Skip to main content
Log in

Modulation of hepcidin synthesis: the core link in the bi-directional relationship between iron and obesity

  • Published:
Reviews in Endocrine and Metabolic Disorders Aims and scope Submit manuscript

Abstract

Over the past five decades, clinical and experimental data have established that iron metabolism, lipid metabolism, and obesity are intricately linked and differentially influence one another through complex metabolic pathways. Iron dyshomeostasis is now recognized as a key modulator of lipid metabolism, with profound implications for obesity and related metabolic disorders. Likewise, lipid metabolism and obesity significantly impact iron absorption and recycling. Although this interplay between iron metabolism, lipid metabolism, and obesity is complex, modulation of hepcidin synthesis seems to be the core link between these variables. As the global prevalence of metabolic disorders continues to escalate, understanding their multifactorial etiology has become a public health priority. Emerging evidence highlights the dysregulation of lipid metabolism as a central driver in the onset and progression of these conditions, with iron metabolism playing a crucial regulatory role. This review explores the relationship between iron metabolism on one hand and lipid metabolism and obesity on the other with specific emphasis on the molecular mechanisms underlying this relationship. The review also explores the bi-directional relationship between iron metabolism and mitochondrial functions, mainly energy production. It concludes by outlining the pathophysiological consequences of disrupted iron metabolism, vis-a-vis lipid metabolism, obesity, and diabetes. By synthesizing current knowledge, this review aims to provide new insights that could guide the development of novel therapeutic strategies to manage obesity, diabetes, and related metabolic disorders.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

References

  1. Rah B, Farhat NM, Hamad M, Muhammad JS. Jak/STAT signaling and cellular iron metabolism in hepatocellular carcinoma: therapeutic implications. Clin Exp Med. 2023;23(7):3147–57. https://doi.org/10.1007/s10238-023-01047-8.

    Article  CAS  PubMed  Google Scholar 

  2. Ru Q, Li Y, Chen L, Wu Y, Min J, Wang F. Iron homeostasis and ferroptosis in human diseases: mechanisms and therapeutic prospects. Sig Transduct Target Ther [Internet]. 2024 [cited 2025 Mar 14];9:1–64. Available from: https://www.nature.com/articles/s41392-024-01969-z

  3. Wallace DF. The regulation of iron absorption and homeostasis. The Clinical Biochemist Reviews [Internet]. 2016 [cited 2024 Nov 25];37:51. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5198508/

  4. Xu Y, Alfaro-Magallanes VM, Babitt JL. Physiological and pathophysiological mechanisms of hepcidin regulation: clinical implications for iron disorders. Br J Haematol. 2021;193:882–93. https://doi.org/10.1111/bjh.17252.

    Article  PubMed  Google Scholar 

  5. Gulec S, Anderson GJ, Collins JF. Mechanistic and regulatory aspects of intestinal iron absorption. Am J Physiol Gastrointest Liver Physiol [Internet]. 2014 [cited 2025 Mar 14];307:G397–409. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4137115/

  6. Qiu F, Wu L, Yang G, Zhang C, Liu X, Sun X, et al. The role of iron metabolism in chronic diseases related to obesity. Mol Med. 2022;28:130. https://doi.org/10.1186/s10020-022-00558-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Deugnier Y, Bardou-Jacquet É, Lainé F. Dysmetabolic iron overload syndrome (DIOS). La Presse Médicale [Internet]. 2017 [cited 2024 Dec 3];46:e306–11. Available from: https://www.sciencedirect.com/science/article/pii/S075549821730458X?casa_token=eT9M-GyiEVgAAAAA:Aq8hyofHR_8Ly6hCbcY6SfXQ08Ma7PalPnfQdY3wvnoIHevOprHyYPRKICLl5I8dr50wQTCxjg

  8. Murali AR, Gupta A, Brown K. Systematic review and meta-analysis to determine the impact of iron depletion in dysmetabolic iron overload syndrome and non‐alcoholic fatty liver disease. Hepatology Research [Internet]. 2018 [cited 2024 Nov 26];48. Available from: https://onlinelibrary.wiley.com/doi/https://doi.org/10.1111/hepr.12921

  9. Mohajan D, Mohajan HK. Obesity and its related diseases: a new escalating alarming in global health. Journal of Innovations in Medical Research [Internet]. 2023 [cited 2024 Dec 1];2:12–23. Available from: https://www.paradigmpress.org/jimr/article/view/505

  10. Kovalic AJ, Cholankeril G, Satapathy SK. Nonalcoholic fatty liver disease and alcoholic liver disease: metabolic diseases with systemic manifestations. Translational Gastroenterology and Hepatology [Internet]. 2019 [cited 2024 Dec 1];4. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6789306/

  11. González-Domínguez Á, Visiedo-García FM, Domínguez-Riscart J, González-Domínguez R, Mateos RM, Lechuga-Sancho AM. Iron metabolism in obesity and metabolic syndrome. International journal of molecular sciences [Internet]. 2020 [cited 2024 Dec 1];21:5529. Available from: https://www.mdpi.com/1422-0067/21/15/5529

  12. Oshaug A, Bugge KH, Bjønnes CH, Borch-Iohnsen B, Neslein IL. Associations between serum ferritin and cardiovascular risk factors in healthy young men. A cross sectional study. European journal of clinical nutrition [Internet]. 1995 [cited 2025 Feb 1];49:430–8. Available from: https://europepmc.org/article/med/7656886

  13. Dongiovanni P, Ruscica M, Rametta R, Recalcati S, Steffani L, Gatti S et al. Dietary iron overload induces visceral adipose tissue insulin resistance. The American journal of pathology [Internet]. 2013 [cited 2024 Dec 3];182:2254–63. Available from: https://www.sciencedirect.com/science/article/pii/S0002944013001971

  14. Valenti L, Remondini E, Fracanzani AL, Spada A, Colombo S, Guzzo A et al. Effect of iron depletion liver function and insulin resistance in patients with NASH and fatty liver. Hepatology [Internet]. 2005 [cited 2025 Feb 1];42:619A-619A. Available from: https://air.unimi.it/handle/2434/17286

