Skip to main content
Log in

Recent advances in CO2 hydrogenation to higher alcohols

  • Reviews
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

CO2 hydrogenation to higher alcohols (C2+OH) is an effective way to realize carbon recycling, which can not only reduce the CO2 amounts in atmosphere and mitigate the greenhouse effect, but also provides a new route to synthesize important chemicals. However, this process is a challenge because the inert CO2 molecule is difficult to be activated and undergo C–C coupling. The key to achieve selective conversion of CO2 to C2+OH is to design high-performance catalytic systems and unravel the reaction mechanism. In this review, we report several typical CO2 hydrogenation-to-C2+OH catalyst materials, including noble-metal catalysts, Cu-based catalysts, Co-based catalysts and Mo-based catalysts, and evaluate the effects of various promoters on the catalytic performance and reaction mechanism. It will provide not only fundamental insights into the CO2 hydrogenation-to-C2+OH reaction mechanism, but also guidance for the development of related high-performance catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Global Climate Change, Carbon Dioxide. https://climate.nasa.gov/vital-signs/carbon-dioxide/

  2. Gao Y, Liu S, Zhao Z, Tao H, Sun Z. Acta Physico-Chim Sin, 2018, 34: 858–872

    Article  CAS  Google Scholar 

  3. Chang X, Wang T, Gong J. Energy Environ Sci, 2016, 9: 2177–2196

    Article  CAS  Google Scholar 

  4. He M, Sun Y, Han B. Angew Chem Int Ed, 2013, 52: 9620–9633

    Article  CAS  Google Scholar 

  5. Sokolov S, Kondratenko EV, Pohl MM, Barkschat A, Rodemerck U. Appl Catal B-Environ, 2012, 113–114: 19–30

    Article  Google Scholar 

  6. Fan Q, Li S, Zhang L, Wang P, Wang S. J Catal, 2022, 414: 53–63

    Article  CAS  Google Scholar 

  7. Dang S, Gao P, Liu Z, Chen X, Yang C, Wang H, Zhong L, Li S, Sun Y. J Catal, 2018, 364: 382–393

    Article  CAS  Google Scholar 

  8. Wang S, Zhang L, Wang P, Liu X, Chen Y, Qin Z, Dong M, Wang J, He L, Olsbye U, Fan W. Chem, 2022, 8: 1376–1394

    Article  CAS  Google Scholar 

  9. Wan H, Gong N, Liu L. Sci China Chem, 2022, 65: 2163–2176

    Article  CAS  Google Scholar 

  10. Liang J, Liu J, Guo L, Wang W, Wang C, Gao W, Guo X, He Y, Yang G, Yasuda S, Liang B, Tsubaki N. Nat Commun, 2024, 15: 512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhou C, Shi J, Zhou W, Cheng K, Zhang Q, Kang J, Wang Y. ACS Catal, 2020, 10: 302–310

