Abstract
CO2 hydrogenation to higher alcohols (C2+OH) is an effective way to realize carbon recycling, which can not only reduce the CO2 amounts in atmosphere and mitigate the greenhouse effect, but also provides a new route to synthesize important chemicals. However, this process is a challenge because the inert CO2 molecule is difficult to be activated and undergo C–C coupling. The key to achieve selective conversion of CO2 to C2+OH is to design high-performance catalytic systems and unravel the reaction mechanism. In this review, we report several typical CO2 hydrogenation-to-C2+OH catalyst materials, including noble-metal catalysts, Cu-based catalysts, Co-based catalysts and Mo-based catalysts, and evaluate the effects of various promoters on the catalytic performance and reaction mechanism. It will provide not only fundamental insights into the CO2 hydrogenation-to-C2+OH reaction mechanism, but also guidance for the development of related high-performance catalysts.

Similar content being viewed by others
References
Global Climate Change, Carbon Dioxide. https://climate.nasa.gov/vital-signs/carbon-dioxide/
Gao Y, Liu S, Zhao Z, Tao H, Sun Z. Acta Physico-Chim Sin, 2018, 34: 858–872
Chang X, Wang T, Gong J. Energy Environ Sci, 2016, 9: 2177–2196
He M, Sun Y, Han B. Angew Chem Int Ed, 2013, 52: 9620–9633
Sokolov S, Kondratenko EV, Pohl MM, Barkschat A, Rodemerck U. Appl Catal B-Environ, 2012, 113–114: 19–30
Fan Q, Li S, Zhang L, Wang P, Wang S. J Catal, 2022, 414: 53–63
Dang S, Gao P, Liu Z, Chen X, Yang C, Wang H, Zhong L, Li S, Sun Y. J Catal, 2018, 364: 382–393
Wang S, Zhang L, Wang P, Liu X, Chen Y, Qin Z, Dong M, Wang J, He L, Olsbye U, Fan W. Chem, 2022, 8: 1376–1394
Wan H, Gong N, Liu L. Sci China Chem, 2022, 65: 2163–2176
Liang J, Liu J, Guo L, Wang W, Wang C, Gao W, Guo X, He Y, Yang G, Yasuda S, Liang B, Tsubaki N. Nat Commun, 2024, 15: 512
Zhou C, Shi J, Zhou W, Cheng K, Zhang Q, Kang J, Wang Y. ACS Catal, 2020, 10: 302–310
Gao P, Li S, Bu X, Dang S, Liu Z, Wang H, Zhong L, Qiu M, Yang C, Cai J, Wei W, Sun Y. Nat Chem, 2017, 9: 1019–1024
Kattel S, Ramírez PJ, Chen JG, Rodriguez JA, Liu P. Science, 2017, 355: 1296–1299
Xu D, Wang Y, Ding M, Hong X, Liu G, Tsang SCE. Chem, 2021, 7: 849–881
Wang H, Wang L, Xiao FS. Sci China Chem, 2022, 65: 2051–2057
Herman RG. Catal Today, 2000, 55: 233–245
Aditiya HB, Mahlia TMI, Chong WT, Nur H, Sebayang AH. Renew Sustain Energy Rev, 2016, 66: 631–653
Latsiou AI, Charisiou ND, Frontistis Z, Bansode A, Goula MA. Catal Today, 2023, 420: 114179
He Y, Yin L, Yuan N, Zhang G. Chem Eng J, 2024, 481: 148754
Zhu DD, Liu JL, Qiao SZ. Adv Mater, 2016, 28: 3423–3452
Xu D, Ding M, Hong X, Liu G, Tsang SCE. ACS Catal, 2020, 10: 5250–5260
Liu T, Xu D, Song M, Hong X, Liu G. ACS Catal, 2023, 13: 4667–4674
Kusama H, Okabe K, Sayama K, Arakawa H. Stud Surf Sci Catal, 1998, 114: 431–434
Kitamura Bando K, Soga K, Kunimori K, Arakawa H. Appl Catal A Gen, 1998, 175: 67–81
Gogate MR, Davis RJ. Catal Commun, 2010, 11: 901–906
Kusama H, Okabe K, Sayama K, Arakawa H. Catal Today, 1996, 28: 261–266
Kusama H, Okabe K, Sayama K, Arakawa H. Energy, 1997, 22: 343–348