  15. Aigner E, Feldman A, Datz C. Obesity as an emerging risk factor for iron deficiency. Nutrients [Internet]. 2014 [cited 2024 Dec 2];6:3587–600. Available from: https://www.mdpi.com/2072-6643/6/9/3587

  16. Paul BT, Manz DH, Torti FM, Torti SV. Mitochondria and iron: current questions. Expert Rev Hematol. 2017;10:65–79.

    Article  CAS  PubMed  Google Scholar 

  17. Cheng R, Dhorajia V, Kim J, Kim Y. Mitochondrial iron metabolism and neurodegenerative diseases. Neurotoxicology [Internet]. 2022 [cited 2025 Mar 14];88:88–101. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8748425/

  18. Zong Y, Li H, Liao P, Chen L, Pan Y, Zheng Y et al. Mitochondrial dysfunction: mechanisms and advances in therapy. Sig Transduct Target Ther [Internet]. 2024 [cited 2025 Mar 14];9:1–29. Available from: https://www.nature.com/articles/s41392-024-01839-8

  19. Creighton Mitchell T, McClain DA. Diabetes and hemochromatosis. Curr Diab Rep. 2014;14:488. https://doi.org/10.1007/s11892-014-0488-y.

    Article  CAS  PubMed  Google Scholar 

  20. Hamad M, Mohammed AK, Hachim MY, Mukhopadhy D, Khalique A, Laham A et al. Heme Oxygenase-1 (HMOX-1) and inhibitor of differentiation proteins (ID1, ID3) are key response mechanisms against iron-overload in pancreatic β-cells. Molecular and Cellular Endocrinology [Internet]. 2021 [cited 2025 Feb 2];538:111462. Available from: https://www.sciencedirect.com/science/article/pii/S0303720721003063?casa_token=1IAgf8Eg7joAAAAA:Wjpdcs2VWEm9vZjcqlrd315zR6hXjw9HSqwknaqUglmJrY6smXrsLxWdSgSDzraO0-yYMprnico

  21. Simcox JA, McClain DA. Iron and diabetes risk. Cell Metab. 2013;17:329–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Harrison AV, Lorenzo FR, McClain DA. Iron and the pathophysiology of diabetes. Annu Rev Physiol. 2023;85:339–62. https://doi.org/10.1146/annurev-physiol-022522-102832.

    Article  CAS  PubMed  Google Scholar 

  23. Gabrielsen JS, Gao Y, Simcox JA, Huang J, Thorup D, Jones D et al. Adipocyte iron regulates adiponectin and insulin sensitivity. The Journal of clinical investigation [Internet]. 2012 [cited 2024 Nov 26];122:3529–40. Available from: https://www.jci.org/articles/view/44421

  24. Citelli M, Fonte-Faria T, Nascimento-Silva V, Renovato-Martins M, Silva R, Luna AS, et al. Obesity promotes alterations in iron recycling. Nutrients. 2015;7:335–48.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Kerkadi A, Mohsen Ali R, Shehada AH, Abdelnasser AbouHassanein A, Moawad E, Bawadi J. Association between central obesity indices and iron status indicators among Qatari adults. PLoS ONE. 2021;16:e0250759.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Alshwaiyat N, Ahmad A, Wan Hassan WMR, Al–jamal H. Association between obesity and iron deficiency (Review). Exp Ther Med [Internet]. 2021 [cited 2024 Dec 2];22:1268. Available from: http://www.spandidos-publications.com/https://doi.org/10.3892/etm.2021.10703

  27. Sanad M, Osman M, Gharib A. Obesity modulate serum hepcidin and treatment outcome of iron deficiency anemia in children: a case control study. Ital J Pediatr. 2011;37:34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kim SL, Shin S, Yang SJ. Iron homeostasis and energy metabolism in obesity. Clinical nutrition research [Internet]. 2022 [cited 2024 Dec 1];11:316. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9633967/

  29. Rodríguez-Mortera R, Caccavello R, Hermo R, Garay-Sevilla ME, Gugliucci A. Higher Hepcidin Levels in Adolescents with Obesity Are Associated with Metabolic Syndrome Dyslipidemia and Visceral Fat. Antioxidants [Internet]. 2021 [cited 2025 Jul 19];10:751. Available from: https://www.mdpi.com/2076-3921/10/5/751.

  30. Awoniyi A, Daniel O, Babatunde O. Dietary Iron Uptake and Absorption. 2024 [cited 2024 Dec 1]; Available from: https://www.intechopen.com/online-first/89440

  31. Mleczko-Sanecka K, Silvestri L. Cell‐type‐specific insights into iron regulatory processes. Am J Hematol. 2021;96(1):110–27. https://doi.org/10.1002/ajh.26001.

    Article  CAS  PubMed  Google Scholar 

  32. Li C, Zhou L, Yin X. Pathophysiological aspects of transferrin-A potential nano-based drug delivery signaling molecule in therapeutic target for varied diseases. Frontiers in Pharmacology [Internet]. 2024 [cited 2024 Dec 1];15:1342181. Available from: https://www.frontiersin.org/articles/https://doi.org/10.3389/fphar.2024.1342181/full

  33. Yang F, Zhang G, An N, Dai Q, Cho W, Shang H et al. Interplay of ferroptosis, cuproptosis, and PANoptosis in cancer treatment-induced cardiotoxicity: Mechanisms and therapeutic implications. Seminars in Cancer Biology [Internet]. Elsevier; 2024 [cited 2024 Dec 1]. Available from: https://www.sciencedirect.com/science/article/pii/S1044579X24000762?casa_token=PobKPuT0qdAAAAAA:NJki9F31oqwvksX5nt-fcyqoExXVx2qYBW9b-iFLR1INrCj9RfUQAHrspDADiX6XP6GzXedQLxg

  34. Galy B, Conrad M, Muckenthaler M. Mechanisms controlling cellular and systemic iron homeostasis. Nature Reviews Molecular Cell Biology [Internet]. 2024 [cited 2024 Dec 1];25:133–55. Available from: https://www.nature.com/articles/s41580-023-00648-1