    Article  CAS  Google Scholar 

  12. Gao P, Li S, Bu X, Dang S, Liu Z, Wang H, Zhong L, Qiu M, Yang C, Cai J, Wei W, Sun Y. Nat Chem, 2017, 9: 1019–1024

    Article  CAS  PubMed  Google Scholar 

  13. Kattel S, Ramírez PJ, Chen JG, Rodriguez JA, Liu P. Science, 2017, 355: 1296–1299

    Article  CAS  PubMed  Google Scholar 

  14. Xu D, Wang Y, Ding M, Hong X, Liu G, Tsang SCE. Chem, 2021, 7: 849–881

    Article  CAS  Google Scholar 

  15. Wang H, Wang L, Xiao FS. Sci China Chem, 2022, 65: 2051–2057

    Article  CAS  Google Scholar 

  16. Herman RG. Catal Today, 2000, 55: 233–245

    Article  CAS  Google Scholar 

  17. Aditiya HB, Mahlia TMI, Chong WT, Nur H, Sebayang AH. Renew Sustain Energy Rev, 2016, 66: 631–653

    Article  CAS  Google Scholar 

  18. Latsiou AI, Charisiou ND, Frontistis Z, Bansode A, Goula MA. Catal Today, 2023, 420: 114179

    Article  CAS  Google Scholar 

  19. He Y, Yin L, Yuan N, Zhang G. Chem Eng J, 2024, 481: 148754

    Article  CAS  Google Scholar 

  20. Zhu DD, Liu JL, Qiao SZ. Adv Mater, 2016, 28: 3423–3452

    Article  CAS  PubMed  Google Scholar 

  21. Xu D, Ding M, Hong X, Liu G, Tsang SCE. ACS Catal, 2020, 10: 5250–5260

    Article  CAS  Google Scholar 

  22. Liu T, Xu D, Song M, Hong X, Liu G. ACS Catal, 2023, 13: 4667–4674

    Article  CAS  Google Scholar 

  23. Kusama H, Okabe K, Sayama K, Arakawa H. Stud Surf Sci Catal, 1998, 114: 431–434

    Article  CAS  Google Scholar 

  24. Kitamura Bando K, Soga K, Kunimori K, Arakawa H. Appl Catal A Gen, 1998, 175: 67–81

    Article  CAS  Google Scholar 

  25. Gogate MR, Davis RJ. Catal Commun, 2010, 11: 901–906

    Article  CAS  Google Scholar 

  26. Kusama H, Okabe K, Sayama K, Arakawa H. Catal Today, 1996, 28: 261–266

    Article  CAS  Google Scholar 

  27. Kusama H, Okabe K, Sayama K, Arakawa H. Energy, 1997, 22: 343–348

    Article  CAS  Google Scholar 

  28. Wang G, Luo R, Yang C, Song J, Xiong C, Tian H, Zhao ZJ, Mu R, Gong J. Sci China Chem, 2019, 62: 1710–1719

    Article  CAS  Google Scholar 

  29. Zhang F, Zhou W, Xiong X, Wang Y, Cheng K, Kang J, Zhang Q, Wang Y. J Phys Chem C, 2021, 125: 24429–24439

    Article  CAS  Google Scholar 

  30. Zheng K, Li Y, Liu B, Chen J, Xu Y, Li Z, Liu X. Appl Catal B-Environ Energy, 2024, 346: 123730

    Article  CAS  Google Scholar 

  31. Zheng K, Li Y, Liu B, Jiang F, Xu Y, Liu X. Angew Chem Int Ed, 2022, 61: e202210991

    Article  CAS  Google Scholar 

  32. Inui T, Yamamoto T. Catal Today, 1998, 45: 209–214

    Article  CAS  Google Scholar 

  33. Bai S, Shao Q, Wang P, Dai Q, Wang X, Huang X. J Am Chem Soc, 2017, 139: 6827–6830

    Article  CAS  PubMed  Google Scholar 

  34. Caparrós FJ, Soler L, Rossell MD, Angurell I, Piccolo L, Rossell O, Llorca J. ChemCatChem, 2018, 10: 2365–2369

    Article  Google Scholar 

  35. Wang Y, Zhou Y, Zhang X, Wang M, Liu T, Wei J, Zhang G, Hong X, Liu G. Appl Catal B-Environ, 2024, 345: 123691

    Article  CAS  Google Scholar 

  36. Zhou Y, Wang Y, Lu H, Liu T, Hong X, Liu G. ACS Sustain Chem Eng, 2024, 12: 3322–3330

    Article  CAS  Google Scholar 

  37. Lou Y, Jiang F, Zhu W, Wang L, Yao T, Wang S, Yang B, Yang B, Zhu Y, Liu X. Appl Catal B-Environ, 2021, 291: 120122

    Article  CAS  Google Scholar 

  38. Chen J, Zha Y, Liu B, Li Y, Xu Y, Liu X. ACS Catal, 2013, 13: 7110–7121

    Article  Google Scholar 

  39. He Z, Qian Q, Ma J, Meng Q, Zhou H, Song J, Liu Z, Han B. Angew Chem Int Ed, 2016, 55: 737–741

    Article  CAS  Google Scholar 

  40. Ye X, Yang C, Pan X, Ma J, Zhang Y, Ren Y, Liu X, Li L, Huang Y. J Am Chem Soc, 2020, 142: 19001–19005

    Article  CAS  PubMed  Google Scholar 

  41. Wang D, Bi Q, Yin G, Zhao W, Huang F, Xie X, Jiang M. Chem Commun, 2016, 52: 14226–14229

    Article  CAS  Google Scholar 

  42. Cui X, Chen S, Yang H, Liu Y, Wang H, Zhang H, Xue Y, Wang G, Niu Y, Deng T, Fan W. Appl Catal B-Environ, 2021, 298: 120590

