Skip to main content
Log in

Magnetic Field-Controlled Bandgap of a Phosphorene-Based PN-Device for Sensing Application

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

A transversely applied magnetic field can alter the energy bandgap and other corresponding electrical parameters of a PN-device at the nanoscale. The present theoretical analysis demonstrates that the applied magnetic field controls the bandgap and resistivity of a phosphorene nanoribbon (PNR)-based PN-device. This allows the device to function as a magnetic field sensor as well. For this purpose, the electron–acoustic phonon scattering mechanism is used to estimate phonon-mediated electronic resistivity, which is a parameter directly linked to the bandgap. The armchair configuration of nanoribbons is subjected to energy bandgap and resistivity calculations owing to their semiconducting nature. It is found that in the absence of a magnetic field, the device exhibits a semiconducting nature, but when a magnetic field is supplied, the device acquires a conducting (metallic) state. This semiconductor-to-metal transition is attributable to the change in resistivity of the PN-device under a transversely applied magnetic field, which ultimately results in a change in bandgap. The outcome of the work is pivotal for (i) various nanoelectronic applications that demand semiconductor–metal transition and (ii) designing a magnetic field sensor via bandgap regulation of PNR-based PN-devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

All data that support the findings of this study are included within the article.

References

  1. N.D. Drummond, V. Zólyomi, and V.I. Falko, Electrically tunable band gap in silicene. Phys. Rev. B Condens. Matter Mater. Phys. 85, 075423 (2012).

    Article  Google Scholar 

  2. K.F. Mak, C. Lee, J. Hone, J. Shan, and T.F. Heinz, Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010).

    Article  Google Scholar 

  3. P. Garg, I. Choudhuri, A. Mahata, and B. Pathak, Band gap opening in stanene induced by patterned B-N doping. Phys. Chem. Chem. Phys. 19, 3660–3669 (2017).

    Article  CAS  Google Scholar 

  4. M. Ye, R. Quhe, J. Zheng, Z. Ni, Y. Wang, Y. Yuan, G. Tse, J. Shi, Z. Gao, and J. Lu, Tunable band gap in germanene by surface adsorption. Phys. E Low Dimens. Syst. Nanostruct. 59, 60–65 (2014).

    Article  CAS  Google Scholar 

  5. L.J. Kong, G.H. Liu, and Y.J. Zhang, Tuning the electronic and optical properties of phosphorene by transition-metal and nonmetallic atom co-doping. RSC Adv. 6, 10919–10929 (2016).

    Article  CAS  Google Scholar 

  6. A. Pandya, K. Sangani, and P.K. Jha, Band gap determination of graphene, h-boron nitride, phosphorene, silicene, stanene, and germanene nanoribbons. J. Phys. D. Appl. Phys. 53, 415103 (2020).

    Article  CAS  Google Scholar 

  7. V. Tran, R. Soklaski, Y. Liang, and L. Yang, Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus. Phys. Rev. B Condens. Matter Mater. Phys. 89, 235319 (2014).

    Article  Google Scholar 

  8. S. Mukherjee, and T.P. Kaloni, Electronic properties of boron- and nitrogen-doped graphene: a first principles study. J. Nanopart. Res. 14, 1–5 (2012).

    Article  Google Scholar 

  9. J.H. Huang, X.F. Wang, Y.S. Liu, and L.P. Zhou, Electronic properties of armchair black phosphorene nanoribbons edge-modified by transition elements V, Cr, and Mn. Nanoscale Res. Lett. 14, 1–11 (2019).

    Article  Google Scholar 

  10. H.O.H. Churchill, and P. Jarillo-Herrero, Phosphorus joins the family. Nat. Nanotechnol. 9, 330–331 (2014).

    Article  CAS  Google Scholar 

  11. B. Li, C. Lai, G. Zeng, D. Huang, L. Qin, M. Zhang, M. Cheng, X. Liu, H. Yi, C. Zhou, F. Huang, S. Liu, and Y. Fu, Black phosphorus, a rising star 2D nanomaterial in the post-graphene era: synthesis, properties, modifications, and photocatalysis applications. Small 15, 1804565 (2019).