  35. Mackenzie EL, Iwasaki K, Tsuji Y. Intracellular iron transport and storage: from molecular mechanisms to health implications. Antioxid Redox Signal. 2008;10:997–1030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sobieska K, Buczyńska A, Krętowski AJ, Popławska-Kita A. Iron homeostasis and insulin sensitivity: unraveling the complex interactions. Rev Endocr Metab Disord. 2024;25:925–39. https://doi.org/10.1007/s11154-024-09908-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Holgado AH, Gallego-Hernanz MP. Iron Metabolism: New Biomarkers Implicated. New Trends In Biomarkers and Diseases Research: An Overview [Internet]. Bentham Science Publishers; 2017 [cited 2025 Feb 2]. pp. 80–120. Available from: https://www.benthamdirect.com/content/books/9781681084954.chapter-4

  38. Camaschella C, Girelli D. The changing landscape of iron deficiency. Mol Aspects Med. 2020;75:100861.

    Article  CAS  PubMed  Google Scholar 

  39. Pietrangelo A. Hepcidin in human iron disorders: therapeutic implications. Journal of Hepatology [Internet]. 2011 [cited 2024 Dec 1];54:173–81. Available from: https://www.sciencedirect.com/science/article/pii/S0168827810007300

  40. Silva B, Faustino P. An overview of molecular basis of iron metabolism regulation and the associated pathologies. Biochimica et Biophysica Acta (BBA). 2015;1852:1347–59.

    Article  CAS  PubMed  Google Scholar 

  41. Katsarou A, Pantopoulos K. Hepcidin therapeutics. Pharmaceuticals. 2018;11:127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bajbouj K, Shafarin J, Allam H, Madkour M, Awadallah S, El-Serafy A et al. Elevated Levels of Estrogen Suppress Hepcidin Synthesis and Enhance Serum Iron Availability in Premenopausal Women. Exp Clin Endocrinol Diabetes [Internet]. 2018 [cited 2024 Jul 19];126:453–9. Available from: http://www.thieme-connect.de/DOI/DOI?10.1055/s-0043-124077

  43. Yook J-S, Thomas SS, Toney AM, You M, Kim Y-C, Liu Z et al. Dietary iron deficiency modulates adipocyte iron homeostasis, adaptive thermogenesis, and obesity in C57BL/6 mice. The Journal of nutrition [Internet]. 2021 [cited 2024 Dec 1];151:2967–75. Available from: https://www.sciencedirect.com/science/article/pii/S0022316622003686

  44. Muhammad JS, Bajbouj K, Shafarin J, Hamad M. Estrogen-induced epigenetic silencing of FTH1 and TFRC genes reduces liver cancer cell growth and survival. Epigenetics. 2020;15:1302–18.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Yanamadala V. Lipid Metabolism. Essential Medical Biochemistry and Metabolic Disease [Internet]. Cham: Springer Nature Switzerland; 2024 [cited 2025 Feb 2]. pp. 35–90. Available from: https://link.springer.com/https://doi.org/10.1007/978-3-031-59394-9_2

  46. Grundy SM. What is the contribution of obesity to the metabolic syndrome? Endocrinology and Metabolism Clinics [Internet]. 2004 [cited 2025 Feb 2];33:267–82. Available from: https://www.endo.theclinics.com/article/S0889-8529(04)00018-0/abstract

  47. Smith U. Abdominal obesity: a marker of ectopic fat accumulation. The Journal of clinical investigation [Internet]. 2015 [cited 2025 Feb 2];125:1790–2. Available from: https://www.jci.org/articles/view/81507

  48. Shen X, Yu Z, Wei C, Hu C, Chen J. Iron metabolism and ferroptosis in nonalcoholic fatty liver disease: what is our next step? American Journal of Physiology-Endocrinology and Metabolism [Internet]. 2024 [cited 2025 Feb 2];326:E767–75. Available from: https://doi.org/10.1152/ajpendo.00260.2023

  49. Lim S, Kim J-W, Targher G. Links between metabolic syndrome and metabolic dysfunction-associated fatty liver disease. Trends in Endocrinology & Metabolism [Internet]. 2021 [cited 2025 Feb 3];32:500–14. Available from: https://www.cell.com/trends/endocrinology-metabolism/fulltext/S1043-2760(21)00089-8?dgcid=raven_jbs_aip_email

  50. Hsu CC, Senussi NH, Fertrin KY, Kowdley KV. Iron overload disorders. Hepatol Commun. 2022;6:1842–54. https://doi.org/10.1002/hep4.2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Chen Z, Tian R, She Z, Cai J, Li H. Role of oxidative stress in the pathogenesis of nonalcoholic fatty liver disease. Free Radical Biology and Medicine [Internet]. 2020 [cited 2025 Mar 15];152:116–41. Available from: https://www.sciencedirect.com/science/article/pii/S0891584919315151

  52. Musso G, Gambino R, Cassader M. Non-alcoholic fatty liver disease from pathogenesis to management: an update. Obesity Reviews [Internet]. 2010 [cited 2025 Feb 3];11:430–45. Available from: https://onlinelibrary.wiley.com/doi/https://doi.org/10.1111/j.1467-789X.2009.00657.x

  53. Giudetti AM. Lipid metabolism in obesity [Internet]. Frontiers in Physiology. Frontiers Media SA; 2023 [cited 2025 Feb 3]. p. 1268288. Available from: https://www.frontiersin.org/articles/https://doi.org/10.3389/fphys.2023.1268288/full

  54. Rockfield S, Chhabra R, Robertson M, Rehman N, Bisht R, Nanjundan M. Links between iron and lipids: implications in some major human diseases. Pharmaceuticals [Internet]. 2018 [cited 2025 Feb 3];11:113. Available from: https://www.mdpi.com/1424-8247/11/4/113

  55. Ahmed U, Latham PS, Oates PS. Interactions between hepatic iron and lipid metabolism with possible relevance to steatohepatitis. World journal of gastroenterology: WJG [Internet]. 2012 [cited 2025 Feb 3];18:4651. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3442203/

  56. Yang X, Wang X, Yang Z, Lu H. Iron-mediated regulation in adipose tissue: a comprehensive review of metabolism and physiological effects. Curr Obes Rep. 2025;14:4. https://doi.org/10.1007/s13679-024-00600-0.

    Article  PubMed  Google Scholar 

  57. Pietrangelo A. Hereditary hemochromatosis — a new look at an old disease. N Engl J Med. 2004;350:2383–97. https://doi.org/10.1056/NEJMra031573.