    Article  CAS  Google Scholar 

  43. Xiong W, Wu Z, Chen X, Ding J, Ye A, Zhang W, Huang W. Sci China Chem, 2023, 67: 715–723

    Article  Google Scholar 

  44. Gao P, Li F, Zhao N, Xiao F, Wei W, Zhong L, Sun Y. Appl Catal A Gen, 2012, 468: 442–452

    Article  Google Scholar 

  45. Liao F, Huang Y, Ge J, Zheng W, Tedsree K, Collier P, Hong X, Tsang SC. Angew Chem Int Ed, 2011, 50: 2162–2165

    Article  CAS  Google Scholar 

  46. Chen CS, Cheng WH, Lin SS. Catal Lett, 2000, 68: 45–48

    Article  CAS  Google Scholar 

  47. Daza YA, Kuhn JN. RSC Adv, 2016, 6: 49675–49691

    Article  CAS  Google Scholar 

  48. Zhang G, Fan G, Zheng L, Li F. ACS Appl Mater Interfaces, 2022, 14: 35569–35580

    Article  CAS  PubMed  Google Scholar 

  49. Wang Z, Yang C, Li X, Song X, Pei C, Zhao ZJ, Gong J. Nano Res, 2023, 16: 6128–6133

    Article  CAS  Google Scholar 

  50. Xu D, Ding M, Hong X, Liu G. ACS Catal, 2020, 10: 14516–14526

    Article  CAS  Google Scholar 

  51. An B, Li Z, Song Y, Zhang J, Zeng L, Wang C, Lin W. Nat Catal, 2019, 2: 709–717

    Article  CAS  Google Scholar 

  52. Ding L, Shi T, Gu J, Cui Y, Zhang Z, Yang C, Chen T, Lin M, Wang P, Xue N, Peng L, Guo X, Zhu Y, Chen Z, Ding W. Chem, 2020, 6: 2673–2689

    Article  CAS  Google Scholar 

  53. Makoto T, Atsushi O, Hiromitsu F, Yuriko I, Hironori A. Stud Sur Sci Catal, 1998, 114: 525–528

    Article  Google Scholar 

  54. Si Z, Wang L, Han Y, Yu J, Ge Q, Zeng C, Sun J. ACS Sustain Chem Eng, 2022, 10: 14972–14979

    Article  CAS  Google Scholar 

  55. Bartholomew C H, Agrawal PK, Katzer JR. Adv Catal, 1982, 31: 135–242

    Article  CAS  Google Scholar 

  56. Zhou W, Teo WL, Phua SZF, Xi S, Chen B, Jana D, Wang D, Qian C, Wang H, Zhang H, Zhao Y. Small Methods, 2020, 4: 1900890

    Article  CAS  Google Scholar 

  57. Wang Y, Zhang X, Hong X, Liu G. ACS Sustain Chem Eng, 2022, 10: 8980–8987

    Article  CAS  Google Scholar 

  58. Zhang Q, Wang S, Geng R, Wang P, Dong M, Wang J, Fan W. Appl Catal B-Environ, 2023, 337: 123013

    Article  CAS  Google Scholar 

  59. Inui T, Yamamoto T, Inoue M, Hara H, Takeguchi T, Kim JB. Appl Catal A-Gen, 1999, 186: 395–406

    Article  CAS  Google Scholar 

  60. Guo H, Li S, Peng F, Zhang H, Xiong L, Huang C, Wang C, Chen X. Catal Lett, 2015, 145: 620–630

    Article  CAS  Google Scholar 

  61. Wang Y, Xu D, Zhang X, Hong X, Liu G. Catal Sci Technol, 2022, 12: 1539–1550

    Article  CAS  Google Scholar 

  62. Xu D, Yang H, Hong X, Liu G, Edman Tsang SC. ACS Catal, 2021, 11: 8978–8984

    Article  CAS  Google Scholar 

  63. Wang Y, Wang K, Zhang B, Peng X, Gao X, Yang G, Hu H, Wu M, Tsubaki N. ACS Catal, 2021, 11: 11742–11753

    Article  CAS  Google Scholar 

  64. Zhang Q, Wang S, Shi X, Dong M, Chen J, Zhang J, Wang J, Fan W. Appl Catal B-Environ Energy, 2024, 346: 123748

    Article  CAS  Google Scholar 

  65. Gnanamani MK, Hamdeh HH, Jacobs G, Shafer WD, Hopps SD, Thomas GA, Davis BH. ChemCatChem, 2017, 9: 1303–1312

    Article  CAS  Google Scholar 

  66. Zheng J, An K, Wang J, Li J, Liu Y. J Fuel Chem Tech, 2019, 47: 697–708

    Article  CAS  Google Scholar 

  67. Lian Y, Fang T, Zhang Y, Liu B, Li J. J Catal, 2019, 379: 46–51

    Article  CAS  Google Scholar 

  68. Zhang S, Huang C, Shao Z, Zhou H, Chen J, Li L, Lu J, Liu X, Luo H, Xia L, Wang H, Sun Y. ACS Catal, 2023, 13: 3055–3065

