Abstract
Over the past five decades, clinical and experimental data have established that iron metabolism, lipid metabolism, and obesity are intricately linked and differentially influence one another through complex metabolic pathways. Iron dyshomeostasis is now recognized as a key modulator of lipid metabolism, with profound implications for obesity and related metabolic disorders. Likewise, lipid metabolism and obesity significantly impact iron absorption and recycling. Although this interplay between iron metabolism, lipid metabolism, and obesity is complex, modulation of hepcidin synthesis seems to be the core link between these variables. As the global prevalence of metabolic disorders continues to escalate, understanding their multifactorial etiology has become a public health priority. Emerging evidence highlights the dysregulation of lipid metabolism as a central driver in the onset and progression of these conditions, with iron metabolism playing a crucial regulatory role. This review explores the relationship between iron metabolism on one hand and lipid metabolism and obesity on the other with specific emphasis on the molecular mechanisms underlying this relationship. The review also explores the bi-directional relationship between iron metabolism and mitochondrial functions, mainly energy production. It concludes by outlining the pathophysiological consequences of disrupted iron metabolism, vis-a-vis lipid metabolism, obesity, and diabetes. By synthesizing current knowledge, this review aims to provide new insights that could guide the development of novel therapeutic strategies to manage obesity, diabetes, and related metabolic disorders.
Graphical abstract









Similar content being viewed by others
Data availability
No datasets were generated or analysed during the current study.
References
Rah B, Farhat NM, Hamad M, Muhammad JS. Jak/STAT signaling and cellular iron metabolism in hepatocellular carcinoma: therapeutic implications. Clin Exp Med. 2023;23(7):3147–57. https://doi.org/10.1007/s10238-023-01047-8.
Ru Q, Li Y, Chen L, Wu Y, Min J, Wang F. Iron homeostasis and ferroptosis in human diseases: mechanisms and therapeutic prospects. Sig Transduct Target Ther [Internet]. 2024 [cited 2025 Mar 14];9:1–64. Available from: https://www.nature.com/articles/s41392-024-01969-z
Wallace DF. The regulation of iron absorption and homeostasis. The Clinical Biochemist Reviews [Internet]. 2016 [cited 2024 Nov 25];37:51. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5198508/
Xu Y, Alfaro-Magallanes VM, Babitt JL. Physiological and pathophysiological mechanisms of hepcidin regulation: clinical implications for iron disorders. Br J Haematol. 2021;193:882–93. https://doi.org/10.1111/bjh.17252.
Gulec S, Anderson GJ, Collins JF. Mechanistic and regulatory aspects of intestinal iron absorption. Am J Physiol Gastrointest Liver Physiol [Internet]. 2014 [cited 2025 Mar 14];307:G397–409. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4137115/
Qiu F, Wu L, Yang G, Zhang C, Liu X, Sun X, et al. The role of iron metabolism in chronic diseases related to obesity. Mol Med. 2022;28:130. https://doi.org/10.1186/s10020-022-00558-6.
Deugnier Y, Bardou-Jacquet É, Lainé F. Dysmetabolic iron overload syndrome (DIOS). La Presse Médicale [Internet]. 2017 [cited 2024 Dec 3];46:e306–11. Available from: https://www.sciencedirect.com/science/article/pii/S075549821730458X?casa_token=eT9M-GyiEVgAAAAA:Aq8hyofHR_8Ly6hCbcY6SfXQ08Ma7PalPnfQdY3wvnoIHevOprHyYPRKICLl5I8dr50wQTCxjg
Murali AR, Gupta A, Brown K. Systematic review and meta-analysis to determine the impact of iron depletion in dysmetabolic iron overload syndrome and non‐alcoholic fatty liver disease. Hepatology Research [Internet]. 2018 [cited 2024 Nov 26];48. Available from: https://onlinelibrary.wiley.com/doi/https://doi.org/10.1111/hepr.12921
Mohajan D, Mohajan HK. Obesity and its related diseases: a new escalating alarming in global health. Journal of Innovations in Medical Research [Internet]. 2023 [cited 2024 Dec 1];2:12–23. Available from: https://www.paradigmpress.org/jimr/article/view/505
Kovalic AJ, Cholankeril G, Satapathy SK. Nonalcoholic fatty liver disease and alcoholic liver disease: metabolic diseases with systemic manifestations. Translational Gastroenterology and Hepatology [Internet]. 2019 [cited 2024 Dec 1];4. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6789306/
González-Domínguez Á, Visiedo-García FM, Domínguez-Riscart J, González-Domínguez R, Mateos RM, Lechuga-Sancho AM. Iron metabolism in obesity and metabolic syndrome. International journal of molecular sciences [Internet]. 2020 [cited 2024 Dec 1];21:5529. Available from: https://www.mdpi.com/1422-0067/21/15/5529
Oshaug A, Bugge KH, Bjønnes CH, Borch-Iohnsen B, Neslein IL. Associations between serum ferritin and cardiovascular risk factors in healthy young men. A cross sectional study. European journal of clinical nutrition [Internet]. 1995 [cited 2025 Feb 1];49:430–8. Available from: https://europepmc.org/article/med/7656886
Dongiovanni P, Ruscica M, Rametta R, Recalcati S, Steffani L, Gatti S et al. Dietary iron overload induces visceral adipose tissue insulin resistance. The American journal of pathology [Internet]. 2013 [cited 2024 Dec 3];182:2254–63. Available from: https://www.sciencedirect.com/science/article/pii/S0002944013001971
Valenti L, Remondini E, Fracanzani AL, Spada A, Colombo S, Guzzo A et al. Effect of iron depletion liver function and insulin resistance in patients with NASH and fatty liver. Hepatology [Internet]. 2005 [cited 2025 Feb 1];42:619A-619A. Available from: https://air.unimi.it/handle/2434/17286
Aigner E, Feldman A, Datz C. Obesity as an emerging risk factor for iron deficiency. Nutrients [Internet]. 2014 [cited 2024 Dec 2];6:3587–600. Available from: https://www.mdpi.com/2072-6643/6/9/3587
Paul BT, Manz DH, Torti FM, Torti SV. Mitochondria and iron: current questions. Expert Rev Hematol. 2017;10:65–79.
Cheng R, Dhorajia V, Kim J, Kim Y. Mitochondrial iron metabolism and neurodegenerative diseases. Neurotoxicology [Internet]. 2022 [cited 2025 Mar 14];88:88–101. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8748425/
Zong Y, Li H, Liao P, Chen L, Pan Y, Zheng Y et al. Mitochondrial dysfunction: mechanisms and advances in therapy. Sig Transduct Target Ther [Internet]. 2024 [cited 2025 Mar 14];9:1–29. Available from: https://www.nature.com/articles/s41392-024-01839-8
Creighton Mitchell T, McClain DA. Diabetes and hemochromatosis. Curr Diab Rep. 2014;14:488. https://doi.org/10.1007/s11892-014-0488-y.
Hamad M, Mohammed AK, Hachim MY, Mukhopadhy D, Khalique A, Laham A et al. Heme Oxygenase-1 (HMOX-1) and inhibitor of differentiation proteins (ID1, ID3) are key response mechanisms against iron-overload in pancreatic β-cells. Molecular and Cellular Endocrinology [Internet]. 2021 [cited 2025 Feb 2];538:111462. Available from: https://www.sciencedirect.com/science/article/pii/S0303720721003063?casa_token=1IAgf8Eg7joAAAAA:Wjpdcs2VWEm9vZjcqlrd315zR6hXjw9HSqwknaqUglmJrY6smXrsLxWdSgSDzraO0-yYMprnico
Simcox JA, McClain DA. Iron and diabetes risk. Cell Metab. 2013;17:329–41.
Harrison AV, Lorenzo FR, McClain DA. Iron and the pathophysiology of diabetes. Annu Rev Physiol. 2023;85:339–62. https://doi.org/10.1146/annurev-physiol-022522-102832.
