Abstract
A suite of CrCe oxides facilitated hierarchical porous biochars from walnut husks and rice straws (XCryCe1-y/WSAC) were readily synthesized for formaldehyde (HCHO) abatement. BET, XRD, XPS, SEM, H2-TPR, TG-DTG, and in situ DRIFTS were adopted to disclose their physicochemical properties and the elimination mechanism of HCHO. 18%Cr0.5Ce0.5/WSAC exhibited splendid HCHO abatement efficiency (99.2%) at 280 °C. The effects of O2, SO2, H2O for HCHO abatement over 18%Cr0.5Ce0.5/WSAC were trialed, and the strangulation influences of SO2 counteracted the furtherance effect of O2 to some extent, which was relieved by the facilitation of H2O. CrOx-CeOx co-facilitated WSAC presented better performance than Cr or Ce oxide separately facilitated WSACs, which was associated with the redox cycle of Cr6+ + Ce3+ ↔ Cr3+ + Ce4+, resulting in higher redox capability, better dispersion of active ingredient, more oxygen vacancies and superior active oxygen mobility. Furthermore, the hierarchical porous support accelerated the diffusion and mass transfer of reactants and intermediates. Noteworthily, the effects of CrOx-CeOx and the hierarchical porous structure of the support on the tolerance to SO2 and H2O were deeply and systematically investigated. Ultimately, 18%Cr0.5Ce0.5/WSAC emerged desirable prospects in practical applications thanks to splendid catalytic performance and satisfactory resistance to SO2 and H2O.
Graphical Abstract


















Similar content being viewed by others
Data Availability
All data generated or analyzed during the current study are provided in the manuscript.
References
An, B., Li, Z., Song, Y., Zhang, J., Zeng, L., Wang, C., & Lin, W. (2019). Cooperative copper centres in a metal-organic framework for selective conversion of CO2 to ethanol. Nat. Catal, 2, 709–717. https://doi.org/10.1038/s41929-019-0308-5
Cai, T., Deng, W., Xu, P., Yuan, J., Liu, Z., Zhao, K., Tong, Q., & He, D. (2020). Great activity enhancement of Co3O4/γ-Al2O3 catalyst for propane combustion by structural modulation. Chem. Eng. J, 395, 125071. https://doi.org/10.1016/j.cej.2020.125071
Chen, G., Zhang, D., Zhang, A., Zhang, Z., Liu, Z., & Hou, L. (2017). CrOx-MnOx-TiO2 adsorbent with high resistance to SO2 poisoning for Hg0 removal at low temperature. J. Ind. Eng. Chem, 55, 119–127. https://doi.org/10.1016/j.jiec.2017.06.035
Chen, H., Tang, M., Rui, Z., & Ji, H. (2015). MnO2 promoted TiO2 nanotube array supported Pt catalyst for formaldehyde oxidation with enhanced efficiency. Industrial and Engineering Chemistry Research, 54(36), 8900–8907. https://doi.org/10.1021/acs.iecr.5b01970
Chen, J., Jiang, M., Xu, W., Chen, J., Hong, Z., & Jia, H. (2019). Incorporating Mn cation as anchor to atomically disperse Pt on TiO2 for lowtemperature removal of formaldehyde. Appl. Catal. B. Environ, 259, 118013. https://doi.org/10.1016/j.apcatb.2019.118013
Chen, J., Li, C., Li, S., Lu, P., Gao, L., Du, X., & Yi, Y. (2018). Simultaneous removal of HCHO and elemental mercury from flue gas over Co-Ce oxides supported on activated coke impregnated by sulfuric acid. Chemical Engineering Journal, 338, 358–368. https://doi.org/10.1016/j.cej.2018.01.043
