, J. C. R. (2018). Exit from naive pluripotency induces a transient X chromosome inactivation-like state in males. Cell Stem Cell, 22, 919–928 e6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Fidler, I. J. (2003). The pathogenesis of cancer metastasis: The 'seed and soil' hypothesis revisited. Nature Reviews. Cancer, 3, 453–458.

    Article  CAS  PubMed  Google Scholar 

  71. Kaplan, R. N., Rafii, S., & Lyden, D. (2006). Preparing the "soil": The premetastatic niche. Cancer Research, 66, 11089–11093.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Mu, W., Rana, S., & Zoller, M. (2013). Host matrix modulation by tumor exosomes promotes motility and invasiveness. Neoplasia, 15, 875–887.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Le, M. T., Hamar, P., Guo, C., et al. (2014). miR-200-containing extracellular vesicles promote breast cancer cell metastasis. The Journal of Clinical Investigation, 124, 5109–5128.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Hoshino, A., Costa-Silva, B., Shen, T. L., Rodrigues, G., Hashimoto, A., Tesic Mark, M., Molina, H., Kohsaka, S., di Giannatale, A., Ceder, S., Singh, S., Williams, C., Soplop, N., Uryu, K., Pharmer, L., King, T., Bojmar, L., Davies, A. E., Ararso, Y., Zhang, T., Zhang, H., Hernandez, J., Weiss, J. M., Dumont-Cole, V. D., Kramer, K., Wexler, L. H., Narendran, A., Schwartz, G. K., Healey, J. H., Sandstrom, P., Jørgen Labori, K., Kure, E. H., Grandgenett, P. M., Hollingsworth, M. A., de Sousa, M., Kaur, S., Jain, M., Mallya, K., Batra, S. K., Jarnagin, W. R., Brady, M. S., Fodstad, O., Muller, V., Pantel, K., Minn, A. J., Bissell, M. J., Garcia, B. A., Kang, Y., Rajasekhar, V. K., Ghajar, C. M., Matei, I., Peinado, H., Bromberg, J., & Lyden, D. (2015). Tumour exosome integrins determine organotropic metastasis. Nature, 527, 329–335.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Minks, J., Robinson, W. P., & Brown, C. J. (2008). A skewed view of X chromosome inactivation. The Journal of Clinical Investigation, 118, 20–23.

    Article  CAS  PubMed  Google Scholar 

  76. Germain, D. P. (2010). Fabry disease. Orphanet Journal of Rare Diseases, 5, 30.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Plenge, R. M., Hendrich, B. D., Schwartz, C., Arena, J. F., Naumova, A., Sapienza, C., Winter, R. M., & Willard, H. F. (1997). A promoter mutation in the XIST gene in two unrelated families with skewed X-chromosome inactivation. Nature Genetics, 17, 353–356.

    Article  CAS  PubMed  Google Scholar 

  78. Nesterova, T. B., Johnston, C. M., Appanah, R., Newall, A. E., Godwin, J., Alexiou, M., & Brockdorff, N. (2003). Skewing X chromosome choice by modulating sense transcription across the Xist locus. Genes & Development, 17, 2177–2190.

    Article  CAS  Google Scholar 

  79. Garzon, R., Liu, S., Fabbri, M., Liu, Z., Heaphy, C. E. A., Callegari, E., Schwind, S., Pang, J., Yu, J., Muthusamy, N., Havelange, V., Volinia, S., Blum, W., Rush, L. J., Perrotti, D., Andreeff, M., Bloomfield, C. D., Byrd, J. C., Chan, K., Wu, L. C., Croce, C. M., & Marcucci, G. (2009). MicroRNA-29b induces global DNA hypomethylation and tumor suppressor gene reexpression in acute myeloid leukemia by targeting directly DNMT3A and 3B and indirectly DNMT1. Blood, 113, 6411–6418.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Alexander, R. P., Fang, G., Rozowsky, J., Snyder, M., & Gerstein, M. B. (2010). Annotating non-coding regions of the genome. Nature Reviews. Genetics, 11, 559–571.

    Article  CAS  PubMed  Google Scholar 

  81. Anastasiadou, E., Jacob, L. S., & Slack, F. J. (2018). Non-coding RNA networks in cancer. Nature Reviews. Cancer, 18, 5–18.

    Article  CAS  PubMed  Google Scholar 

  82. Tay, Y., Rinn, J., & Pandolfi, P. P. (2014). The multilayered complexity of ceRNA crosstalk and competition. Nature, 505, 344–352.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Hu, S., Chang, J., Li, Y., et al. (2018). Long non-coding RNA XIST as a potential prognostic biomarker in human cancers: A meta-analysis. Oncotarget, 9, 13911–13919.

    PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from the Ministry of Science and Technology (MOST 107-2321-B-038-002); “TMU Research Center of Cancer Translational Medicine” from The Featured Areas Research Center Program within the framework of the Higher Education Sprout Project by the Ministry of Education (MOE) in Taiwan; and the Center of Excellence for Cancer Research, Taipei Medical University, Taipei, Taiwan (MOHW107-TDU-B-212-114020; MOHW107-TDU-B-212-114014; MOHW107-TDU-B-212-114026B). We thank Dr. Frank Lu for his invaluable advice and English proofreading.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun Yen.

Ethics declarations

Conflict of Interest

The authors report no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, YK., Yen, Y. The Ambivalent Role of lncRNA Xist in Carcinogenesis. Stem Cell Rev and Rep 15, 314–323 (2019). https://doi.org/10.1007/s12015-019-9871-z

Download citation

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1007/s12015-019-9871-z

Keywords