Gabrielsen JS, Gao Y, Simcox JA, Huang J, Thorup D, Jones D et al. Adipocyte iron regulates adiponectin and insulin sensitivity. The Journal of clinical investigation [Internet]. 2012 [cited 2024 Nov 26];122:3529–40. Available from: https://www.jci.org/articles/view/44421
Citelli M, Fonte-Faria T, Nascimento-Silva V, Renovato-Martins M, Silva R, Luna AS, et al. Obesity promotes alterations in iron recycling. Nutrients. 2015;7:335–48.
Kerkadi A, Mohsen Ali R, Shehada AH, Abdelnasser AbouHassanein A, Moawad E, Bawadi J. Association between central obesity indices and iron status indicators among Qatari adults. PLoS ONE. 2021;16:e0250759.
Alshwaiyat N, Ahmad A, Wan Hassan WMR, Al–jamal H. Association between obesity and iron deficiency (Review). Exp Ther Med [Internet]. 2021 [cited 2024 Dec 2];22:1268. Available from: http://www.spandidos-publications.com/https://doi.org/10.3892/etm.2021.10703
Sanad M, Osman M, Gharib A. Obesity modulate serum hepcidin and treatment outcome of iron deficiency anemia in children: a case control study. Ital J Pediatr. 2011;37:34.
Kim SL, Shin S, Yang SJ. Iron homeostasis and energy metabolism in obesity. Clinical nutrition research [Internet]. 2022 [cited 2024 Dec 1];11:316. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9633967/
Rodríguez-Mortera R, Caccavello R, Hermo R, Garay-Sevilla ME, Gugliucci A. Higher Hepcidin Levels in Adolescents with Obesity Are Associated with Metabolic Syndrome Dyslipidemia and Visceral Fat. Antioxidants [Internet]. 2021 [cited 2025 Jul 19];10:751. Available from: https://www.mdpi.com/2076-3921/10/5/751.
Awoniyi A, Daniel O, Babatunde O. Dietary Iron Uptake and Absorption. 2024 [cited 2024 Dec 1]; Available from: https://www.intechopen.com/online-first/89440
Mleczko-Sanecka K, Silvestri L. Cell‐type‐specific insights into iron regulatory processes. Am J Hematol. 2021;96(1):110–27. https://doi.org/10.1002/ajh.26001.
Li C, Zhou L, Yin X. Pathophysiological aspects of transferrin-A potential nano-based drug delivery signaling molecule in therapeutic target for varied diseases. Frontiers in Pharmacology [Internet]. 2024 [cited 2024 Dec 1];15:1342181. Available from: https://www.frontiersin.org/articles/https://doi.org/10.3389/fphar.2024.1342181/full
Yang F, Zhang G, An N, Dai Q, Cho W, Shang H et al. Interplay of ferroptosis, cuproptosis, and PANoptosis in cancer treatment-induced cardiotoxicity: Mechanisms and therapeutic implications. Seminars in Cancer Biology [Internet]. Elsevier; 2024 [cited 2024 Dec 1]. Available from: https://www.sciencedirect.com/science/article/pii/S1044579X24000762?casa_token=PobKPuT0qdAAAAAA:NJki9F31oqwvksX5nt-fcyqoExXVx2qYBW9b-iFLR1INrCj9RfUQAHrspDADiX6XP6GzXedQLxg
Galy B, Conrad M, Muckenthaler M. Mechanisms controlling cellular and systemic iron homeostasis. Nature Reviews Molecular Cell Biology [Internet]. 2024 [cited 2024 Dec 1];25:133–55. Available from: https://www.nature.com/articles/s41580-023-00648-1
Mackenzie EL, Iwasaki K, Tsuji Y. Intracellular iron transport and storage: from molecular mechanisms to health implications. Antioxid Redox Signal. 2008;10:997–1030.
Sobieska K, Buczyńska A, Krętowski AJ, Popławska-Kita A. Iron homeostasis and insulin sensitivity: unraveling the complex interactions. Rev Endocr Metab Disord. 2024;25:925–39. https://doi.org/10.1007/s11154-024-09908-7.
Holgado AH, Gallego-Hernanz MP. Iron Metabolism: New Biomarkers Implicated. New Trends In Biomarkers and Diseases Research: An Overview [Internet]. Bentham Science Publishers; 2017 [cited 2025 Feb 2]. pp. 80–120. Available from: https://www.benthamdirect.com/content/books/9781681084954.chapter-4
Camaschella C, Girelli D. The changing landscape of iron deficiency. Mol Aspects Med. 2020;75:100861.
Pietrangelo A. Hepcidin in human iron disorders: therapeutic implications. Journal of Hepatology [Internet]. 2011 [cited 2024 Dec 1];54:173–81. Available from: https://www.sciencedirect.com/science/article/pii/S0168827810007300
Silva B, Faustino P. An overview of molecular basis of iron metabolism regulation and the associated pathologies. Biochimica et Biophysica Acta (BBA). 2015;1852:1347–59.
Katsarou A, Pantopoulos K. Hepcidin therapeutics. Pharmaceuticals. 2018;11:127.
Bajbouj K, Shafarin J, Allam H, Madkour M, Awadallah S, El-Serafy A et al. Elevated Levels of Estrogen Suppress Hepcidin Synthesis and Enhance Serum Iron Availability in Premenopausal Women. Exp Clin Endocrinol Diabetes [Internet]. 2018 [cited 2024 Jul 19];126:453–9. Available from: http://www.thieme-connect.de/DOI/DOI?10.1055/s-0043-124077
Yook J-S, Thomas SS, Toney AM, You M, Kim Y-C, Liu Z et al. Dietary iron deficiency modulates adipocyte iron homeostasis, adaptive thermogenesis, and obesity in C57BL/6 mice. The Journal of nutrition [Internet]. 2021 [cited 2024 Dec 1];151:2967–75. Available from: https://www.sciencedirect.com/science/article/pii/S0022316622003686
Muhammad JS, Bajbouj K, Shafarin J, Hamad M. Estrogen-induced epigenetic silencing of FTH1 and TFRC genes reduces liver cancer cell growth and survival. Epigenetics. 2020;15:1302–18.
Yanamadala V. Lipid Metabolism. Essential Medical Biochemistry and Metabolic Disease [Internet]. Cham: Springer Nature Switzerland; 2024 [cited 2025 Feb 2]. pp. 35–90. Available from: https://link.springer.com/https://doi.org/10.1007/978-3-031-59394-9_2
Grundy SM. What is the contribution of obesity to the metabolic syndrome? Endocrinology and Metabolism Clinics [Internet]. 2004 [cited 2025 Feb 2];33:267–82. Available from: https://www.endo.theclinics.com/article/S0889-8529(04)00018-0/abstract
Smith U. Abdominal obesity: a marker of ectopic fat accumulation. The Journal of clinical investigation [Internet]. 2015 [cited 2025 Feb 2];125:1790–2. Available from: https://www.jci.org/articles/view/81507
Shen X, Yu Z, Wei C, Hu C, Chen J. Iron metabolism and ferroptosis in nonalcoholic fatty liver disease: what is our next step? American Journal of Physiology-Endocrinology and Metabolism [Internet]. 2024 [cited 2025 Feb 2];326:E767–75. Available from: https://doi.org/10.1152/ajpendo.00260.2023
Lim S, Kim J-W, Targher G. Links between metabolic syndrome and metabolic dysfunction-associated fatty liver disease. Trends in Endocrinology & Metabolism [Internet]. 2021 [cited 2025 Feb 3];32:500–14. Available from: https://www.cell.com/trends/endocrinology-metabolism/fulltext/S1043-2760(21)00089-8?dgcid=raven_jbs_aip_email
Hsu CC, Senussi NH, Fertrin KY, Kowdley KV. Iron overload disorders. Hepatol Commun. 2022;6:1842–54. https://doi.org/10.1002/hep4.2012.