Chen, S., Gueddida, S., Badawi, M., Lebègue, S., Giraudon, J.-M., Dhainaut, J., Royer, S., & Lamonier, J.-F. (2023). Unravelling the critical role of silanol in Pt/SiO2 for room temperature HCHO oxidation: An experimental and DFT study. Applied Catalysis B: Environmental, 331, 122672. https://doi.org/10.1016/j.apcatb.2023.122672
Chen, Y., Cao, C., Huang, C., Gong, W., Niu, K., Luo, Y., Wu, E., Zeng, L., Qian, Q., & Chen, Q. (2022). CoOx supported on rice-husk derived SiO2 for styrene combustion: The balance of low temperature activity and thermal stability. Appl. Surf. Sci, 606, 154851. https://doi.org/10.1016/j.apsusc.2022.154851
Cheng, S., Meng, W., Xing, B., Shi, C., Wang, Q., Xia, D., Nie, Y., Yi, G., Zhang, C., & Xia, H. (2023). Efficient removal of heavy metals from aqueous solutions by Mg/Fe bimetallic oxide-modified biochar in monometallic and bimetallic systems: Experiments and DFT investigations. J. Cleaner. Prod, 403, 136821. https://doi.org/10.1016/j.jclepro.2023.136821
Cruz, M. D., Svenningsen, N. B., Nybroe, O., Müller, R., & Christensen, J. H. (2023). Removal of a complex VOC mixture by potted plants-effects on soil microorganisms. Environ. Sci. Pollut. Res, 30, 55372–55381. https://doi.org/10.1007/s11356-023-26137-8
Diao, W., Xu, J., Rao, X., & Zhang, Y. (2022). Facile Synthesis of Fluorine Doped Rutile TiO2 Nanorod Arrays for Photocatalytic Removal of Formaldehyde. Catal. Lett, 152, 1029–1039. https://doi.org/10.1007/s10562-021-03700-x
Du, X., Li, C., Zhang, J., Zhao, L., Li, S., Lyu, Y., Zhang, Y., Zhu, Y., & Huang, L. (2021). Highly efficient simultaneous removal of HCHO and elemental mercury over Mn-Co oxides promoted Zr-AC samples. J. Hazard. Mater, 408, 124830. https://doi.org/10.1016/j.jhazmat.2020.124830
Du, X., Li, C., Zhao, L., Zhang, J., Gao, L., Sheng, J., Yi, Y., Chen, J., & Zeng, G. (2018). Promotional removal of HCHO from simulated flue gas over Mn-Fe oxides modified activated coke. Appl. Catal. B. Environ, 232, 37–48. https://doi.org/10.1016/j.apcatb.2018.03.034
Fang, X., Liu, Y., Cheng, Y., & Cen, Y. (2021). Mechanism of Ce-Modified Birnessite-MnO2 in Promoting SO2 Poisoning Resistance for Low-Temperature NH3-SCR. ACS. Catal, 11, 4125–4135. https://doi.org/10.1021/acscatal.0c05697
Feng, X., Tian, X., He, C., Li, L., Shi, J., Yu, Y., & Cheng, J. (2020). Yolk-shell-like mesoporous CoCrOx with superior activity and chlorine resistance in dichloromethane destruction. Appl. Catal. B. Environ, 264, 118493. https://doi.org/10.1016/j.jiec.2017.06.035
Fu, Z., Song, C., Ji, N., Liu, C., Ma, D., & Li, Z. (2019). Promotional effect of SO2 on Cr2O3 catalysts for the marine NH3-SCR reaction. Chem. Eng. J, 361, 830–838. https://doi.org/10.1016/j.cej.2018.12.100
Gao, E., Huang, B., Zhao, Z., Pan, H., Zhang, W., Li, Y., Bernards, M. T., He, Y., & Shi, Y. (2020). Understanding the co-effects of manganese and cobalt on the enhanced SCR performance for MnxCo1-xCr2O4 spinel-type catalysts. Catal. Sci. Technol, 10, 4752–4765. https://doi.org/10.1039/D0CY00872A
Gao, L., Li, C., Li, S., Zhang, W., Du, X., Huang, L., Zhu, Y., Zhai, Y., & Zeng, G. (2019). Superior performance and resistance to SO2 and H2O over CoOx-modifed MnOx/biomass activated carbons for simultaneous Hg0 and NO removal. Chem. Eng. J, 371, 781–795. https://doi.org/10.1016/j.cej.2019.04.104
Gao, L., Li, C., Zhang, J., Du, X., Li, S., Zeng, J., Yi, Y., & Zeng, G. (2018). Simultaneous removal of NO and Hg0 from simulated fiue gas over CoOx-CeO2 loaded biomass activated carbon derived from maize straw at low temperatures. Chem. Eng. J, 342, 339–349. https://doi.org/10.1016/j.cej.2018.02.100