    Article  CAS  Google Scholar 

  69. An K, Zhang S, Wang J, Liu Q, Zhang Z, Liu Y. J Energy Chem, 2021, 56: 486–495

    Article  CAS  Google Scholar 

  70. Wang L, Wang L, Zhang J, Liu X, Wang H, Zhang W, Yang Q, Ma J, Dong X, Yoo SJ, Kim J-, Meng X, Xiao F-. Angew Chem Int Ed, 2018, 57: 6104–6108

    Article  CAS  Google Scholar 

  71. Wang L, He S, Wang L, Lei Y, Meng X, Xiao FS. ACS Catal, 2019, 9: 11335–11340

    Article  CAS  Google Scholar 

  72. An K, Zhang S, Wang H, Li N, Zhang Z, Liu Y. Chem Eng J, 2022, 433: 134606

    Article  CAS  Google Scholar 

  73. Ishida T, Yanagihara T, Liu X, Ohashi H, Hamasaki A, Honma T, Oji H, Yokoyama T, Tokunaga M. Appl Catal A-Gen, 2013, 458: 145–154

    Article  CAS  Google Scholar 

  74. Zhang S, Liu X, Shao Z, Wang H, Sun Y. J Catal, 2020, 382: 86–96

    Article  CAS  Google Scholar 

  75. Nieskens DLS, Ferrari D, Liu Y, Kolonko Jr. R. Catal Commun, 2011, 14: 111–113

    Article  CAS  Google Scholar 

  76. Liu S, Zhou H, Zhang L, Ma Z, Wang Y. Chem Eng Technol, 2019, 42: 962–970

    Article  CAS  Google Scholar 

  77. Xu W, Ramirez PJ, Stacchiola D, Rodriguez JA. Catal Lett, 2014, 144: 1418–1424

    Article  CAS  Google Scholar 

  78. Zou J, Lin Y, Yang C. Sci China Chem, 2023, 66: 1211–1220

    Article  CAS  Google Scholar 

  79. Tatsumi T, Muramats A, Tominaga H. Chem Lett, 1985, 14: 593–594

    Article  Google Scholar 

  80. Calafat A, Vivas F, Brito JıL. Appl Catal A-Gen, 1998, 172: 217–224

    Article  CAS  Google Scholar 

  81. Chen Y, Choi S, Thompson LT. J Catal, 2016, 343: 147–156

    Article  CAS  Google Scholar 

  82. Hu J, Wei Z, Zhang Y, Huang R, Zhang M, Cheng K, Zhang Q, Qi Y, Li Y, Mao J, Zhu J, Wu L, Wen W, Yu S, Pan Y, Yang J, Wei X, Jiang L, Si R, Yu L, Wang Y, Deng D. Nat Commun, 2023, 14: 6808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Wang J, Wang T, Xi Y, Gao G, Sun P, Li F. Angew Chem Int Ed, 2023, 62: e202311335

    Article  CAS  Google Scholar 

  84. Yang H, Wei Z, Zhang J, Dang Y, Li S, Bu X, Zhou Z, Gong C, Wang H, Li J, Liu Y, Yang Y, Xiao T, Liu C, Sun Y, Gao P. Chem, 2024, 10: 2245–2265

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the financial supports of the National Key R&D Program of China (2023YFB4103700), National Natural Science Foundation of China (21991090; 21991092; 22272195; 22322208; U1910203; U22A20431), the Natural Science Foundation of Shanxi Province of China (202203021224009), Innovation foundation of Institute of Coal Chemistry, Chinese Academy of Sciences (SCJC-DT-2023-06) and Youth Innovation Promotion Association CAS (2021172).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sen Wang or Weibin Fan.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Published in virtual special issue “Carbon Neutrality”

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Q., Wang, S., Dong, M. et al. Recent advances in CO2 hydrogenation to higher alcohols. Sci. China Chem. 68, 2310–2321 (2025). https://doi.org/10.1007/s11426-024-2254-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1007/s11426-024-2254-x