    Article  Google Scholar 

  12. E. Taghizadeh Sisakht, M.H. Zare, and F. Fazileh, Scaling laws of band gaps of phosphorene nanoribbons: a tight-binding calculation. Phys. Rev. B Condens. Matter Mater. Phys. 91, 085409 (2015).

    Article  Google Scholar 

  13. H. Liu, A.T. Neal, Z. Zhu, Z. Luo, X. Xu, D. Tománek, and P.D. Ye, Phosphorene: an unexplored 2D semiconductor with a high hole mobility. ACS Nano 8, 4033–4041 (2014).

    Article  CAS  Google Scholar 

  14. J. Zhang, H.J. Liu, L. Cheng, J. Wei, J.H. Liang, D.D. Fan, J. Shi, X.F. Tang, and Q.J. Zhang, Phosphorene nanoribbon as a promising candidate for thermoelectric applications. Sci. Rep. 4, 1–8 (2014).

    Google Scholar 

  15. E. Mansouri, J. Karamdel, M. Berahman, and M.T. Ahmadi, Phosphorene as H2S and CH4 gas sensor. Phys. Status Solidi 216, 1800086 (2019).

    Google Scholar 

  16. L. Kou, T. Frauenheim, and C. Chen, Phosphorene as a superior gas sensor: selective adsorption and distinct i - V response. J. Phys. Chem. Lett. 5, 2675–2681 (2014).

    Article  CAS  Google Scholar 

  17. X. Yu, S. Zhang, H. Zeng, and Q.J. Wang, Lateral black phosphorene P-N junctions formed via chemical doping for high performance near-infrared photodetector. Nano Energy 25, 34–41 (2016).

    Article  CAS  Google Scholar 

  18. D.K. Kim, S.B. Hong, K. Jeong, C. Lee, H. Kim, and M.H. Cho, P-N Junction diode using plasma boron-doped black phosphorus for high-performance photovoltaic devices. ACS Nano (2019). https://doi.org/10.1021/ACSNANO.8B07730/SUPPL_FILE/NN8B07730_SI_001.PDF.

    Article  Google Scholar 

  19. S.S. Chauhan, P. Srivastava, and A.K. Shrivastava, Electronic and transport properties of boron and nitrogen doped graphene nanoribbons: an ab initio approach. Appl. Nanosci. 4, 461–467 (2014).

    Article  CAS  Google Scholar 

  20. A. Pandya, and P.K. Jha, Electronic transport characteristics of a graphene nanoribbon based p–n device. J. Electron. Mater. 48, 5702–5709 (2019).

    Article  CAS  Google Scholar 

  21. M.Y. Han, B. Özyilmaz, Y. Zhang, and P. Kim, Energy band-gap engineering of graphene nanoribbons. Phys. Rev. Lett. 98, 206805 (2007).

    Article  Google Scholar 

  22. L. Yang, C.H. Park, Y.W. Son, M.L. Cohen, and S.G. Louie, Quasiparticle energies and band gaps in graphene nanoribbons. Phys. Rev. Lett. 99, 186801 (2007).

    Article  Google Scholar 

  23. V. Tran, and L. Yang, Scaling laws for the band gap and optical response of phosphorene nanoribbons. Phys. Rev. B Condens. Matter Mater. Phys. 89, 245407 (2014).

    Article  Google Scholar 

  24. S. Das, W. Zhang, M. Demarteau, A. Hoffmann, M. Dubey, and A. Roelofs, Tunable transport gap in phosphorene. Nano Lett. 14, 5733–5739 (2014).

    Article  CAS  Google Scholar 

  25. L. Li, Y. Yu, G.J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X.H. Chen, and Y. Zhang, Black phosphorus field-effect transistors. Nat. Nanotechnol. 9, 372–377 (2014).

    Article  CAS  Google Scholar 

  26. B.H. Nguyen, and V.H. Nguyen, Two-dimensional hexagonal semiconductors beyond graphene. Adv. Nat. Sci. Nanosci. Nanotechnol. 7, 043001 (2016).