Gao, L., Yi, L., Yi, J., Li, X., Feng, Z., Shan, J., Liu, Y., Tan, W., He, Q., & Li, C. (2022). Excellent performance and outstanding resistance to SO2 and H2O for formaldehyde abatement over CoMn oxides boosted dual-precursor hierarchical porous biochars derived from liquidambar and orange peel. Fuel, 317, 123539. https://doi.org/10.1016/j.fuel.2022.123539
Garcia, J., Beyne-Masclet, S., Mouvier, G., & Masclet, P. (1992). Emissions of volatile organic compounds by coal-fired power stations. Atmospheric Environment, 26(9), 1589–1597. https://doi.org/10.1016/0960-1686(92)90059-T
González-Martín, J., Cantera, S., Lebrero, R., & Muñoz, R. (2023). Biofiltration based on bioactive coatings for the abatement of indoor air VOCs. Sustain. Chem. Pharm, 31, 100960. https://doi.org/10.1016/j.scp.2022.100960
Hao, X., Yoko, A., Inoue, K., Saito, M., Chen, C., Seong, G., Tomai, T., Takami, S., Shluger, A., Xu, B., Adschiri, T., & Ikuhara, Y. (2021). Atomistic origin of high-concentration Ce3+ in {100}-faceted Cr-substituted CeO2 nanocrystals. Acta Materialia, 203(15), 116473. https://doi.org/10.1016/j.actamat.2020.11.015
Jia, Y., Yang, J., Jiang, J., Gu, M., Zhi, Y., Guo, L., & Chen, Y. (2019). Investigation of the Effect of SO2 and H2O on VPO-Cr-PEG/TiO2 for the Low-Temperature SCR de-NOx. Front. Mater. Sci, 6, 320. https://doi.org/10.3389/fmats.2019.00320
Jiang, G., Su, Y., Li, H., Chen, Y., Li, S., Bu, Y., & Zhang, Z. (2021). Insight into the Ag-CeO2 interface and mechanism of catalytic oxidation of formaldehyde. Appl. Surf. Sci, 549, 149277. https://doi.org/10.1016/j.apsusc.2021.149277
Jiang, Y., Gao, L., Dai, J., Li, C., Xiong, H., Li, Y., Liu, Z., Wang, W., & Hu, J. (2025). Unravelling the synergistic effects in GdCe composite oxides supported biochar catalysts for formaldehyde elimination: Elevated performance and SO2 toleration. Journal of Environmental Sciences, 152, 594–610. https://doi.org/10.1016/j.jes.2024.04.029
Jin, X., Zhang, K., Jiang, J., Zhu, Z., Deng, L., & Che, D. (2023). Catalytic conversion of toluene by biochar modified with KMnO4. Fuel, 332(2), 126237. https://doi.org/10.1016/j.fuel.2022.126237
Kim, W.-K., Vikrant, K., Younis, S. A., Kim, K.-H., & Heynderickx, P. M. J. (2023). Metal oxide/activated carbon composites for the reactive adsorption and catalytic oxidation of formaldehyde and toluene in air. J. Cleaner. Prod, 387, 135925. https://doi.org/10.1016/j.jclepro.2023.135925
Li, B., & Ma, C. (2018). Study on the mechanism of SO2 removal by activated carbon. Energy Procedia, 153, 471–477. https://doi.org/10.1016/j.egypro.2018.10.063
Li, H., Zhang, J., Cao, Y., Li, F., Liu, C., Song, Y., Hu, J., & Wang, Y. (2020). Enhanced activity and SO2 resistance of Co-modified CeO2-TiO2 catalyst prepared by facile co-precipitation for elemental mercury removal in flue gas. Appl. Organomet. Chem, 34(4), e5463. https://doi.org/10.1002/aoc.5463
Li, J., Xia, T., Xu, J., Zhang, C., Xu, L., Wu, Z., & Yao, S. (2023). Boosting the plasma catalytic performance of CeO2/γ-Al2O3 in long-chain alkane VOCs via tuning the crystallite size. Appl. Surf. Sci, 611, 155742. https://doi.org/10.1016/j.apsusc.2022.155742