    Article  CAS  PubMed  Google Scholar 

  58. Hilton C, Sabaratnam R, Drakesmith H, Karpe F. Iron, glucose and fat metabolism and obesity: an intertwined relationship. International Journal of Obesity [Internet]. 2023 [cited 2024 Dec 2];47:554–63. Available from: https://www.nature.com/articles/s41366-023-01299-0

  59. Stoffel NU, El-Mallah C, Herter-Aeberli I, Bissani N, Wehbe N, Obeid O et al. The effect of central obesity on inflammation, hepcidin, and iron metabolism in young women. International Journal of Obesity [Internet]. 2020 [cited 2024 Dec 2];44:1291–300. Available from: https://www.nature.com/articles/s41366-020-0522-x

  60. Szrok-Jurga S, Czumaj A, Turyn J, Hebanowska A, Swierczynski J, Sledzinski T et al. The physiological and pathological role of acyl-coA oxidation. International Journal of Molecular Sciences [Internet]. 2023 [cited 2024 Dec 2];24:14857. Available from: https://www.mdpi.com/1422-0067/24/19/14857

  61. Mailloux RJ. Teaching the fundamentals of electron transfer reactions in mitochondria and the production and detection of reactive oxygen species. Redox biology [Internet]. 2015 [cited 2024 Dec 2];4:381–98. Available from: https://www.sciencedirect.com/science/article/pii/S2213231715000178

  62. Zhao R-Z, Jiang S, Zhang L, Yu Z-B. Mitochondrial electron transport chain, ROS generation and uncoupling. International journal of molecular medicine [Internet]. 2019 [cited 2024 Dec 2];44:3–15. Available from: https://www.spandidos-publications.com/ijmm/44/1/3

  63. Buse G. Cytochrome c oxidase. Copper Proteins and Copper Enzymes [Internet]. CRC Press; 2018 [cited 2024 Dec 2]. pp. 119–50. Available from: https://www.taylorfrancis.com/chapters/edit/10.1201/9781351070898-4/cytochrome-oxidase-buse

  64. Isaya G. Mitochondrial iron-sulfur cluster dysfunction in neurodegenerative disease. Front Pharmacol. 2014;5:29.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Martelli A, Puccio H. Dysregulation of cellular iron metabolism in Friedreich ataxia: from primary iron-sulfur cluster deficit to mitochondrial iron accumulation. Front Pharmacol [Internet]. 2014 [cited 2025 Jul 19];5. Available from: https://www.frontiersin.org/journals/pharmacology/articles/https://doi.org/10.3389/fphar.2014.00130/full

  66. Gao J, Zhou Q, Wu D, Chen L. Mitochondrial iron metabolism and its role in diseases. Clin Chim Acta. 2021;513:6–12.

    Article  CAS  PubMed  Google Scholar 

  67. Yan F, Li K, Xing W, Dong M, Yi M, Zhang H. Role of iron-related oxidative stress and mitochondrial dysfunction in cardiovascular diseases. Oxid Med Cell Longev. 2022;2022:5124553.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Sawicki KT, De Jesus A, Ardehali H. Iron metabolism in cardiovascular disease: physiology, mechanisms, and therapeutic targets. Circ Res. 2023;132:379–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Pondarré C, Antiochos BB, Campagna DR, Clarke SL, Greer EL, Deck KM, et al. The mitochondrial ATP-binding cassette transporter Abcb7 is essential in mice and participates in cytosolic iron–sulfur cluster biogenesis. Hum Mol Genet. 2006;15:953–64.

    Article  PubMed  Google Scholar 

  70. Mena NP, Urrutia PJ, Lourido F, Carrasco CM, Núñez MT. Mitochondrial iron homeostasis and its dysfunctions in neurodegenerative disorders. Mitochondrion. 2015;21:92–105.

    Article  CAS  PubMed  Google Scholar 

  71. Zhao Y, Yang M, Liang X. The role of mitochondria in iron overload-induced damage. J Transl Med. 2024;22:1057.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Rineau E, Gueguen N, Procaccio V, Geneviève F, Reynier P, Henrion D et al. Iron deficiency without anemia decreases physical endurance and mitochondrial complex I activity of oxidative skeletal muscle in the mouse. Nutrients [Internet]. 2021 [cited 2024 Dec 2];13:1056. Available from: https://www.mdpi.com/2072-6643/13/4/1056

  73. Imam MU, Zhang S, Ma J, Wang H, Wang F. Antioxidants mediate both iron homeostasis and oxidative stress. Nutrients. 2017;9:671.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Kitamura N, Yokoyama Y, Taoka H, Nagano U, Hosoda S, Taworntawat T et al. Iron supplementation regulates the progression of high fat diet induced obesity and hepatic steatosis via mitochondrial signaling pathways. Scientific reports [Internet]. 2021 [cited 2024 Dec 2];11:10753. Available from: https://www.nature.com/articles/s41598-021-89673-8

  75. Swenson SA, Moore CM, Marcero JR, Medlock AE, Reddi AR, Khalimonchuk O. From synthesis to utilization: The ins and outs of mitochondrial heme. Cells [Internet]. 2020 [cited 2024 Dec 2];9:579. Available from: https://www.mdpi.com/2073-4409/9/3/579

  76. Badenhorst CE, Goto K, O’Brien WJ, Sims S. Iron status in athletic females, a shift in perspective on an old paradigm. Journal of Sports Sciences [Internet]. 2021 [cited 2025 Feb 3];39:1565–75. Available from: https://www.tandfonline.com/doi/full/https://doi.org/10.1080/02640414.2021.1885782

  77. Peyssonnaux C, Zinkernagel AS, Schuepbach RA, Rankin E, Vaulont S, Haase VH et al. Regulation of iron homeostasis by the hypoxia-inducible transcription factors (HIFs). The Journal of clinical investigation [Internet]. 2007 [cited 2024 Jul 19];117:1926–32. Available from: https://www.jci.org/articles/view/31370