    Article  Google Scholar 

  27. Y.W. Son, M.L. Cohen, and S.G. Louie, Energy gaps in graphene nanoribbons. Phys. Rev. Lett. 97, 216803 (2006).

    Article  Google Scholar 

  28. W. Yu, Z. Zhu, C.Y. Niu, C. Li, J.H. Cho, and Y. Jia, Anomalous doping effect in black phosphorene using first-principles calculations. Phys. Chem. Chem. Phys. 17, 16351–16358 (2015).

    Article  CAS  Google Scholar 

  29. D.W. Boukhvalov, The atomic and electronic structure of nitrogen- and boron-doped phosphorene. Phys. Chem. Chem. Phys. 17, 27210–27216 (2015).

    Article  CAS  Google Scholar 

  30. J.E. Lenz, A review of magnetic sensors. Proc. IEEE 78, 973–989 (1990).

    Article  Google Scholar 

  31. J. Dauber, A.A. Sagade, M. Oellers, K. Watanabe, T. Taniguchi, D. Neumaier, and C. Stampfer, Ultra-sensitive hall sensors based on graphene encapsulated in hexagonal boron nitride. Appl. Phys. Lett. 106, 193501 (2015).

    Article  Google Scholar 

  32. B. Zhou, K. Watanabe, T. Taniguchi, and E.A. Henriksen, Extraordinary magnetoresistance in encapsulated monolayer graphene devices. Appl. Phys. Lett. 116, 053102 (2020).

    Article  CAS  Google Scholar 

  33. D. Quang, V. Tuoc, and T. Huan, Roughness-induced piezoelectric scattering in lattice-mismatched semiconductor quantum wells. Phys. Rev. B 68, 195316 (2003).

    Article  Google Scholar 

  34. Lundstrom, M. Fundamentals of carrier transport, 2nd edn. Meas. Sci. Technol. 13, 230 (2002).

  35. J. Halle, N. Néel, M. Fonin, M. Brandbyge, and J. Kröger, Understanding and engineering phonon-mediated tunneling into graphene on metal surfaces. Nano Lett. 18, 5697–5701 (2018).

    Article  CAS  Google Scholar 

  36. G.S.N. Eliel, M.V.O. Moutinho, A.C. Gadelha, A. Righi, L.C. Campos, H.B. Ribeiro, P.W. Chiu, K. Watanabe, T. Taniguchi, P. Puech, M. Paillet, T. Michel, P. Venezuela, and M.A. Pimenta, Intralayer and interlayer electron–phonon interactions in twisted graphene heterostructures. Nat. Commun. 9, 1–8 (2018).

    Article  CAS  Google Scholar 

  37. Y. Li, H.M. Lu, O. Voskoboynikov, C.P. Lee, and S.M. Sze, Dependence of energy gap on magnetic field in semiconductor nano-scale quantum rings. Surf. Sci. 532–535, 811–815 (2003).

    Article  Google Scholar 

  38. G. Fedorov, P. Barbara, D. Smirnov, D. Jiḿnez, and S. Roche, Tuning the band gap of semiconducting carbon nanotube by an axial magnetic field. Appl. Phys. Lett. 96, 132101 (2010).

    Article  Google Scholar 

  39. G. Fedorov, A. Tselev, D. Jiménez, S. Latil, N.G. Kalugin, P. Barbara, D. Smirnov, and S. Roche, Magnetically induced field effect in carbon nanotube devices. Nano Lett. 7, 960–964 (2007).

    Article  CAS  Google Scholar 

  40. D.E. Soule, J.W. McClure, and L.B. Smith, Study of the shubnikov-de haas effect. Determination of the fermi surfaces in graphite. Phys. Rev. 134, A453 (1964).

    Article  Google Scholar 

  41. C.Y. Moon, and S.H. Wei, Band gap of Hg chalcogenides: symmetry-reduction-induced band-gap opening of materials with inverted band structures. Phys. Rev. B Condens. Matter Mater. Phys. 74, 045205 (2006).