Li, J., Zhu, D., Di, S., Xu, L., Wu, Z., & Yao, S. (2023). Construction of Pt-MnO2 interface with strong electron coupling effect for plasma catalytic oxidation of aromatic VOCs. Colloids Surf. A Physicochem. Eng. Asp, 665, 131248. https://doi.org/10.1016/j.colsurfa.2023.131248
Li, L., Ge, C., Ji, J., Tan, W., Wang, X., Wei, X., Guo, K., Tang, C., & Dong, L. (2021). Effects of different methods of introducing Mo on denitration performance and anti-SO2 poisoning performance of CeO2. Chinese Journal of Catalysis, 42(9), 1488–1499. https://doi.org/10.1016/S1872-2067(20)63778-0
Li, R., Huang, Y., Zhu, D., Ho, W., Cao, J., & Lee, S. (2021). Improved Oxygen Activation over a Carbon/Co3O4 Nanocomposite for Efficient Catalytic Oxidation of Formaldehyde at Room Temperature. Environ. Sci. Technol, 55, 4054–4063. https://doi.org/10.1021/acs.est.1c00490
Li, Y., Liu, Y., Yang, W., Liu, L., & Pan, J. (2021). Adsorption of elemental mercury in flue gas using biomass porous carbons modified by microwave/hydrogen peroxide. Fuel, 291, 120152. https://doi.org/10.1016/j.fuel.2021.120152
Li, Z., Ma, C., Qi, M., Li, Y., Qu, Y., Zhang, Y., Zhou, L., & Yun, J. (2023). CeO2 from pyrolysis of MOFs for efficient catalytic combustion of VOCs. Mol. Catal, 535, 112857. https://doi.org/10.1016/j.mcat.2022.112857
Lin, X., Li, S., He, H., Wu, Z., Wu, J., Chen, L., Ye, D., & Fu, M. (2018). Evolution of oxygen vacancies in MnOx-CeO2 mixed oxides for soot oxidation. Appl. Catal. B. Environ, 223, 91–102. https://doi.org/10.1016/j.apcatb.2017.06.071
Liu, W., Gao, Z., Zhao, X., Gao, J., Yang, R., & Yu, L. (2021). Promotion Effect of Chromium on the Activity and SO2 Resistance of CeO2-TiO2 Catalysts for the NH3-SCR Reaction. Ind. Eng. Chem. Res, 60(31), 11676–11688. https://doi.org/10.1021/acs.iecr.1c00898
Liu, X., Liu, X., Sun, B., Zhou, H., Fu, A., Wang, Y., Guo, Y., Guo, P., & Li, H. (2018). Carbon materials with hierarchical porosity: Effect of template removal strategy and study on their electrochemical properties. Carbon, 130, 680–691. https://doi.org/10.1016/j.carbon.2018.01.046
Liu, Z., Zhang, X., Cai, T., Yuan, J., Zhao, K., & He, D. (2019). Catalytic oxidation of formaldehyde over manganese-based catalysts and the influence of synergistic effect (Review). Progress in Chemistry, 31(2-3), 311–321. https://doi.org/10.7536/PC180435
Lu, S., Li, K., Huang, F., Chen, C., & Sun, B. (2017). Efficient MnOx-Co3O4-CeO2 catalysts for formaldehyde elimination. Appl. Surf. Sci, 400, 277–282. https://doi.org/10.1016/j.apsusc.2016.12.207
Lyu, Y., Li, C., Du, X., Zhu, Y., Zhang, Y., & Li, S. (2020). Catalytic oxidation of toluene over MnO2 catalysts with diferent Mn (II) precursors and the study of reaction pathway. Fuel, 262, 116610. https://doi.org/10.1016/j.fuel.2019.116610
Ma, C., Yang, C., Wang, B., Chen, C., Wang, F., Yao, X., & Song, M. (2019). Effects of H2O on HCHO and CO oxidation at room-temperature catalyzed by MCo2O4 (M=Mn, Ce and Cu) materials. Appl. Catal. B. Environ, 254, 76–85. https://doi.org/10.1016/j.apcatb.2019.04.085
Qin, J., Ji, R., Sun, Q., Li, W., Cheng, H., Han, J., Jiang, X., Song, Y., & Xue, J. (2023). Self-activation of potassium/iron citrate-assisted production of porous carbon/porous biochar composites from macroalgae for high-performance sorption of sulfamethoxazole. Bioresour. Technol, 369, 128361. https://doi.org/10.1016/j.biortech.2022.128361