Chen Z, Tian R, She Z, Cai J, Li H. Role of oxidative stress in the pathogenesis of nonalcoholic fatty liver disease. Free Radical Biology and Medicine [Internet]. 2020 [cited 2025 Mar 15];152:116–41. Available from: https://www.sciencedirect.com/science/article/pii/S0891584919315151
Musso G, Gambino R, Cassader M. Non-alcoholic fatty liver disease from pathogenesis to management: an update. Obesity Reviews [Internet]. 2010 [cited 2025 Feb 3];11:430–45. Available from: https://onlinelibrary.wiley.com/doi/https://doi.org/10.1111/j.1467-789X.2009.00657.x
Giudetti AM. Lipid metabolism in obesity [Internet]. Frontiers in Physiology. Frontiers Media SA; 2023 [cited 2025 Feb 3]. p. 1268288. Available from: https://www.frontiersin.org/articles/https://doi.org/10.3389/fphys.2023.1268288/full
Rockfield S, Chhabra R, Robertson M, Rehman N, Bisht R, Nanjundan M. Links between iron and lipids: implications in some major human diseases. Pharmaceuticals [Internet]. 2018 [cited 2025 Feb 3];11:113. Available from: https://www.mdpi.com/1424-8247/11/4/113
Ahmed U, Latham PS, Oates PS. Interactions between hepatic iron and lipid metabolism with possible relevance to steatohepatitis. World journal of gastroenterology: WJG [Internet]. 2012 [cited 2025 Feb 3];18:4651. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3442203/
Yang X, Wang X, Yang Z, Lu H. Iron-mediated regulation in adipose tissue: a comprehensive review of metabolism and physiological effects. Curr Obes Rep. 2025;14:4. https://doi.org/10.1007/s13679-024-00600-0.
Pietrangelo A. Hereditary hemochromatosis — a new look at an old disease. N Engl J Med. 2004;350:2383–97. https://doi.org/10.1056/NEJMra031573.
Hilton C, Sabaratnam R, Drakesmith H, Karpe F. Iron, glucose and fat metabolism and obesity: an intertwined relationship. International Journal of Obesity [Internet]. 2023 [cited 2024 Dec 2];47:554–63. Available from: https://www.nature.com/articles/s41366-023-01299-0
Stoffel NU, El-Mallah C, Herter-Aeberli I, Bissani N, Wehbe N, Obeid O et al. The effect of central obesity on inflammation, hepcidin, and iron metabolism in young women. International Journal of Obesity [Internet]. 2020 [cited 2024 Dec 2];44:1291–300. Available from: https://www.nature.com/articles/s41366-020-0522-x
Szrok-Jurga S, Czumaj A, Turyn J, Hebanowska A, Swierczynski J, Sledzinski T et al. The physiological and pathological role of acyl-coA oxidation. International Journal of Molecular Sciences [Internet]. 2023 [cited 2024 Dec 2];24:14857. Available from: https://www.mdpi.com/1422-0067/24/19/14857
Mailloux RJ. Teaching the fundamentals of electron transfer reactions in mitochondria and the production and detection of reactive oxygen species. Redox biology [Internet]. 2015 [cited 2024 Dec 2];4:381–98. Available from: https://www.sciencedirect.com/science/article/pii/S2213231715000178
Zhao R-Z, Jiang S, Zhang L, Yu Z-B. Mitochondrial electron transport chain, ROS generation and uncoupling. International journal of molecular medicine [Internet]. 2019 [cited 2024 Dec 2];44:3–15. Available from: https://www.spandidos-publications.com/ijmm/44/1/3
Buse G. Cytochrome c oxidase. Copper Proteins and Copper Enzymes [Internet]. CRC Press; 2018 [cited 2024 Dec 2]. pp. 119–50. Available from: https://www.taylorfrancis.com/chapters/edit/10.1201/9781351070898-4/cytochrome-oxidase-buse
Isaya G. Mitochondrial iron-sulfur cluster dysfunction in neurodegenerative disease. Front Pharmacol. 2014;5:29.
Martelli A, Puccio H. Dysregulation of cellular iron metabolism in Friedreich ataxia: from primary iron-sulfur cluster deficit to mitochondrial iron accumulation. Front Pharmacol [Internet]. 2014 [cited 2025 Jul 19];5. Available from: https://www.frontiersin.org/journals/pharmacology/articles/https://doi.org/10.3389/fphar.2014.00130/full
Gao J, Zhou Q, Wu D, Chen L. Mitochondrial iron metabolism and its role in diseases. Clin Chim Acta. 2021;513:6–12.
Yan F, Li K, Xing W, Dong M, Yi M, Zhang H. Role of iron-related oxidative stress and mitochondrial dysfunction in cardiovascular diseases. Oxid Med Cell Longev. 2022;2022:5124553.
Sawicki KT, De Jesus A, Ardehali H. Iron metabolism in cardiovascular disease: physiology, mechanisms, and therapeutic targets. Circ Res. 2023;132:379–96.
Pondarré C, Antiochos BB, Campagna DR, Clarke SL, Greer EL, Deck KM, et al. The mitochondrial ATP-binding cassette transporter Abcb7 is essential in mice and participates in cytosolic iron–sulfur cluster biogenesis. Hum Mol Genet. 2006;15:953–64.
Mena NP, Urrutia PJ, Lourido F, Carrasco CM, Núñez MT. Mitochondrial iron homeostasis and its dysfunctions in neurodegenerative disorders. Mitochondrion. 2015;21:92–105.
Zhao Y, Yang M, Liang X. The role of mitochondria in iron overload-induced damage. J Transl Med. 2024;22:1057.
Rineau E, Gueguen N, Procaccio V, Geneviève F, Reynier P, Henrion D et al. Iron deficiency without anemia decreases physical endurance and mitochondrial complex I activity of oxidative skeletal muscle in the mouse. Nutrients [Internet]. 2021 [cited 2024 Dec 2];13:1056. Available from: https://www.mdpi.com/2072-6643/13/4/1056
Imam MU, Zhang S, Ma J, Wang H, Wang F. Antioxidants mediate both iron homeostasis and oxidative stress. Nutrients. 2017;9:671.
Kitamura N, Yokoyama Y, Taoka H, Nagano U, Hosoda S, Taworntawat T et al. Iron supplementation regulates the progression of high fat diet induced obesity and hepatic steatosis via mitochondrial signaling pathways. Scientific reports [Internet]. 2021 [cited 2024 Dec 2];11:10753. Available from: https://www.nature.com/articles/s41598-021-89673-8
Swenson SA, Moore CM, Marcero JR, Medlock AE, Reddi AR, Khalimonchuk O. From synthesis to utilization: The ins and outs of mitochondrial heme. Cells [Internet]. 2020 [cited 2024 Dec 2];9:579. Available from: https://www.mdpi.com/2073-4409/9/3/579
Badenhorst CE, Goto K, O’Brien WJ, Sims S. Iron status in athletic females, a shift in perspective on an old paradigm. Journal of Sports Sciences [Internet]. 2021 [cited 2025 Feb 3];39:1565–75. Available from: https://www.tandfonline.com/doi/full/https://doi.org/10.1080/02640414.2021.1885782
Peyssonnaux C, Zinkernagel AS, Schuepbach RA, Rankin E, Vaulont S, Haase VH et al. Regulation of iron homeostasis by the hypoxia-inducible transcription factors (HIFs). The Journal of clinical investigation [Internet]. 2007 [cited 2024 Jul 19];117:1926–32. Available from: https://www.jci.org/articles/view/31370
Nemeth E, Rivera S, Gabayan V, Keller C, Taudorf S, Pedersen BK, et al. IL-6 mediates hypoferremia of inflammation by inducing the synthesis of the iron regulatory hormone hepcidin. J Clin Invest. 2004;113:1271–6.
Millonig G, Ganzleben I, Peccerella T, Casanovas G, Brodziak-Jarosz L, Breitkopf-Heinlein K, et al. Sustained submicromolar H2O2 levels induce Hepcidin via signal transducer and activator of transcription 3 (STAT3). J Biol Chem. 2012;287:37472–82.
Andrews NC. Forging a field: the golden age of iron biology. Blood. 2008;112:219–30.