  78. Nemeth E, Rivera S, Gabayan V, Keller C, Taudorf S, Pedersen BK, et al. IL-6 mediates hypoferremia of inflammation by inducing the synthesis of the iron regulatory hormone hepcidin. J Clin Invest. 2004;113:1271–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Millonig G, Ganzleben I, Peccerella T, Casanovas G, Brodziak-Jarosz L, Breitkopf-Heinlein K, et al. Sustained submicromolar H2O2 levels induce Hepcidin via signal transducer and activator of transcription 3 (STAT3). J Biol Chem. 2012;287:37472–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Andrews NC. Forging a field: the golden age of iron biology. Blood. 2008;112:219–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Hentze MW, Muckenthaler MU, Andrews NC. Balancing Acts: Molecular Control of Mammalian Iron Metabolism. Cell [Internet]. 2004 [cited 2025 Jul 19];117:285–97. Available from: https://www.cell.com/cell/abstract/S0092-8674(04)00343-5

  82. Moreno-Navarrete JM, Ortega F, Moreno M, Ricart W, Fernández-Real JM. Fine-tuned iron availability is essential to achieve optimal adipocyte differentiation and mitochondrial biogenesis. Diabetologia. 2014;57:1957–67.

    Article  CAS  PubMed  Google Scholar 

  83. Moreno M, Ortega F, Xifra G, Ricart W, Fernández-Real JM, Moreno-Navarrete JM. Cytosolic aconitase activity sustains adipogenic capacity of adipose tissue connecting iron metabolism and adipogenesis. FASEB J. 2015;29:1529–39.

    Article  CAS  PubMed  Google Scholar 

  84. Moreno-Navarrete JM, Ortega F, Rodríguez A, Latorre J, Becerril S, Sabater-Masdeu M, et al. HMOX1 as a marker of iron excess-induced adipose tissue dysfunction, affecting glucose uptake and respiratory capacity in human adipocytes. Diabetologia. 2017;60:915–26.

    Article  CAS  PubMed  Google Scholar 

  85. Suzuki T, Komatsu T, Shibata H, Tanioka A, Vargas D, Kawabata-Iwakawa R, et al. Crucial role of iron in epigenetic rewriting during adipocyte differentiation mediated by JMJD1A and TET2 activity. Nucleic Acids Res. 2023;51:6120–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Oliveras-Cañellas N, Latorre J, Santos-González E, Lluch A, Ortega F, Mayneris-Perxachs J, et al. Inflammatory response to bacterial lipopolysaccharide drives iron accumulation in human adipocytes. Biomed Pharmacother. 2023;166:115428.

    Article  PubMed  Google Scholar 

  87. Trayhurn P, Origins. and early development of the concept that brown adipose tissue thermogenesis is linked to energy balance and obesity. Biochimie [Internet]. 2017 [cited 2024 Dec 2];134:62–70. Available from: https://www.sciencedirect.com/science/article/pii/S0300908416301742?casa_token=QmETGS1_mQ4AAAAA:oirnFFRnYdmjcLZRatSexGFmIzWnhJthK22H02_XjYXMGOEtb3T0-b5WEVIWDznZJfmVbjQQVL0

  88. Ma W, Jia L, Xiong Q, Feng Y, Du H. The role of iron homeostasis in adipocyte metabolism. Food & function [Internet]. 2021 [cited 2024 Dec 2];12:4246–53. Available from: https://pubs.rsc.org/en/content/articlehtml/2021/xx/d0fo03442h

  89. Takeda Y, Harada Y, Yoshikawa T, Dai P. Mitochondrial energy metabolism in the regulation of thermogenic brown fats and human metabolic diseases. International Journal of Molecular Sciences [Internet]. 2023 [cited 2024 Dec 2];24:1352. Available from: https://www.mdpi.com/1422-0067/24/2/1352

  90. Bartelt A, Widenmaier SB, Schlein C, Johann K, Goncalves RL, Eguchi K et al. Brown adipose tissue thermogenic adaptation requires Nrf1-mediated proteasomal activity. Nature medicine [Internet]. 2018 [cited 2024 Dec 2];24:292–303. Available from: https://www.nature.com/articles/nm.4481

  91. Tajima K, Ikeda K, Chang H-Y, Chang C-H, Yoneshiro T, Oguri Y et al. Mitochondrial lipoylation integrates age-associated decline in brown fat thermogenesis. Nature metabolism [Internet]. 2019 [cited 2024 Dec 2];1:886–98. Available from: https://www.nature.com/articles/s42255-019-0106-z

  92. Petronek MS, Spitz DR, Allen BG. Iron–sulfur cluster biogenesis as a critical target in cancer. Antioxidants [Internet]. 2021 [cited 2024 Dec 2];10:1458. Available from: https://www.mdpi.com/2076-3921/10/9/1458

  93. Singh AK. Understanding the Relationship between Iron and Lipid Metabolism in Non-alcoholic Fatty Liver Disease [Internet] [PhD Thesis]. Curtin University; 2022 [cited 2024 Dec 2]. Available from: https://espace.curtin.edu.au/handle/20.500.11937/93623

  94. Deschemin J-C, Ransy C, Bouillaud F, Chung S, Galy B, Peyssonnaux C, et al. Hepcidin deficiency in mice impairs white adipose tissue browning possibly due to a defect in de novo adipogenesis. Sci Rep. 2023;13:12794.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Yook J-S, You M, Kim J, Toney AM, Fan R, Puniya BL, et al. Essential role of systemic iron mobilization and redistribution for adaptive thermogenesis through HIF2-α/hepcidin axis. Proc Natl Acad Sci U S A. 2021;118:e2109186118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Sponton CH, de Lima-Junior JC, Leiria LO. What puts the heat on thermogenic fat: metabolism of fuel substrates. Trends in Endocrinology & Metabolism [Internet]. 2022 [cited 2024 Dec 2];33:587–99. Available from: https://www.cell.com/trends/endocrinology-metabolism/fulltext/S1043-2760(22)00100-X?dgcid=raven_jbs_etoc_email

  97. Chernogubova E, Cannon B, Bengtsson T. Norepinephrine increases glucose transport in brown adipocytes via β3-adrenoceptors through a cAMP, PKA, and PI3-kinase-dependent pathway stimulating conventional and novel PKCs. Endocrinology [Internet]. 2004 [cited 2024 Dec 2];145:269–80. Available from: https://academic.oup.com/endo/article-abstract/145/1/269/2878243