Qu, Z., Sun, F., Gao, J., Pi, X., Qie, Z., & Zhao, G. (2019). A new insight into SO2 low-temperature catalytic oxidation in porous carbon materials: Nondissociated O2 molecule as oxidant. Catal. Sci. Technol, 9, 4327–4338. https://doi.org/10.1039/C9CY00960D
Rahbar-Shamskar, K., Rashidi, A., Baniyaghoob, S., & Khodabakhshi, S. (2022). In-situ catalytic fast pyrolysis of reed as a sustainable method for production of porous carbon as VOCs adsorbents. J. Anal. Appl. Pyrolysis, 164, 105520. https://doi.org/10.1016/j.jaap.2022.105520
Saad, M., Szymaszek, A., Biafias, A., Samojeden, B., & Motak, M. (2020). SO2 Poisoning and Recovery of Copper-Based Activated Carbon Catalysts for Selective Catalytic Reduction of NO with NH3 at Low Temperature. Catalysts, 10(12), 1426. https://doi.org/10.3390/catal10121426
Seo, B., Ko, E. H., Kim, B., Park, N.-K., Kang, S. B., Kang, D., & Kim, M. (2023). Computational screening-based development in VOC removal catalyst: Methyl ethyl ketone oxidation over Pt/TiO2. Chem. Eng. J, 452(4), 139466. https://doi.org/10.1016/j.cej.2022.139466
Shao, J., Zhang, J., Zhang, X., Feng, Y., Zhang, H., Zhang, S., & Chen, H. (2018). Enhance SO2 adsorption performance of biochar modified by CO2 activation and amine impregnation. Fuel, 224, 138–146. https://doi.org/10.1016/j.fuel.2018.03.064
Shen, Y. (2023). Biomass-derived porous carbons for sorption of Volatile organic compounds (VOCs). Fuel, 336, 126801. https://doi.org/10.1016/j.fuel.2022.126801
Shi, Y., Wan, J., Kong, F., Wang, Y., & Zhou, R. (2022). Influence of Pt dispersibility and chemical states on catalytic performance of Pt/CeO2-TiO2 catalysts for VOCs low-temperature removal. Colloids Surf. A Physicochem. Eng. Asp, 652, 129932. https://doi.org/10.1016/j.colsurfa.2022.129932
Su, Z., Yang, W., Wang, C., Xiong, S., Cao, X., Peng, Y., Si, W., Weng, Y., Xue, M., & Li, J. (2020). Roles of oxygen vacancies in the bulk and surface of CeO2 for toluene catalytic combustion. Environ. Sci. Technol, 54 (19), 12684–12692. https://pubs.acs.org/doi.org/10.1021/acs.est.0c03981.
Tachibana, N., Yukawa, Y., Morikawa, K., Kawaguchi, M., & Shimanoe, K. (2021). Pt nanoparticles supported on nitrogen-doped porous carbon as efficient oxygen reduction catalysts synthesized via a simple alcohol reduction method. SN. Appl. Sci, 3, 338. https://doi.org/10.1007/s42452-021-04343-8
Tazibet, S., Velasco, L. F., Lodewyckx, P., MHamed, D. A., & Boucheffa, Y. (2018). Systematic study of the role played by ZnCl2 during the carbonization of a chemically activated carbon by TG-MS and DSC. J. Therm. Anal. Calorim, 134(3), 1395–1404. https://doi.org/10.1007/s10973-018-7246-3
Tu, S., Chen, Y., Zhang, X., Yao, J., Wu, Y., Wu, H., Zhang, J., Wang, J., Mu, B., Li, Z., & Xia, Q. (2021). Complete catalytic oxidation of formaldehyde at room temperature on MnxCo3-xO4 catalysts derived from metal-organic frameworks. Appl. Catal. A-Gen, 611, 117975. https://doi.org/10.1016/j.apcata.2020.117975
Venkataswamy, P., Damma, D., Jampaiah, D., Mukherjee, D., Vithal, M., & Reddy, B. M. (2020). Cr-Doped CeO2 Nanorods for CO Oxidation: Insights into Promotional Effect of Cr on Structure and Catalytic Performance. Catal. Lett, 150, 948–962. https://doi.org/10.1007/s10562-019-03014-z