Hentze MW, Muckenthaler MU, Andrews NC. Balancing Acts: Molecular Control of Mammalian Iron Metabolism. Cell [Internet]. 2004 [cited 2025 Jul 19];117:285–97. Available from: https://www.cell.com/cell/abstract/S0092-8674(04)00343-5
Moreno-Navarrete JM, Ortega F, Moreno M, Ricart W, Fernández-Real JM. Fine-tuned iron availability is essential to achieve optimal adipocyte differentiation and mitochondrial biogenesis. Diabetologia. 2014;57:1957–67.
Moreno M, Ortega F, Xifra G, Ricart W, Fernández-Real JM, Moreno-Navarrete JM. Cytosolic aconitase activity sustains adipogenic capacity of adipose tissue connecting iron metabolism and adipogenesis. FASEB J. 2015;29:1529–39.
Moreno-Navarrete JM, Ortega F, Rodríguez A, Latorre J, Becerril S, Sabater-Masdeu M, et al. HMOX1 as a marker of iron excess-induced adipose tissue dysfunction, affecting glucose uptake and respiratory capacity in human adipocytes. Diabetologia. 2017;60:915–26.
Suzuki T, Komatsu T, Shibata H, Tanioka A, Vargas D, Kawabata-Iwakawa R, et al. Crucial role of iron in epigenetic rewriting during adipocyte differentiation mediated by JMJD1A and TET2 activity. Nucleic Acids Res. 2023;51:6120–42.
Oliveras-Cañellas N, Latorre J, Santos-González E, Lluch A, Ortega F, Mayneris-Perxachs J, et al. Inflammatory response to bacterial lipopolysaccharide drives iron accumulation in human adipocytes. Biomed Pharmacother. 2023;166:115428.
Trayhurn P, Origins. and early development of the concept that brown adipose tissue thermogenesis is linked to energy balance and obesity. Biochimie [Internet]. 2017 [cited 2024 Dec 2];134:62–70. Available from: https://www.sciencedirect.com/science/article/pii/S0300908416301742?casa_token=QmETGS1_mQ4AAAAA:oirnFFRnYdmjcLZRatSexGFmIzWnhJthK22H02_XjYXMGOEtb3T0-b5WEVIWDznZJfmVbjQQVL0
Ma W, Jia L, Xiong Q, Feng Y, Du H. The role of iron homeostasis in adipocyte metabolism. Food & function [Internet]. 2021 [cited 2024 Dec 2];12:4246–53. Available from: https://pubs.rsc.org/en/content/articlehtml/2021/xx/d0fo03442h
Takeda Y, Harada Y, Yoshikawa T, Dai P. Mitochondrial energy metabolism in the regulation of thermogenic brown fats and human metabolic diseases. International Journal of Molecular Sciences [Internet]. 2023 [cited 2024 Dec 2];24:1352. Available from: https://www.mdpi.com/1422-0067/24/2/1352
Bartelt A, Widenmaier SB, Schlein C, Johann K, Goncalves RL, Eguchi K et al. Brown adipose tissue thermogenic adaptation requires Nrf1-mediated proteasomal activity. Nature medicine [Internet]. 2018 [cited 2024 Dec 2];24:292–303. Available from: https://www.nature.com/articles/nm.4481
Tajima K, Ikeda K, Chang H-Y, Chang C-H, Yoneshiro T, Oguri Y et al. Mitochondrial lipoylation integrates age-associated decline in brown fat thermogenesis. Nature metabolism [Internet]. 2019 [cited 2024 Dec 2];1:886–98. Available from: https://www.nature.com/articles/s42255-019-0106-z
Petronek MS, Spitz DR, Allen BG. Iron–sulfur cluster biogenesis as a critical target in cancer. Antioxidants [Internet]. 2021 [cited 2024 Dec 2];10:1458. Available from: https://www.mdpi.com/2076-3921/10/9/1458
Singh AK. Understanding the Relationship between Iron and Lipid Metabolism in Non-alcoholic Fatty Liver Disease [Internet] [PhD Thesis]. Curtin University; 2022 [cited 2024 Dec 2]. Available from: https://espace.curtin.edu.au/handle/20.500.11937/93623
Deschemin J-C, Ransy C, Bouillaud F, Chung S, Galy B, Peyssonnaux C, et al. Hepcidin deficiency in mice impairs white adipose tissue browning possibly due to a defect in de novo adipogenesis. Sci Rep. 2023;13:12794.
Yook J-S, You M, Kim J, Toney AM, Fan R, Puniya BL, et al. Essential role of systemic iron mobilization and redistribution for adaptive thermogenesis through HIF2-α/hepcidin axis. Proc Natl Acad Sci U S A. 2021;118:e2109186118.
Sponton CH, de Lima-Junior JC, Leiria LO. What puts the heat on thermogenic fat: metabolism of fuel substrates. Trends in Endocrinology & Metabolism [Internet]. 2022 [cited 2024 Dec 2];33:587–99. Available from: https://www.cell.com/trends/endocrinology-metabolism/fulltext/S1043-2760(22)00100-X?dgcid=raven_jbs_etoc_email
Chernogubova E, Cannon B, Bengtsson T. Norepinephrine increases glucose transport in brown adipocytes via β3-adrenoceptors through a cAMP, PKA, and PI3-kinase-dependent pathway stimulating conventional and novel PKCs. Endocrinology [Internet]. 2004 [cited 2024 Dec 2];145:269–80. Available from: https://academic.oup.com/endo/article-abstract/145/1/269/2878243
Zhang Z, Yang D, Xiang J, Zhou J, Cao H, Che Q et al. Non-shivering thermogenesis signalling regulation and potential therapeutic applications of brown adipose tissue. International journal of biological sciences [Internet]. 2021 [cited 2024 Dec 2];17:2853. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8326120/
Yook J-S, You M, Kim Y, Zhou M, Liu Z, Kim Y-C et al. The thermogenic characteristics of adipocytes are dependent on the regulation of iron homeostasis. Journal of Biological Chemistry [Internet]. 2021 [cited 2024 Dec 2];296. Available from: https://www.jbc.org/article/S0021-9258(21)00225-8/abstract
Joffin N, Gliniak CM, Funcke J-B, Paschoal VA, Crewe C, Chen S, et al. Adipose tissue macrophages exert systemic metabolic control by manipulating local iron concentrations. Nat Metab. 2022;4:1474–94.
Ameka MK, Beavers WN, Shaver CM, Ware LB, Kerchberger VE, Schoenfelt KQ, et al. An iron refractory phenotype in obese adipose tissue macrophages leads to adipocyte iron overload. Int J Mol Sci. 2022;23:7417.
Ikeda Y, Watanabe H, Shiuchi T, Hamano H, Horinouchi Y, Imanishi M, et al. Deletion of H-ferritin in macrophages alleviates obesity and diabetes induced by high-fat diet in mice. Diabetologia. 2020;63:1588–602.
Zhang Z, Funcke J-B, Zi Z, Zhao S, Straub LG, Zhu Y, et al. Adipocyte iron levels impinge on a fat-gut crosstalk to regulate intestinal lipid absorption and mediate protection from obesity. Cell Metab. 2021;33:1624–e16399.
Hubler MJ, Erikson KM, Kennedy AJ, Hasty AH. Mfehi adipose tissue macrophages compensate for tissue iron perturbations in mice. Am J Physiol Cell Physiol. 2018;315:C319–29.
Yang Q, Jian J, Katz S, Abramson SB, Huang X. 17β-estradiol inhibits iron hormone hepcidin through an estrogen responsive element half-site. Endocrinology. 2012;153(7):3170–8.
Ikeda Y, Tajima S, Izawa-Ishizawa Y, Kihira Y, Ishizawa K, Tomita S, et al. Estrogen regulates Hepcidin expression via GPR30-BMP6-dependent signaling in hepatocytes. PLoS ONE. 2012;7:e40465.
Hamad M, Bajbouj K, Taneera J. The case for an estrogen-iron axis in health and disease. Exp Clin Endocrinol Diabetes. 2020;128:270–7.