  98. Zhang Z, Yang D, Xiang J, Zhou J, Cao H, Che Q et al. Non-shivering thermogenesis signalling regulation and potential therapeutic applications of brown adipose tissue. International journal of biological sciences [Internet]. 2021 [cited 2024 Dec 2];17:2853. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8326120/

  99. Yook J-S, You M, Kim Y, Zhou M, Liu Z, Kim Y-C et al. The thermogenic characteristics of adipocytes are dependent on the regulation of iron homeostasis. Journal of Biological Chemistry [Internet]. 2021 [cited 2024 Dec 2];296. Available from: https://www.jbc.org/article/S0021-9258(21)00225-8/abstract

  100. Joffin N, Gliniak CM, Funcke J-B, Paschoal VA, Crewe C, Chen S, et al. Adipose tissue macrophages exert systemic metabolic control by manipulating local iron concentrations. Nat Metab. 2022;4:1474–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Ameka MK, Beavers WN, Shaver CM, Ware LB, Kerchberger VE, Schoenfelt KQ, et al. An iron refractory phenotype in obese adipose tissue macrophages leads to adipocyte iron overload. Int J Mol Sci. 2022;23:7417.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Ikeda Y, Watanabe H, Shiuchi T, Hamano H, Horinouchi Y, Imanishi M, et al. Deletion of H-ferritin in macrophages alleviates obesity and diabetes induced by high-fat diet in mice. Diabetologia. 2020;63:1588–602.

    Article  CAS  PubMed  Google Scholar 

  103. Zhang Z, Funcke J-B, Zi Z, Zhao S, Straub LG, Zhu Y, et al. Adipocyte iron levels impinge on a fat-gut crosstalk to regulate intestinal lipid absorption and mediate protection from obesity. Cell Metab. 2021;33:1624–e16399.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Hubler MJ, Erikson KM, Kennedy AJ, Hasty AH. Mfehi adipose tissue macrophages compensate for tissue iron perturbations in mice. Am J Physiol Cell Physiol. 2018;315:C319–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Yang Q, Jian J, Katz S, Abramson SB, Huang X. 17β-estradiol inhibits iron hormone hepcidin through an estrogen responsive element half-site. Endocrinology. 2012;153(7):3170–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Ikeda Y, Tajima S, Izawa-Ishizawa Y, Kihira Y, Ishizawa K, Tomita S, et al. Estrogen regulates Hepcidin expression via GPR30-BMP6-dependent signaling in hepatocytes. PLoS ONE. 2012;7:e40465.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Hamad M, Bajbouj K, Taneera J. The case for an estrogen-iron axis in health and disease. Exp Clin Endocrinol Diabetes. 2020;128:270–7.

    Article  CAS  PubMed  Google Scholar 

  108. Hou Y, Zhang S, Wang L, Li J, Qu G, He J et al. Estrogen regulates iron homeostasis through governing hepatic hepcidin expression via an estrogen response element. Gene [Internet]. 2012 [cited 2024 Jul 20];511:398–403. Available from: https://www.sciencedirect.com/science/article/pii/S0378111912011699?casa_token=mbqngUGVTFAAAAAA:ounrngMp9KrIKa4T68pPDWOoKR7M--rSI0pw-nkMEMsWLV21Cl9Ugt7IO706S2yzhnjGuD93pSY

  109. Ahanchi NS, Khatami F, Llanaj E, Quezada-Pinedo HG, Dizdari H, Bano A, et al. The complementary roles of iron and estrogen in menopausal differences in cardiometabolic outcomes. Clin Nutr. 2024;43:1136–50.

    Article  CAS  PubMed  Google Scholar 

  110. Matta RA, AbdElftah ME, Essawy MG, Saedii AA. Interplay of serum hepcidin with female sex hormones, metabolic syndrome, and abdominal fat distribution among premenopausal and postmenopausal women. The Egyptian Journal of Internal Medicine [Internet]. 2022 [cited 2025 Jul 19];34:undefined-undefined. Available from: https://www.mendeley.com/catalogue/70b6b68c-a4b3-3d29-bf13-0c97307afbb1/.

  111. Harrison-Findik DD. Gender-related variations in iron metabolism and liver diseases. World journal of hepatology [Internet]. 2010 [cited 2024 Jul 19];2:302. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2999297/

  112. Park CY, Chung J, Koo K-O, Kim MS, Han SN. Hepatic iron storage is related to body adiposity and hepatic inflammation. Nutr Metab (Lond). 2017;14:14. https://doi.org/10.1186/s12986-017-0169-3.

    Article  CAS  PubMed  Google Scholar 

  113. Wylenzek F, Bühling KJ, Laakmann E. A systematic review on the impact of nutrition and possible supplementation on the deficiency of vitamin complexes, iron, omega-3-fatty acids, and lycopene in relation to increased morbidity in women after menopause. Arch Gynecol Obstet. 2024;310:2235–45.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Gozzelino R, Arosio P. Iron homeostasis in health and disease. Int J Mol Sci. 2016;17:130.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Lainé F, Ruivard M, Loustaud-Ratti V, Bonnet F, Calès P, Bardou‐Jacquet E et al. Metabolic and hepatic effects of bloodletting in dysmetabolic iron overload syndrome: A randomized controlled study in 274 patients. Hepatology [Internet]. 2017 [cited 2025 Feb 3];65:465–74. Available from: https://journals.lww.com/01515467-201702000-00010

  116. Teng I, Tseng S, Aulia B, Shih C, Bai C, Chang J. Can diet-induced weight loss improve iron homoeostasis in patients with obesity: a systematic review and meta‐analysis. Obes Rev. 2020;21:e13080. https://doi.org/10.1111/obr.13080.

    Article  PubMed  Google Scholar 

  117. Lee HS, Park E. Association of serum ferritin level and depression with respect to the body mass index in Korean male adults. Nutrition Research and Practice [Internet]. 2019 [cited 2024 Dec 2];13:263–7. Available from: https://synapse.koreamed.org/articles/1125391

  118. Britton L, Jaskowski L-A, Bridle K, Secondes E, Wallace D, Santrampurwala N, et al. Ferroportin expression in adipocytes does not contribute to iron homeostasis or metabolic responses to a high calorie diet. Cell Mol Gastroenterol Hepatol. 2018;5:319–31.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Liu L, Yan F, Yan H, Wang Z. Impact of iron supplementation on gestational diabetes mellitus: a literature review. Diabetes Obes Metab. 2023;25(2):342–53. https://doi.org/10.1111/dom.14886.