Wang, G. Y., Zhu, W., Wang, X., Yao, F., Jiao, Y., Cheng, H., Huang, H., & Ye, D. (2022). Preparing hierarchical porous carbon with well-developed microporosity using alkali metal-catalyzed hydrothermal carbonization for VOCs adsorption. Chemosphere, 298, 134248. https://doi.org/10.1016/j.chemosphere.2022.134248
Wang, J., Shi, Y., Kong, F., & Zhou, R. (2023). Low-temperature VOCs oxidation performance of Pt/zeolites catalysts with hierarchical pore structure. J. Environ. Sci, 124, 505–512. https://doi.org/10.1016/j.jes.2021.11.016
Wang, J., Yang, P., Guo, X., & Zhou, R. (2019). Investigation on the structure-activity relationship of Nb2O5 promoting CeO2-CrOx-Nb2O5 catalysts for 1,2-dichloroethane elimination. Mol. Catal, 470, 75–81. https://doi.org/10.1016/j.mcat.2019.03.010
Wang, X., Rui, Z., & Ji, H. (2018). DFT study of formaldehyde oxidation on silver cluster by active oxygen and hydroxyl groups: Mechanism comparison and synergistic effect. Catalysis Today, 347, 124–133. https://doi.org/10.1016/j.cattod.2018.06.021
Wang, Y., Wang, F., Han, F., Shi, W., & Yu, H. (2020). Ultra-small CeO2 nanoparticles supported on SiO2 for indoor formaldehyde oxidation at low temperature. Catalysis Science and Technology, 10, 6701–6712. https://doi.org/10.1039/D0CY00988A
Wu, J., Xia, Q., Xiao, J., & Li, Z. (2017). Chromium-based metal-organic framework MIL-101 as a highly effective catalyst in plasma for toluene removal. J. Phys. D, 50, 475202. https://doi.org/10.1088/1361-6463/aa90f3
Xia, C., Zhou, Y., He, C., Ibro, D. A., Guo, W., Qi, K., & Xia, B. (2021). Recent Advances on Electrospun Nanomaterials for Zinc-Air Batteries. Small. Sci, 1, 1–16. https://doi.org/10.1002/smsc.202100010
Xia, T., Wu, Z., Gao, E., Zhu, J., Yao, S., & Li, J. (2023). Nano-Au supported on CeO2 for plasma catalytic degradation of n-undecane: Enhancement of activity and stability. Separation and Purification Technology, 314, 123497.
Xiang, N., Hou, Y., Han, X., Li, Y., Guo, Y., Liu, Y., & Huang, Z. (2019). Promoting effect and mechanism of alkali Na on Pd/SBA-15 for room temperature formaldehyde catalytic oxidation. Chem. Cat. Chem, 11, 5098–5107. https://doi.org/10.1002/cctc.201901039
Xiao, M., Han, D., Yang, X., Tchinda, N. T., Du, L., Guo, Y., Wei, Y., Yu, X., & Ge, M. (2023). Ni-doping-induced oxygen vacancy in Pt-CeO2 catalyst for toluene oxidation: Enhanced catalytic activity, water-resistance, and SO2-tolerance. Appl. Catal. B. Environ, 323, 122173. https://doi.org/10.1016/j.apcatb.2022.122173
Xie, J., Meng, M., Lin, Z., Ding, H., Chen, J., Huang, S., & Zhou, Z. (2020). Exploring removal of formaldehyde at room temperature over Cr- and Zn-modified Co3O4 catalyst prepared by hydrothermal method. Res. Chem. Intermed, 46, 1789–1804. https://doi.org/10.1007/s11164-019-04063-0
Xu, C., Jin, L., Wang, X., Chen, Y., & Dai, L. (2020a). Honeycomb-like porous Ce-Cr oxide/N-doped carbon nanostructure: Achieving high catalytic performance for the selective oxidation of cyclohexane to KA oil. Carbon, 160, 287–297. https://doi.org/10.1016/j.carbon.2020.01.023
Xu, J., Qu, Z., Ke, G., Wang, Y., & Huang, B. (2020). Catalytic activity of gold-silver nanoalloys for HCHO oxidation: Effect of hydroxyl and particle size. Appl. Surf. Sci, 513, 145910. https://doi.org/10.1016/j.apsusc.2020.145910
Yang, C., Miao, G., Pi, Y., Xia, Q., Wu, J., Li, Z., & Xiao, J. (2019). Abatement of various types of VOCs by adsorption/catalytic oxidation: A review. Chem. Eng. J, 370, 1128–1153. https://doi.org/10.1016/j.cej.2019.03.232