Hou Y, Zhang S, Wang L, Li J, Qu G, He J et al. Estrogen regulates iron homeostasis through governing hepatic hepcidin expression via an estrogen response element. Gene [Internet]. 2012 [cited 2024 Jul 20];511:398–403. Available from: https://www.sciencedirect.com/science/article/pii/S0378111912011699?casa_token=mbqngUGVTFAAAAAA:ounrngMp9KrIKa4T68pPDWOoKR7M--rSI0pw-nkMEMsWLV21Cl9Ugt7IO706S2yzhnjGuD93pSY
Ahanchi NS, Khatami F, Llanaj E, Quezada-Pinedo HG, Dizdari H, Bano A, et al. The complementary roles of iron and estrogen in menopausal differences in cardiometabolic outcomes. Clin Nutr. 2024;43:1136–50.
Matta RA, AbdElftah ME, Essawy MG, Saedii AA. Interplay of serum hepcidin with female sex hormones, metabolic syndrome, and abdominal fat distribution among premenopausal and postmenopausal women. The Egyptian Journal of Internal Medicine [Internet]. 2022 [cited 2025 Jul 19];34:undefined-undefined. Available from: https://www.mendeley.com/catalogue/70b6b68c-a4b3-3d29-bf13-0c97307afbb1/.
Harrison-Findik DD. Gender-related variations in iron metabolism and liver diseases. World journal of hepatology [Internet]. 2010 [cited 2024 Jul 19];2:302. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2999297/
Park CY, Chung J, Koo K-O, Kim MS, Han SN. Hepatic iron storage is related to body adiposity and hepatic inflammation. Nutr Metab (Lond). 2017;14:14. https://doi.org/10.1186/s12986-017-0169-3.
Wylenzek F, Bühling KJ, Laakmann E. A systematic review on the impact of nutrition and possible supplementation on the deficiency of vitamin complexes, iron, omega-3-fatty acids, and lycopene in relation to increased morbidity in women after menopause. Arch Gynecol Obstet. 2024;310:2235–45.
Gozzelino R, Arosio P. Iron homeostasis in health and disease. Int J Mol Sci. 2016;17:130.
Lainé F, Ruivard M, Loustaud-Ratti V, Bonnet F, Calès P, Bardou‐Jacquet E et al. Metabolic and hepatic effects of bloodletting in dysmetabolic iron overload syndrome: A randomized controlled study in 274 patients. Hepatology [Internet]. 2017 [cited 2025 Feb 3];65:465–74. Available from: https://journals.lww.com/01515467-201702000-00010
Teng I, Tseng S, Aulia B, Shih C, Bai C, Chang J. Can diet-induced weight loss improve iron homoeostasis in patients with obesity: a systematic review and meta‐analysis. Obes Rev. 2020;21:e13080. https://doi.org/10.1111/obr.13080.
Lee HS, Park E. Association of serum ferritin level and depression with respect to the body mass index in Korean male adults. Nutrition Research and Practice [Internet]. 2019 [cited 2024 Dec 2];13:263–7. Available from: https://synapse.koreamed.org/articles/1125391
Britton L, Jaskowski L-A, Bridle K, Secondes E, Wallace D, Santrampurwala N, et al. Ferroportin expression in adipocytes does not contribute to iron homeostasis or metabolic responses to a high calorie diet. Cell Mol Gastroenterol Hepatol. 2018;5:319–31.
Liu L, Yan F, Yan H, Wang Z. Impact of iron supplementation on gestational diabetes mellitus: a literature review. Diabetes Obes Metab. 2023;25(2):342–53. https://doi.org/10.1111/dom.14886.
Garcia-Valdes L, Campoy C, Hayes H, Florido J, Rusanova I, Miranda MT et al. The impact of maternal obesity on iron status, placental transferrin receptor expression and hepcidin expression in human pregnancy. International journal of obesity [Internet]. 2015 [cited 2024 Dec 2];39:571–8. Available from: https://www.nature.com/articles/ijo20153
Gasmi A, Bjørklund G, Mujawdiya PK, Semenova Y, Peana M, Dosa A, et al. Micronutrients deficiences in patients after bariatric surgery. Eur J Nutr. 2022;61:55–67. https://doi.org/10.1007/s00394-021-02619-8.
Vaquero MP, Martínez-Suárez M, García-Quismondo Á, Del Cañizo FJ, Sánchez-Muniz FJ. Diabesity negatively affects transferrin saturation and iron status. The DICARIVA study. Diabetes Research and Clinical Practice [Internet]. 2021 [cited 2024 Dec 2];172:108653. Available from: https://www.sciencedirect.com/science/article/pii/S0168822721000061?casa_token=uCBqWujUA0wAAAAA:e49UxrouOz8m4DkGey5tBdXjtmH6x8076zZlxYFHFTlVCt_-xvx3rBbU1FLKg9TYt5FUkSwD6g
Laudisio D, de Alteriis G, Vetrani C, Aprano S, Pugliese G, Zumbolo F et al. Iron Levels and Markers of Inflammation in a Population of Adults with Severe Obesity, a Cross-Sectional Study. Nutrients [Internet]. 2023 [cited 2024 Dec 2];15:4702. Available from: https://www.mdpi.com/2072-6643/15/21/4702
Winter WE, Bazydlo LA, Harris NS. The molecular biology of human iron metabolism. Lab Med. 2014;45:92–102.
Fujii T, Asai T, Matsuo T, Okamura K. Effect of resistance exercise on iron status in moderately iron-deficient rats. Biol Trace Elem Res. 2011;144:983–91. https://doi.org/10.1007/s12011-011-9072-3.
Krisai P, Leib S, Aeschbacher S, Kofler T, Assadian M, Maseli A et al. Relationships of iron metabolism with insulin resistance and glucose levels in young and healthy adults. European journal of internal medicine [Internet]. 2016 [cited 2025 Feb 4];32:31–7. Available from: https://www.sciencedirect.com/science/article/pii/S0953620516300371
Nemeth E, Ganz T. Anemia of inflammation. Hematol Oncol Clin North Am. 2014;28:671–81. vi.
Dongiovanni P, Fracanzani AL, Fargion S, Valenti L. Iron in fatty liver and in the metabolic syndrome: a promising therapeutic target. J Hepatol. 2011;55:920–32.
Britton LJ, Subramaniam VN, Crawford DH. Iron and non-alcoholic fatty liver disease. World journal of gastroenterology [Internet]. 2016 [cited 2024 Dec 3];22:8112. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5037080/
Fernández-Real JM, Peñarroja G, Castro A, García-Bragado F, Hernández-Aguado I, Ricart W. Blood letting in high-ferritin type 2 diabetes: effects on insulin sensitivity and beta-cell function. Diabetes. 2002;51:1000–4.
Darshan D, Anderson G-J. Liver-gut axis in the regulation of iron homeostasis. World J Gastroenterol. 2007;13:4737–45.
Skikne BS, Punnonen K, Caldron PH, Bennett MT, Rehu M, Gasior GH, et al. Improved differential diagnosis of anemia of chronic disease and iron deficiency anemia: a prospective multicenter evaluation of soluble transferrin receptor and the sTfR/log ferritin index. Am J Hematol. 2011;86(11):923–7. https://doi.org/10.1002/ajh.22108.
Casu C, Nemeth E, Rivella S. Hepcidin agonists as therapeutic tools. Blood. 2018;131:1790–4. https://doi.org/10.1182/blood-2017-11-737411.
Blanchette NL, Manz DH, Torti FM, Torti SV. Modulation of hepcidin to treat iron deregulation: potential clinical applications. Expert Rev Hematol. 2016;9(2):169–86. https://doi.org/10.1586/17474086.2016.1124757.
Sebastiani G, Wilkinson N, Pantopoulos K. Pharmacological targeting of the Hepcidin/Ferroportin axis. Front Pharmacol. 2016;7:160.
Li L, Wang K, Jia R, Xie J, Ma L, Hao Z, et al. Ferroportin-dependent ferroptosis induced by ellagic acid retards liver fibrosis by impairing the SNARE complexes formation. Redox Biol. 2022;56:102435.