    Article  Google Scholar 

  42. A. Delin, First-principles calculations of the II-VI semiconductor β-HgS: metal or semiconductor. Phys. Rev. B 65, 153205 (2002).

    Article  Google Scholar 

  43. M.E. Pistol, and C.E. Pryor, Band structure of core-shell semiconductor nanowires. Phys. Rev. B Condens. Matter Mater. Phys. 78, 115319 (2008).

    Article  Google Scholar 

  44. A. Pandya, and P.K. Jha, Electron transport parameters study for transition metal-doped armchair graphene nanoribbon via acoustical phonon interactions. J. Electron. Mater. 46, 2340–2346 (2017).

    Article  CAS  Google Scholar 

  45. U. Bockelmann, and G. Bastard, Phonon scattering and energy relaxation in two-, one-, and zero-dimensional electron gases. Phys. Rev. B 42, 8947 (1990).

    Article  CAS  Google Scholar 

  46. B.K. Ridley, The electron-phonon interaction in quasi-two-dimensional semiconductor quantum-well structures. J. Phys. C Solid State Phys. 15, 5899 (1982).

    Article  CAS  Google Scholar 

  47. Ariel, V. & Natan, A. Electron effective mass in graphene. in 2013 international conference on electromagnetics in advanced applications (ICEAA) (2013), pp. 696-698

  48. K. Sangani, A. Dwivedi, A. Pandya, S. Pillai, and P.K. Jha, Electronic properties of Mn-doped graphene. Mater. Today Proc. 47, 601–604 (2021).

    Article  CAS  Google Scholar 

  49. B.K. Ridley, Quantum processes in semiconductors. Quantum Process. Semicond. (2013). https://doi.org/10.1093/ACPROF:OSO/9780199677214.001.0001.

    Article  Google Scholar 

  50. X.F. Peng, and K.Q. Chen, Comparison on thermal transport properties of graphene and phosphorene nanoribbons. Sci. Rep. 5, 1–9 (2015).

    Article  Google Scholar 

  51. A. Jain, and A.J.H. McGaughey, Strongly anisotropic in-plane thermal transport in single-layer black phosphorene. Sci. Rep. 5, 1–5 (2015).

    Article  Google Scholar 

  52. E. Burstein, Anomalous optical absorption limit in InSb. Phys. Rev. 93, 632 (1954).

    Article  CAS  Google Scholar 

  53. C.E.P. Villegas, A.R. Rocha, and A. Marini, Anomalous temperature dependence of the band gap in black phosphorus. Nano Lett. 16, 5095–5101 (2016).

    Article  CAS  Google Scholar 

  54. A. Surrente, A.A. Mitioglu, K. Galkowski, W. Tabis, D.K. Maude, and P. Plochocka, Excitons in atomically thin black phosphorus. Phys. Rev. B 93, 121405 (2016).

    Article  Google Scholar 

  55. T. Liu, C. Zhu, W. Wu, K.N. Liao, X. Gong, Q. Sun, and R.K.Y. Li, Facilely prepared layer-by-layer graphene membrane-based pressure sensor with high sensitivity and stability for smart wearable devices. J. Mater. Sci. Technol. 45, 241–247 (2020).

    Article  CAS  Google Scholar 

  56. Y. Lv, Q. Huang, S. Chang, H. Wang, and J. He, Highly sensitive bilayer phosphorene nanoribbon pressure sensor based on the energy gap modulation mechanism: a theoretical study. IEEE Electron Device Lett. 38, 1313–1316 (2017).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the Institute of Technology, Nirma University for providing the basic facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ankur Pandya.

Ethics declarations

Conflict of interest

The authors disclose that there is no conflict of interest amongst them or with any other party.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pandya, A., Sangani, K., Joshi, N. et al. Magnetic Field-Controlled Bandgap of a Phosphorene-Based PN-Device for Sensing Application. J. Electron. Mater. 52, 1113–1120 (2023). https://doi.org/10.1007/s11664-022-10053-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1007/s11664-022-10053-7

Keywords

Profiles

  1. Nikunj Joshi