Yang, P., Shi, Z., Yang, S., & Zhou, R. (2015). High catalytic performances of CeO2-CrOx catalysts for chlorinated VOCs elimination. Chemical Engineering Science, 126, 361–369. https://doi.org/10.1016/j.ces.2014.12.051
Yang, P., Zuo, S. F., Shi, Z. N., Tao, F., & Zhou, R. (2016). Elimination of 1,2-dichloroethane over (Ce, Cr)xO2/MOy catalysts (M = Ti, V, Nb, Mo, W and La). Applied Catalysis B: Environmental, 191, 53–61. https://doi.org/10.1016/j.apcatb.2016.03.017
Yao, F., Ye, G., Peng, W., Zhao, G., Wang, X., Wang, Y., Zhu, W., Jiao, Y., Huang, H., & Ye, D. (2023). Characterization of physicochemical properties of activated carbons prepared from penicillin mycelial residues and its adsorption properties for VOCs. J. Environ. Chem. Eng, 11(3), 109733. https://doi.org/10.1016/j.jece.2023.109733
Yi, L., Xie, J., Li, C., Shan, J., Liu, Y., Lv, J., Li, M., & Gao, L. (2022). LaOx modified MnOx loaded biomass activated carbon and its enhanced performance for simultaneous abatement of NO and Hg0. Environ. Sci. Pollut. Res, 29, 2258–2275. https://doi.org/10.1007/s11356-021-15752-y
Yu, C., Hou, D., Huang, B., Lu, M., Peng, R., & Zhong, Z. (2020). A MnOx@Eu-CeOx nanorod catalyst with multiple protective effects: Strong SO2-tolerance for low temperature DeNOx processes. J. Hazard. Mater, 399, 123011. https://doi.org/10.1016/j.jhazmat.2020.123011
Yu, J., Feng, H., Tang, L., Pang, Y., Wang, J., Zou, J., Xie, Q., Liu, Y., Feng, C., & Wang, J. (2021). Insight into the key factors in fast adsorption of organic pollutants by hierarchical porous biochar. J. Hazard. Mater, 403, 123610. https://doi.org/10.1016/j.jhazmat.2020.123610
Yu, Q., Li, C., Ma, D., Zhao, J., Liu, X., Liang, C., Zhu, Y., Zhang, Z., & Yang, Z. (2022). Layered double hydroxides-based materials as novel catalysts for gaseous VOCs abatement: Recent advances and mechanisms. Coord. Chem. Rev, 471, 214738. https://doi.org/10.1016/j.ccr.2022.214738
Yu, S., Xu, S., Sun, B., Lu, Y., Li, L., Zou, W., Wang, P., Gao, F., Tang, C., & Dong, L. (2018). Synthesis of CrOx/C catalysts for low temperature NH3-SCR with enhanced regeneration ability in the presence of SO2. RSC. Adv, 8(7), 3858–3868. https://doi.org/10.1039/c7ra09680a
Zeng, Y., Jiang, Q., Yang, X., Liu, D., Cao, Y., Wang, H., Peng, F., & Yu, H. (2021). CoMn2O4 supported on carbon nanotubes for effective low-temperature HCHO removal. J. Alloy. Compd, 859, 157808. https://doi.org/10.1016/j.jallcom.2020.157808
Zhang, C., He, H., & Tanaka, K. (2006). Catalytic performance and mechanism of a Pt/TiO2 catalyst for the oxidation of formaldehyde at room temperature. Appl. Catal. B. Environ, 65, 37–43. https://doi.org/10.1016/j.apcatb.2005.12.010
Zhang, D., Hou, L., Chen, G., Zhang, A., Wang, F., Wang, R., & Li, C. (2018). Cr Doping MnOx Adsorbent Significantly Improving Hg0 Removal and SO2 Resistance from Coal-Fired Flue Gas and the Mechanism Investigation. Ind. Eng. Chem. Res, 57(50), 17245–17258. https://doi.org/10.1021/acs.iecr.8b04857
Zhang, D., Zhang, M., Ding, F., Liu, W., Zhang, L., & Cui, L. (2020). Efficient removal of formaldehyde by polyethyleneimine modified activated carbon in a fixed bed. Environ. Sci. Pollut. Res, 27(15), 18109–18116. https://doi.org/10.1007/s11356-020-08019-5