Zhang D-L, Rouault TA. How does hepcidin hinder ferroportin activity? Blood. 2018;131:840–2. https://doi.org/10.1182/blood-2018-01-824151.
Yue F, Shi Y, Wu S, Xing L, He D, Wei L, et al. Metformin alleviates hepatic iron overload and ferroptosis through AMPK-ferroportin pathway in HFD-induced NAFLD. iScience. 2023;26:108560.
Nemeth E, Ganz T. Hepcidin and Iron in Health and Disease. Annu Rev Med [Internet]. 2023 [cited 2025 Apr 17];74:261–77. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9943683/
Lehmann EF, Liziczai M, Drożdżyk K, Altermatt P, Langini C, Manolova V, et al. Structures of Ferroportin in complex with its specific inhibitor Vamifeport. Elife. 2023;12:e83053.
Traeger L, Wiegand SB, Sauer AJ, Corman BHP, Peneyra KM, Wunderer F, et al. UBA6 and NDFIP1 regulate the degradation of Ferroportin. Haematologica. 2022;107:478–88.
Miranda MA, St Pierre CL, Macias-Velasco JF, Nguyen HA, Schmidt H, Agnello LT et al. Dietary iron interacts with genetic background to influence glucose homeostasis. Nutrition & Metabolism [Internet]. 2019 [cited 2025 Jul 19];16:13. Available from: https://doi.org/10.1186/s12986-019-0339-6
Wang R, Liu Y, Thabane L, Olier I, Li L, Ortega-Martorell S, et al. Relationship between trajectories of dietary iron intake and risk of type 2 diabetes mellitus: evidence from a prospective cohort study. Nutr J. 2024;23:15.
Littlejohn PT, Bar-Yoseph H, Edwards K, Li H, Ramirez-Contreras CY, Holani R, et al. Multiple micronutrient deficiencies alter energy metabolism in host and gut microbiome in an early-life murine model. Front Nutr. 2023;10:1151670.
Rinaldi L, Pafundi PC, Galiero R, Caturano A, Morone MV, Silvestri C et al. Mechanisms of non-alcoholic fatty liver disease in the metabolic syndrome. A narrative review. Antioxidants [Internet]. 2021 [cited 2024 Dec 3];10:270. Available from: https://www.mdpi.com/2076-3921/10/2/270
Lian C-Y, Zhai Z-Z, Li Z-F, Wang L. High fat diet-triggered non-alcoholic fatty liver disease: A review of proposed mechanisms. Chemico-biological interactions [Internet]. 2020 [cited 2024 Dec 3];330:109199. Available from: https://www.sciencedirect.com/science/article/pii/S0009279720309030?casa_token=3Phgb6cyTNIAAAAA:-VOcQuahYYJ5wbJY1FXBZ945jZuE4B4adSG5rl3dkuQfZVFwm3B06LtB0-21-Uivz22uzxgiYg
Kouroumalis E, Tsomidis I, Voumvouraki A. Iron as a therapeutic target in chronic liver disease. World Journal of Gastroenterology [Internet]. 2023 [cited 2024 Dec 3];29:616. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9896614/
Barbalho SM, Laurindo LF, Tofano RJ, Flato UAP, Mendes CG, de Alvares Goulart R et al. Dysmetabolic iron overload syndrome: Going beyond the traditional risk factors associated with metabolic syndrome. Endocrines [Internet]. 2023 [cited 2024 Dec 3];4:18–37. Available from: https://www.mdpi.com/2673-396X/4/1/2
Li L-X, Guo F-F, Liu H, Zeng T. Iron overload in alcoholic liver disease: underlying mechanisms, detrimental effects, and potential therapeutic targets. Cell Mol Life Sci. 2022;79(4):201. https://doi.org/10.1007/s00018-022-04239-9.
Liu Y, Li G, Lu F, Guo Z, Cai S, Huo T. Excess iron intake induced liver injury: The role of gut-liver axis and therapeutic potential. Biomedicine & Pharmacotherapy [Internet]. 2023 [cited 2024 Dec 3];168:115728. Available from: https://www.sciencedirect.com/science/article/pii/S0753332223015263
Bloomer SA, Brown KE. Iron-induced liver injury: a critical reappraisal. International journal of molecular sciences [Internet]. 2019 [cited 2024 Dec 3];20:2132. Available from: https://www.mdpi.com/1422-0067/20/9/2132
Unruh D, Srinivasan R, Benson T, Haigh S, Coyle D, Batra N, et al. Red blood cell dysfunction induced by high-fat diet: potential implications for obesity-related atherosclerosis. Circulation. 2015;132(20):1898–908. https://doi.org/10.1161/CIRCULATIONAHA.115.017313.
Videla LA, Valenzuela R. Perspectives in liver redox imbalance: toxicological and pharmacological aspects underlying iron overloading, nonalcoholic fatty liver disease, and thyroid hormone action. Biofactors. 2022;48(2):400–15. https://doi.org/10.1002/biof.1797.
Yuan X, Li L, Zhang Y, Ai R, Li D, Dou Y, et al. Heme oxygenase 1 alleviates nonalcoholic steatohepatitis by suppressing hepatic ferroptosis. Lipids Health Dis. 2023;22:99. https://doi.org/10.1186/s12944-023-01855-7.
Alam S, Hasan MK, Neaz S, Hussain N, Hossain MF, Rahman T. Diabetes Mellitus: insights from epidemiology, biochemistry, risk factors, diagnosis, complications and comprehensive management. Diabetology [Internet]. 2021 [cited 2024 Dec 3];2:36–50. Available from: https://www.mdpi.com/2673-4540/2/2/4
Yameny AA, Diabetes Mellitus O. 2024. Journal of Bioscience and Applied Research [Internet]. 2024 [cited 2024 Dec 3];10:641–5. Available from: https://jbaar.journals.ekb.eg/article_382794.html
Wolide AD, Zawdie B, Alemayehu Nigatu T, Tadesse S. Evaluation of serum ferritin and some metal elements in type 2 diabetes mellitus patients: comparative cross-sectional study. DMSO [Internet]. 2016 [cited 2025 Feb 4];Volume 9:417–24. Available from: https://www.dovepress.com/evaluation-of-serum-ferritin-and-some-metal-elements-in-type-2-diabete-peer-reviewed-article-DMSO
Żekanowska E, Boinska J, Giemza-Kucharska P, Kwapisz J. Obesity and iron metabolism. BioTechnologia [Internet]. 2011 [cited 2025 Feb 4];92:147–52. Available from: https://www.termedia.pl/Journal/-85/pdf-23862-10?filename=06.pdf
Henriksen EJ, Diamond-Stanic MK, Marchionne EM. Oxidative stress and the etiology of insulin resistance and type 2 diabetes. Free Radical Biology and Medicine [Internet]. 2011 [cited 2025 Feb 4];51:993–9. Available from: https://www.sciencedirect.com/science/article/pii/S0891584910014103
Backe MB, Moen IW, Ellervik C, Hansen JB, Mandrup-Poulsen T. Iron regulation of pancreatic beta-cell functions and oxidative stress. Annu Rev Nutr. 2016;36:241–73. https://doi.org/10.1146/annurev-nutr-071715-050939.