Wang G, Luo R, Yang C, Song J, Xiong C, Tian H, Zhao ZJ, Mu R, Gong J. Sci China Chem, 2019, 62: 1710–1719
Zhang F, Zhou W, Xiong X, Wang Y, Cheng K, Kang J, Zhang Q, Wang Y. J Phys Chem C, 2021, 125: 24429–24439
Zheng K, Li Y, Liu B, Chen J, Xu Y, Li Z, Liu X. Appl Catal B-Environ Energy, 2024, 346: 123730
Zheng K, Li Y, Liu B, Jiang F, Xu Y, Liu X. Angew Chem Int Ed, 2022, 61: e202210991
Inui T, Yamamoto T. Catal Today, 1998, 45: 209–214
Bai S, Shao Q, Wang P, Dai Q, Wang X, Huang X. J Am Chem Soc, 2017, 139: 6827–6830
Caparrós FJ, Soler L, Rossell MD, Angurell I, Piccolo L, Rossell O, Llorca J. ChemCatChem, 2018, 10: 2365–2369
Wang Y, Zhou Y, Zhang X, Wang M, Liu T, Wei J, Zhang G, Hong X, Liu G. Appl Catal B-Environ, 2024, 345: 123691
Zhou Y, Wang Y, Lu H, Liu T, Hong X, Liu G. ACS Sustain Chem Eng, 2024, 12: 3322–3330
Lou Y, Jiang F, Zhu W, Wang L, Yao T, Wang S, Yang B, Yang B, Zhu Y, Liu X. Appl Catal B-Environ, 2021, 291: 120122
Chen J, Zha Y, Liu B, Li Y, Xu Y, Liu X. ACS Catal, 2013, 13: 7110–7121
He Z, Qian Q, Ma J, Meng Q, Zhou H, Song J, Liu Z, Han B. Angew Chem Int Ed, 2016, 55: 737–741
Ye X, Yang C, Pan X, Ma J, Zhang Y, Ren Y, Liu X, Li L, Huang Y. J Am Chem Soc, 2020, 142: 19001–19005
Wang D, Bi Q, Yin G, Zhao W, Huang F, Xie X, Jiang M. Chem Commun, 2016, 52: 14226–14229
Cui X, Chen S, Yang H, Liu Y, Wang H, Zhang H, Xue Y, Wang G, Niu Y, Deng T, Fan W. Appl Catal B-Environ, 2021, 298: 120590
Xiong W, Wu Z, Chen X, Ding J, Ye A, Zhang W, Huang W. Sci China Chem, 2023, 67: 715–723
Gao P, Li F, Zhao N, Xiao F, Wei W, Zhong L, Sun Y. Appl Catal A Gen, 2012, 468: 442–452
Liao F, Huang Y, Ge J, Zheng W, Tedsree K, Collier P, Hong X, Tsang SC. Angew Chem Int Ed, 2011, 50: 2162–2165
Chen CS, Cheng WH, Lin SS. Catal Lett, 2000, 68: 45–48
Daza YA, Kuhn JN. RSC Adv, 2016, 6: 49675–49691
Zhang G, Fan G, Zheng L, Li F. ACS Appl Mater Interfaces, 2022, 14: 35569–35580
Wang Z, Yang C, Li X, Song X, Pei C, Zhao ZJ, Gong J. Nano Res, 2023, 16: 6128–6133
Xu D, Ding M, Hong X, Liu G. ACS Catal, 2020, 10: 14516–14526
An B, Li Z, Song Y, Zhang J, Zeng L, Wang C, Lin W. Nat Catal, 2019, 2: 709–717
Ding L, Shi T, Gu J, Cui Y, Zhang Z, Yang C, Chen T, Lin M, Wang P, Xue N, Peng L, Guo X, Zhu Y, Chen Z, Ding W. Chem, 2020, 6: 2673–2689
Makoto T, Atsushi O, Hiromitsu F, Yuriko I, Hironori A. Stud Sur Sci Catal, 1998, 114: 525–528
Si Z, Wang L, Han Y, Yu J, Ge Q, Zeng C, Sun J. ACS Sustain Chem Eng, 2022, 10: 14972–14979
Bartholomew C H, Agrawal PK, Katzer JR. Adv Catal, 1982, 31: 135–242
Zhou W, Teo WL, Phua SZF, Xi S, Chen B, Jana D, Wang D, Qian C, Wang H, Zhang H, Zhao Y. Small Methods, 2020, 4: 1900890
Wang Y, Zhang X, Hong X, Liu G. ACS Sustain Chem Eng, 2022, 10: 8980–8987
Zhang Q, Wang S, Geng R, Wang P, Dong M, Wang J, Fan W. Appl Catal B-Environ, 2023, 337: 123013
Inui T, Yamamoto T, Inoue M, Hara H, Takeguchi T, Kim JB. Appl Catal A-Gen, 1999, 186: 395–406
Guo H, Li S, Peng F, Zhang H, Xiong L, Huang C, Wang C, Chen X. Catal Lett, 2015, 145: 620–630
Wang Y, Xu D, Zhang X, Hong X, Liu G. Catal Sci Technol, 2022, 12: 1539–1550