Zhang, H., Li, S., Jiao, Y., Iojoiu, E. E., Costa, P. D., Galvez, M. E., & Chen, Y. (2019). Structure, surface and reactivity of activated carbon: From model soot to Bio Diesel soot. Fuel, 257, 116038. https://doi.org/10.1016/j.fuel.2019.116038
Zhang, H., Tan, L., Zhang, Z., Zhang, G., & Lu, J. (2021). Activated carbon and poly-o-anisidine (POA) synergistic supported Pt nanoparticles as a highly efficient catalyst for electrocatalytic oxidation of formaldehyde. Electrochim. Acta, 388, 138617. https://doi.org/10.1016/j.electacta.2021.138617
Zhang, N., Guo, Y., Guo, Y., Dai, Q., Wang, L., Dai, S., & Zhan, W. (2023). Synchronously constructing the optimal redox-acidity of sulfate and RuOx Co-modified CeO2 for catalytic combustion of chlorinated VOCs. Chem. Eng. J, 454, 140391. https://doi.org/10.1016/j.cej.2022.140391
Zhang, Z., Yang, B., & Ma, H. (2021). Aliphatic Amine Decorating Metal-Organic Framework for Durable SO2 Capture from Flue Gas. Sep. Purif. Technol, 259, 118164. https://doi.org/10.1016/j.seppur.2020.118164
Zheng, Y., Han, R., Yang, L., Yang, J., Shan, C., & Liu, Q. (2023). Revealing Opposite Behaviors of Catalyst for VOCs Oxidation: Modulating Electronic Structure of Pt Nanoparticles by Mn Doping. Chemical Engineering Journal, 465, 142807. https://doi.org/10.1016/j.cej.2023.142807
Zhu, L., Shen, D., & Luo, K. (2020). A critical review on VOCs adsorption by different porous materials: Species, mechanisms and modification methods. J. Hazard. Mater, 389, 122102. https://doi.org/10.1016/j.jhazmat.2020.122102
Zhu, L., Yao, J., Ma, G., Cao, P., Wu, S., & Li, Z. (2022). NH3-SCR performance and SO2 resistance comparison of CeO2 based catalysts with Fe/Mo additive surface decoration. Chem. Eng. J, 428(15), 131372. https://doi.org/10.1016/j.cej.2021.131372
Zhu, Y., Li, C., Liang, C., Li, S., Liu, X., Du, X., Yang, K., Zhao, J., Yu, Q., Zhai, Y., & Ma, Y. (2023). Regulating CeO2 morphologies on the catalytic oxidation of toluene at lower temperature: A study of the structure-activity relationship. Journal of Catalysis, 418, 151–162. https://doi.org/10.1016/j.jcat.2023.01.012
Acknowledgements
The authors wish to extend their sincere gratitude to Deyoubo Suzhou and the Changsha Scientific Compass Institute for their assistance in the experimental characterization.
Funding
This study was financially supported by the Natural Science Foundation of Hunan Province (2024JJ5335), the Scientific Research Foundation of Hunan Provincial Education Department (24A0312), Key Laboratory of Advanced Nuclear Energy Technology Design and Safety, Ministry of Education (KLANETDS-KF-202319), and the National Natural Science Foundation of China (52270102).
Author information
Authors and Affiliations
Contributions
Huiyu Xiong and Xiaoxin Feng contributed equally to this work. The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.
Corresponding author
Ethics declarations
Competing Interest
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Xiong, H., Feng, X., Gao, L. et al. Outstanding Formaldehyde Abatement Performance and Preferable Resistance to SO2 and H2O over CrOx-CeOx Facilitated Hierarchical Porous Biochars Catalysts. Water Air Soil Pollut 236, 279 (2025). https://doi.org/10.1007/s11270-025-07922-2
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11270-025-07922-2