Kataria Y, Wu Y, Horskjær P, de H, Mandrup-Poulsen T, Ellervik C. Iron status and gestational diabetes—a meta-analysis. Nutrients [Internet]. 2018 [cited 2024 Dec 3];10:621. Available from: https://www.mdpi.com/2072-6643/10/5/621
Holendová B, Stokičová L, Plecitá-Hlavatá L. Lipid Dynamics in Pancreatic β-Cells: Linking Physiology to Diabetes Onset. Antioxidants & Redox Signaling [Internet]. 2024 [cited 2024 Dec 3];41:865–89. Available from: https://www.liebertpub.com/doi/https://doi.org/10.1089/ars.2024.0724
Pantopoulos K. Inherited disorders of iron overload. Frontiers in nutrition [Internet]. 2018 [cited 2024 Dec 3];5:103. Available from: https://www.frontiersin.org/articles/https://doi.org/10.3389/fnut.2018.00103/full
Balakrishnan S, Dhavamani S, Prahalathan C. β-Cell specific transcription factors in the context of diabetes mellitus and β-cell regeneration. Mechanisms of development [Internet]. 2020 [cited 2024 Dec 3];163:103634. Available from: https://www.sciencedirect.com/science/article/pii/S0925477320300393
Taneera J, Ali A, Hamad M. The Role of Estrogen Signaling in Cellular Iron Metabolism in Pancreatic β Cells. Pancreas [Internet]. 2022 [cited 2024 Dec 3];51:121–7. Available from: https://journals.lww.com/pancreasjournal/fulltext/2022/02000/the_role_of_estrogen_signaling_in_cellular_iron.4.aspx
Gáll T, Balla G, Balla J. Heme, heme oxygenase, and endoplasmic reticulum stress—a new insight into the pathophysiology of vascular diseases. International journal of molecular sciences [Internet]. 2019 [cited 2024 Dec 3];20:3675. Available from: https://www.mdpi.com/1422-0067/20/15/3675
Schipper HM, Song W. A heme oxygenase-1 transducer model of degenerative and developmental brain disorders. International journal of molecular sciences [Internet]. 2015 [cited 2024 Dec 3];16:5400–19. Available from: https://www.mdpi.com/1422-0067/16/3/5400
An J-R, Wang Q-F, Sun G-Y, Su J-N, Liu J-T, Zhang C et al. The Role of Iron Overload in Diabetic Cognitive Impairment: A Review. DMSO [Internet]. 2023 [cited 2024 Dec 3];Volume 16:3235–47. Available from: https://www.dovepress.com/the-role-of-iron-overload-in-diabetic-cognitive-impairment-a-review-peer-reviewed-fulltext-article-DMSO
Marku A, Galli A, Marciani P, Dule N, Perego C, Castagna M. Iron metabolism in pancreatic beta-cell function and dysfunction. Cells [Internet]. 2021 [cited 2024 Dec 3];10:2841. Available from: https://www.mdpi.com/2073-4409/10/11/2841
Ježek P, Jabůrek M, Plecitá-Hlavatá L Contribution of Oxidative Stress and Impaired Biogenesis of Pancreatic β-Cells to Type 2 Diabetes., Antioxidants. & Redox Signaling [Internet]. 2019 [cited 2024 Dec 3];31:722–51. Available from: https://www.liebertpub.com/doi/https://doi.org/10.1089/ars.2018.7656
Day EA, Ford RJ, Steinberg GR. AMPK as a therapeutic target for treating metabolic diseases. Trends in Endocrinology & Metabolism [Internet]. 2017 [cited 2025 Feb 4];28:545–60. Available from: https://www.cell.com/trends/endocrinology-metabolism/fulltext/S1043-2760(17)30068-1
Hardie DG. AMP-activated protein kinase: a master switch in glucose and lipid metabolism. Rev Endocr Metab Disord. 2004;5(2):119–25. https://doi.org/10.1023/B:REMD.0000021433.63915.bb.
Wu L, Zhang L, Li B, Jiang H, Duan Y, Xie Z et al. AMP-activated protein kinase (AMPK) regulates energy metabolism through modulating thermogenesis in adipose tissue. Frontiers in physiology [Internet]. 2018 [cited 2024 Dec 3];9:122. Available from: https://www.frontiersin.org/articles/https://doi.org/10.3389/fphys.2018.00122/full
Huang J, Simcox J, Mitchell TC, Jones D, Cox J, Luo B et al. Iron regulates glucose homeostasis in liver and muscle via AMP-activated protein kinase in mice. The FASEB Journal [Internet]. 2013 [cited 2024 Dec 3];27:2845. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3688748/
Chen Z, Cao B, Liu L, Tang X, Xu H. Association between obesity and anemia in an nationally representative sample of United States adults: a cross-sectional study. Frontiers in Nutrition [Internet]. 2024 [cited 2024 Dec 3];11:1304127. Available from: https://www.frontiersin.org/articles/https://doi.org/10.3389/fnut.2024.1304127/full
Rajabnia M, Hajimirzaei SM, Hatamnejad MR, Shahrokh S, Ghavami SB, Farmani M, et al. Obesity, a challenge in the management of inflammatory bowel diseases. Immunol Res. 2022;70:742–51. https://doi.org/10.1007/s12026-022-09315-7.
Reichert CO, da Cunha J, Levy D, Maselli LMF, Bydlowski SP, Spada C. Hepcidin: homeostasis and diseases related to iron metabolism. Acta Haematol. 2017;137:220–36.
Yao J, Wu D, Qiu Y. Adipose tissue macrophage in obesity-associated metabolic diseases. Frontiers in immunology [Internet]. 2022 [cited 2024 Dec 3];13:977485. Available from: https://www.frontiersin.org/articles/https://doi.org/10.3389/fimmu.2022.977485/full
Gotardo ÉMF, dos SANTOS AN, Miyashiro RA, Gambero S, Rocha T, Ribeiro ML et al. Mice that are fed a high-fat diet display increased hepcidin expression in adipose tissue. Journal of nutritional science and vitaminology [Internet]. 2013 [cited 2024 Dec 3];59:454–61. Available from: https://www.jstage.jst.go.jp/article/jnsv/59/5/59_454/_article/-char/ja/
Sagar P, Angmo S, Sandhir R, Rishi V, Yadav H, Singhal NK. Effect of hepcidin antagonists on anemia during inflammatory disorders. Pharmacol Ther. 2021;226:107877.
Nili M, David L, Elferich J, Shinde U, Rotwein P. Proteomic analysis and molecular modelling characterize the iron-regulatory protein haemojuvelin/repulsive guidance molecule c. Biochemical Journal [Internet]. 2013 [cited 2024 Dec 3];452:87–95. Available from: https://portlandpress.com/biochemj/article-abstract/452/1/87/46184
Rochette L, Gudjoncik A, Guenancia C, Zeller M, Cottin Y, Vergely C. The iron-regulatory hormone hepcidin: a possible therapeutic target? Pharmacol Ther. 2015;146:35–52.
Moreno-Navarrete JM, Moreno M, Puig J, Blasco G, Ortega F, Xifra G et al. Hepatic iron content is independently associated with serum hepcidin levels in subjects with obesity. Clinical Nutrition [Internet]. 2017 [cited 2024 Dec 3];36:1434–9. Available from: https://www.sciencedirect.com/science/article/pii/S0261561416312626?casa_token=BsytCWP-XREAAAAA:11esd6-1hNxxs_sDda6npbZFzk98BFmg0QKiKlg1Myk7FfSGFSueH5HNP0iL-Dv-k-QHXbF6QA
Xiao L, Luo G, Li H, Yao P, Tang Y. Dietary iron overload mitigates atherosclerosis in high-fat diet-fed Apolipoprotein E knockout mice: role of dysregulated hepatic fatty acid metabolism. Biochimica et biophysica acta (BBA)-Molecular and cell biology of lipids. 2021;1866:159004.
Iannone F, Lapadula G. Obesity and inflammation-targets for OA therapy. Current drug targets [Internet]. 2010 [cited 2024 Dec 3];11:586–98. Available from: https://www.ingentaconnect.com/content/ben/cdt/2010/00000011/00000005/art00008
Martínez-Uña M, López-Mancheño Y, Diéguez C, Fernández-Rojo MA, Novelle MG. Unraveling the role of leptin in liver function and its relationship with liver diseases. International journal of molecular sciences [Internet]. 2020 [cited 2024 Dec 3];21:9368. Available from: https://www.mdpi.com/1422-0067/21/24/9368
Chung B, Matak P, McKie AT, Sharp P. Leptin increases the expression of the iron regulatory hormone hepcidin in HuH7 human hepatoma cells. The Journal of nutrition [Internet]. 2007 [cited 2024 Dec 3];137:2366–70. Available from: https://www.sciencedirect.com/science/article/pii/S0022316622094147
Lin D, Medeiros DM. The microbiome as a major function of the gastrointestinal tract and its implication in micronutrient metabolism and chronic diseases. Nutr Res. 2023;112:30–45.