Xu D, Yang H, Hong X, Liu G, Edman Tsang SC. ACS Catal, 2021, 11: 8978–8984
Wang Y, Wang K, Zhang B, Peng X, Gao X, Yang G, Hu H, Wu M, Tsubaki N. ACS Catal, 2021, 11: 11742–11753
Zhang Q, Wang S, Shi X, Dong M, Chen J, Zhang J, Wang J, Fan W. Appl Catal B-Environ Energy, 2024, 346: 123748
Gnanamani MK, Hamdeh HH, Jacobs G, Shafer WD, Hopps SD, Thomas GA, Davis BH. ChemCatChem, 2017, 9: 1303–1312
Zheng J, An K, Wang J, Li J, Liu Y. J Fuel Chem Tech, 2019, 47: 697–708
Lian Y, Fang T, Zhang Y, Liu B, Li J. J Catal, 2019, 379: 46–51
Zhang S, Huang C, Shao Z, Zhou H, Chen J, Li L, Lu J, Liu X, Luo H, Xia L, Wang H, Sun Y. ACS Catal, 2023, 13: 3055–3065
An K, Zhang S, Wang J, Liu Q, Zhang Z, Liu Y. J Energy Chem, 2021, 56: 486–495
Wang L, Wang L, Zhang J, Liu X, Wang H, Zhang W, Yang Q, Ma J, Dong X, Yoo SJ, Kim J-, Meng X, Xiao F-. Angew Chem Int Ed, 2018, 57: 6104–6108
Wang L, He S, Wang L, Lei Y, Meng X, Xiao FS. ACS Catal, 2019, 9: 11335–11340
An K, Zhang S, Wang H, Li N, Zhang Z, Liu Y. Chem Eng J, 2022, 433: 134606
Ishida T, Yanagihara T, Liu X, Ohashi H, Hamasaki A, Honma T, Oji H, Yokoyama T, Tokunaga M. Appl Catal A-Gen, 2013, 458: 145–154
Zhang S, Liu X, Shao Z, Wang H, Sun Y. J Catal, 2020, 382: 86–96
Nieskens DLS, Ferrari D, Liu Y, Kolonko Jr. R. Catal Commun, 2011, 14: 111–113
Liu S, Zhou H, Zhang L, Ma Z, Wang Y. Chem Eng Technol, 2019, 42: 962–970
Xu W, Ramirez PJ, Stacchiola D, Rodriguez JA. Catal Lett, 2014, 144: 1418–1424
Zou J, Lin Y, Yang C. Sci China Chem, 2023, 66: 1211–1220
Tatsumi T, Muramats A, Tominaga H. Chem Lett, 1985, 14: 593–594
Calafat A, Vivas F, Brito JıL. Appl Catal A-Gen, 1998, 172: 217–224
Chen Y, Choi S, Thompson LT. J Catal, 2016, 343: 147–156
Hu J, Wei Z, Zhang Y, Huang R, Zhang M, Cheng K, Zhang Q, Qi Y, Li Y, Mao J, Zhu J, Wu L, Wen W, Yu S, Pan Y, Yang J, Wei X, Jiang L, Si R, Yu L, Wang Y, Deng D. Nat Commun, 2023, 14: 6808
Wang J, Wang T, Xi Y, Gao G, Sun P, Li F. Angew Chem Int Ed, 2023, 62: e202311335
Yang H, Wei Z, Zhang J, Dang Y, Li S, Bu X, Zhou Z, Gong C, Wang H, Li J, Liu Y, Yang Y, Xiao T, Liu C, Sun Y, Gao P. Chem, 2024, 10: 2245–2265
Acknowledgements
The authors thank the financial supports of the National Key R&D Program of China (2023YFB4103700), National Natural Science Foundation of China (21991090; 21991092; 22272195; 22322208; U1910203; U22A20431), the Natural Science Foundation of Shanxi Province of China (202203021224009), Innovation foundation of Institute of Coal Chemistry, Chinese Academy of Sciences (SCJC-DT-2023-06) and Youth Innovation Promotion Association CAS (2021172).
Author information
Authors and Affiliations
Corresponding authors
Ethics declarations
Conflict of interest The authors declare no conflict of interest.
Additional information
Published in virtual special issue “Carbon Neutrality”
Rights and permissions
About this article
Cite this article
Zhang, Q., Wang, S., Dong, M. et al. Recent advances in CO2 hydrogenation to higher alcohols. Sci. China Chem. 68, 2310–2321 (2025). https://doi.org/10.1007/s11426-024-2254-x
Received:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1007/s11426-024-2254-x