    Article  PubMed  Google Scholar 

  120. Garcia-Valdes L, Campoy C, Hayes H, Florido J, Rusanova I, Miranda MT et al. The impact of maternal obesity on iron status, placental transferrin receptor expression and hepcidin expression in human pregnancy. International journal of obesity [Internet]. 2015 [cited 2024 Dec 2];39:571–8. Available from: https://www.nature.com/articles/ijo20153

  121. Gasmi A, Bjørklund G, Mujawdiya PK, Semenova Y, Peana M, Dosa A, et al. Micronutrients deficiences in patients after bariatric surgery. Eur J Nutr. 2022;61:55–67. https://doi.org/10.1007/s00394-021-02619-8.

    Article  PubMed  Google Scholar 

  122. Vaquero MP, Martínez-Suárez M, García-Quismondo Á, Del Cañizo FJ, Sánchez-Muniz FJ. Diabesity negatively affects transferrin saturation and iron status. The DICARIVA study. Diabetes Research and Clinical Practice [Internet]. 2021 [cited 2024 Dec 2];172:108653. Available from: https://www.sciencedirect.com/science/article/pii/S0168822721000061?casa_token=uCBqWujUA0wAAAAA:e49UxrouOz8m4DkGey5tBdXjtmH6x8076zZlxYFHFTlVCt_-xvx3rBbU1FLKg9TYt5FUkSwD6g

  123. Laudisio D, de Alteriis G, Vetrani C, Aprano S, Pugliese G, Zumbolo F et al. Iron Levels and Markers of Inflammation in a Population of Adults with Severe Obesity, a Cross-Sectional Study. Nutrients [Internet]. 2023 [cited 2024 Dec 2];15:4702. Available from: https://www.mdpi.com/2072-6643/15/21/4702

  124. Winter WE, Bazydlo LA, Harris NS. The molecular biology of human iron metabolism. Lab Med. 2014;45:92–102.

    Article  PubMed  Google Scholar 

  125. Fujii T, Asai T, Matsuo T, Okamura K. Effect of resistance exercise on iron status in moderately iron-deficient rats. Biol Trace Elem Res. 2011;144:983–91. https://doi.org/10.1007/s12011-011-9072-3.

    Article  CAS  PubMed  Google Scholar 

  126. Krisai P, Leib S, Aeschbacher S, Kofler T, Assadian M, Maseli A et al. Relationships of iron metabolism with insulin resistance and glucose levels in young and healthy adults. European journal of internal medicine [Internet]. 2016 [cited 2025 Feb 4];32:31–7. Available from: https://www.sciencedirect.com/science/article/pii/S0953620516300371

  127. Nemeth E, Ganz T. Anemia of inflammation. Hematol Oncol Clin North Am. 2014;28:671–81. vi.

    Article  PubMed  PubMed Central  Google Scholar 

  128. Dongiovanni P, Fracanzani AL, Fargion S, Valenti L. Iron in fatty liver and in the metabolic syndrome: a promising therapeutic target. J Hepatol. 2011;55:920–32.

    Article  CAS  PubMed  Google Scholar 

  129. Britton LJ, Subramaniam VN, Crawford DH. Iron and non-alcoholic fatty liver disease. World journal of gastroenterology [Internet]. 2016 [cited 2024 Dec 3];22:8112. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5037080/

  130. Fernández-Real JM, Peñarroja G, Castro A, García-Bragado F, Hernández-Aguado I, Ricart W. Blood letting in high-ferritin type 2 diabetes: effects on insulin sensitivity and beta-cell function. Diabetes. 2002;51:1000–4.

    Article  PubMed  Google Scholar 

  131. Darshan D, Anderson G-J. Liver-gut axis in the regulation of iron homeostasis. World J Gastroenterol. 2007;13:4737–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Skikne BS, Punnonen K, Caldron PH, Bennett MT, Rehu M, Gasior GH, et al. Improved differential diagnosis of anemia of chronic disease and iron deficiency anemia: a prospective multicenter evaluation of soluble transferrin receptor and the sTfR/log ferritin index. Am J Hematol. 2011;86(11):923–7. https://doi.org/10.1002/ajh.22108.

    Article  CAS  PubMed  Google Scholar 

  133. Casu C, Nemeth E, Rivella S. Hepcidin agonists as therapeutic tools. Blood. 2018;131:1790–4. https://doi.org/10.1182/blood-2017-11-737411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Blanchette NL, Manz DH, Torti FM, Torti SV. Modulation of hepcidin to treat iron deregulation: potential clinical applications. Expert Rev Hematol. 2016;9(2):169–86. https://doi.org/10.1586/17474086.2016.1124757.

    Article  CAS  PubMed  Google Scholar 

  135. Sebastiani G, Wilkinson N, Pantopoulos K. Pharmacological targeting of the Hepcidin/Ferroportin axis. Front Pharmacol. 2016;7:160.

    Article  PubMed  PubMed Central  Google Scholar 

  136. Li L, Wang K, Jia R, Xie J, Ma L, Hao Z, et al. Ferroportin-dependent ferroptosis induced by ellagic acid retards liver fibrosis by impairing the SNARE complexes formation. Redox Biol. 2022;56:102435.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Zhang D-L, Rouault TA. How does hepcidin hinder ferroportin activity? Blood. 2018;131:840–2. https://doi.org/10.1182/blood-2018-01-824151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Yue F, Shi Y, Wu S, Xing L, He D, Wei L, et al. Metformin alleviates hepatic iron overload and ferroptosis through AMPK-ferroportin pathway in HFD-induced NAFLD. iScience. 2023;26:108560.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Nemeth E, Ganz T. Hepcidin and Iron in Health and Disease. Annu Rev Med [Internet]. 2023 [cited 2025 Apr 17];74:261–77. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9943683/

  140. Lehmann EF, Liziczai M, Drożdżyk K, Altermatt P, Langini C, Manolova V, et al. Structures of Ferroportin in complex with its specific inhibitor Vamifeport. Elife. 2023;12:e83053.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Traeger L, Wiegand SB, Sauer AJ, Corman BHP, Peneyra KM, Wunderer F, et al. UBA6 and NDFIP1 regulate the degradation of Ferroportin. Haematologica. 2022;107:478–88.