Schoeler M, Caesar R. Dietary lipids, gut microbiota and lipid metabolism. Rev Endocr Metab Disord. 2019;20:461–72.
Flint HJ, Duncan SH, Scott KP, Louis P. Links between diet, gut microbiota composition and gut metabolism. Proc Nutr Soc. 2015;74:13–22.
Li S, You J, Wang Z, Liu Y, Wang B, Du M, et al. Curcumin alleviates high-fat diet-induced hepatic steatosis and obesity in association with modulation of gut microbiota in mice. Food Res Int. 2021;143:110270.
Liang H, Jiang F, Cheng R, Luo Y, Wang J, Luo Z, et al. A high-fat diet and high-fat and high-cholesterol diet may affect glucose and lipid metabolism differentially through gut microbiota in mice. Exp Anim. 2021;70:73–83.
Abbaspour N, Hurrell R, Kelishadi R. Review on iron and its importance for human health. J Res Med Sciences: Official J Isfahan Univ Med Sci. 2014;19:164.
Yilmaz B, Li H. Gut microbiota and iron: the crucial actors in health and disease. Pharmaceuticals. 2018;11:98.
Malesza IJ, Bartkowiak-Wieczorek J, Winkler-Galicki J, Nowicka A, Dzięciołowska D, Błaszczyk M, et al. The dark side of iron: the relationship between iron, inflammation and gut microbiota in selected diseases associated with iron deficiency anaemia—a narrative review. Nutrients. 2022;14:3478.
Jaeggi T, Kortman GA, Moretti D, Chassard C, Holding P, Dostal A, et al. Iron fortification adversely affects the gut microbiome, increases pathogen abundance and induces intestinal inflammation in Kenyan infants. Gut. 2015;64:731–42.
Seyoum Y, Baye K, Humblot C. Iron homeostasis in host and gut bacteria – a complex interrelationship. Gut Microbes. 2021;13:1874855.
Xiong Q, Zhao J, Tian C, Ma W, Miao L, Liang L, et al. Regulation of a high-iron diet on lipid metabolism and gut microbiota in mice. Animals. 2022;12:2063.
Gu K, Wu A, Yu B, Zhang T, Lai X, Chen J, et al. Iron overload induces colitis by modulating ferroptosis and interfering gut microbiota in mice. Sci Total Environ. 2023;905:167043.
Rodríguez C, Romero E, Garrido-Sanchez L, Alcaín-Martínez G, Andrade R, Taminiau B, et al. Microbiota insights in Clostridium difficile infection and inflammatory bowel disease. Gut Microbes. 2020;12:1725220.
Rodrigues VF, Elias-Oliveira J, Pereira ÍS, Pereira JA, Barbosa SC, Machado MSG, et al. Akkermansia muciniphila and gut immune system: a good friendship that attenuates inflammatory bowel disease, obesity, and diabetes. Front Immunol. 2022;13:934695.
Abenavoli L, Scarpellini E, Colica C, Boccuto L, Salehi B, Sharifi-Rad J, et al. Gut microbiota and obesity: a role for probiotics. Nutrients. 2019;11:2690.
You H, Tan Y, Yu D, Qiu S, Bai Y, He J, et al. The therapeutic effect of SCFA-mediated regulation of the intestinal environment on obesity. Front Nutr. 2022;9:886902.
Jia X, Xu W, Zhang L, Li X, Wang R, Wu S. Impact of Gut Microbiota and Microbiota-Related Metabolites on Hyperlipidemia. Front Cell Infect Microbiol [Internet]. 2021 [cited 2025 Jul 19];11. Available from: https://www.frontiersin.org/journals/cellular-and-infection-microbiology/articles/https://doi.org/10.3389/fcimb.2021.634780/full
Peng L, Li Z-R, Green RS, Holzman IR, Lin J. Butyrate Enhances the Intestinal Barrier by Facilitating Tight Junction Assembly via Activation of AMP-Activated Protein Kinase in Caco-2 Cell Monolayers. J Nutr [Internet]. 2009 [cited 2025 Jul 19];139:1619–25. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2728689/
Fujisaka S, Watanabe Y, Tobe K. The gut microbiome: a core regulator of metabolism. J Endocrinol. 2023;256:e220111.
Yu Y, Raka F, Adeli K. The role of the gut microbiota in lipid and lipoprotein metabolism. J Clin Med. 2019;8:2227.
Long Q, Luo F, Li B, Li Z, Guo Z, Chen Z, et al. Gut microbiota and metabolic biomarkers in metabolic dysfunction-associated steatotic liver disease. Hepatol Commun. 2024;8:e0310.
Jian Z, Zeng L, Xu T, Sun S, Yan S, Zhao S, et al. The intestinal microbiome associated with lipid metabolism and obesity in humans and animals. J Appl Microbiol. 2022;133:2915–30.
Rivera-Iñiguez I, Panduro A, Roman S, González-Aldaco K. What do we know about nutrient-based strategies targeting molecular mechanisms associated with obesity-related fatty liver disease? Ann Hepatol. 2023;28:100874.
Cunningham AL, Stephens JW, Harris DA. A review on gut microbiota: a central factor in the pathophysiology of obesity. Lipids Health Dis. 2021;20:65.
Lei L, Zhao N, Zhang L, Chen J, Liu X, Piao S. Gut microbiota is a potential goalkeeper of dyslipidemia. Front Endocrinol (Lausanne). 2022;13:950826.
Wang X, Wu Q, Zhong M, Chen Y, Wang Y, Li X, et al. Adipocyte-derived ferroptotic signaling mitigates obesity. Cell Metab. 2025;37:673–e6917.
Qi J, Kim J-W, Zhou Z, Lim C-W, Kim B. Ferroptosis affects the progression of nonalcoholic steatohepatitis via the modulation of lipid peroxidation-mediated cell death in mice. Am J Pathol. 2020;190:68–81.
Speakman JR. Ferroptosis in adipose tissue: a promising pathway for treating obesity? Cell Metab. 2025;37:560–1.
Ma W, Jia L, Xiong Q, Du H. Iron Overload Protects from Obesity by Ferroptosis. Foods [Internet]. 2021 [cited 2025 Jul 19];10:1787. Available from: https://www.mdpi.com/2304-8158/10/8/1787
Zhou D, Lu P, Mo X, Yang B, Chen T, Yao Y, et al. Ferroptosis and metabolic syndrome and complications: association, mechanism, and translational applications. Front Endocrinol (Lausanne). 2023;14:1248934.
Luo Y, Chen H, Liu H, Jia W, Yan J, Ding W, et al. Protective effects of ferroptosis Inhibition on high fat diet-induced liver and renal injury in mice. Int J Clin Exp Pathol. 2020;13:2041–9.
Park GC, Bang S-Y, Kim JM, Shin S-C, Cheon Y-I, Kim KM, et al. Inhibiting ferroptosis prevents the progression of steatotic liver disease in obese mice. Antioxidants. 2024;13:1336.
Liu W, Zou H, You D, Zhang H, Xu L. Sodium houttuybonate promotes the browning of white adipose tissue by inhibiting ferroptosis via the AMPK-NRF2-HO1 pathway. Antioxidants. 2024;13:1057.
Acknowledgements
The authors wish to acknowledge the generous in-house support of the Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, UAE.
Funding
This work was supported by research grant 2101050170 (MH), University of Sharjah, Sharjah, UAE, and the Iron Biology Research Group operation budget, the Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, UAE.
Author information
Authors and Affiliations
Contributions
Conceptualization, MH; methodology, MH, RH, RR, JS; original draft preparation, BR, RR, and MH; reviewing and editing, MH, JSM, JT, JR. All authors have read and agreed to the published version of the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Rah, B., Rafiq, R., Sharafain, J. et al. Modulation of hepcidin synthesis: the core link in the bi-directional relationship between iron and obesity. Rev Endocr Metab Disord (2025). https://doi.org/10.1007/s11154-025-09997-y
Accepted:
Published:
DOI: https://doi.org/10.1007/s11154-025-09997-y