    Article  CAS  PubMed  Google Scholar 

  142. Miranda MA, St Pierre CL, Macias-Velasco JF, Nguyen HA, Schmidt H, Agnello LT et al. Dietary iron interacts with genetic background to influence glucose homeostasis. Nutrition & Metabolism [Internet]. 2019 [cited 2025 Jul 19];16:13. Available from: https://doi.org/10.1186/s12986-019-0339-6

  143. Wang R, Liu Y, Thabane L, Olier I, Li L, Ortega-Martorell S, et al. Relationship between trajectories of dietary iron intake and risk of type 2 diabetes mellitus: evidence from a prospective cohort study. Nutr J. 2024;23:15.

    Article  PubMed  PubMed Central  Google Scholar 

  144. Littlejohn PT, Bar-Yoseph H, Edwards K, Li H, Ramirez-Contreras CY, Holani R, et al. Multiple micronutrient deficiencies alter energy metabolism in host and gut microbiome in an early-life murine model. Front Nutr. 2023;10:1151670.

    Article  PubMed  PubMed Central  Google Scholar 

  145. Rinaldi L, Pafundi PC, Galiero R, Caturano A, Morone MV, Silvestri C et al. Mechanisms of non-alcoholic fatty liver disease in the metabolic syndrome. A narrative review. Antioxidants [Internet]. 2021 [cited 2024 Dec 3];10:270. Available from: https://www.mdpi.com/2076-3921/10/2/270

  146. Lian C-Y, Zhai Z-Z, Li Z-F, Wang L. High fat diet-triggered non-alcoholic fatty liver disease: A review of proposed mechanisms. Chemico-biological interactions [Internet]. 2020 [cited 2024 Dec 3];330:109199. Available from: https://www.sciencedirect.com/science/article/pii/S0009279720309030?casa_token=3Phgb6cyTNIAAAAA:-VOcQuahYYJ5wbJY1FXBZ945jZuE4B4adSG5rl3dkuQfZVFwm3B06LtB0-21-Uivz22uzxgiYg

  147. Kouroumalis E, Tsomidis I, Voumvouraki A. Iron as a therapeutic target in chronic liver disease. World Journal of Gastroenterology [Internet]. 2023 [cited 2024 Dec 3];29:616. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9896614/

  148. Barbalho SM, Laurindo LF, Tofano RJ, Flato UAP, Mendes CG, de Alvares Goulart R et al. Dysmetabolic iron overload syndrome: Going beyond the traditional risk factors associated with metabolic syndrome. Endocrines [Internet]. 2023 [cited 2024 Dec 3];4:18–37. Available from: https://www.mdpi.com/2673-396X/4/1/2

  149. Li L-X, Guo F-F, Liu H, Zeng T. Iron overload in alcoholic liver disease: underlying mechanisms, detrimental effects, and potential therapeutic targets. Cell Mol Life Sci. 2022;79(4):201. https://doi.org/10.1007/s00018-022-04239-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Liu Y, Li G, Lu F, Guo Z, Cai S, Huo T. Excess iron intake induced liver injury: The role of gut-liver axis and therapeutic potential. Biomedicine & Pharmacotherapy [Internet]. 2023 [cited 2024 Dec 3];168:115728. Available from: https://www.sciencedirect.com/science/article/pii/S0753332223015263

  151. Bloomer SA, Brown KE. Iron-induced liver injury: a critical reappraisal. International journal of molecular sciences [Internet]. 2019 [cited 2024 Dec 3];20:2132. Available from: https://www.mdpi.com/1422-0067/20/9/2132

  152. Unruh D, Srinivasan R, Benson T, Haigh S, Coyle D, Batra N, et al. Red blood cell dysfunction induced by high-fat diet: potential implications for obesity-related atherosclerosis. Circulation. 2015;132(20):1898–908. https://doi.org/10.1161/CIRCULATIONAHA.115.017313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Videla LA, Valenzuela R. Perspectives in liver redox imbalance: toxicological and pharmacological aspects underlying iron overloading, nonalcoholic fatty liver disease, and thyroid hormone action. Biofactors. 2022;48(2):400–15. https://doi.org/10.1002/biof.1797.

    Article  CAS  PubMed  Google Scholar 

  154. Yuan X, Li L, Zhang Y, Ai R, Li D, Dou Y, et al. Heme oxygenase 1 alleviates nonalcoholic steatohepatitis by suppressing hepatic ferroptosis. Lipids Health Dis. 2023;22:99. https://doi.org/10.1186/s12944-023-01855-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Alam S, Hasan MK, Neaz S, Hussain N, Hossain MF, Rahman T. Diabetes Mellitus: insights from epidemiology, biochemistry, risk factors, diagnosis, complications and comprehensive management. Diabetology [Internet]. 2021 [cited 2024 Dec 3];2:36–50. Available from: https://www.mdpi.com/2673-4540/2/2/4

  156. Yameny AA, Diabetes Mellitus O. 2024. Journal of Bioscience and Applied Research [Internet]. 2024 [cited 2024 Dec 3];10:641–5. Available from: https://jbaar.journals.ekb.eg/article_382794.html

  157. Wolide AD, Zawdie B, Alemayehu Nigatu T, Tadesse S. Evaluation of serum ferritin and some metal elements in type 2 diabetes mellitus patients: comparative cross-sectional study. DMSO [Internet]. 2016 [cited 2025 Feb 4];Volume 9:417–24. Available from: https://www.dovepress.com/evaluation-of-serum-ferritin-and-some-metal-elements-in-type-2-diabete-peer-reviewed-article-DMSO

  158. Żekanowska E, Boinska J, Giemza-Kucharska P, Kwapisz J. Obesity and iron metabolism. BioTechnologia [Internet]. 2011 [cited 2025 Feb 4];92:147–52. Available from: https://www.termedia.pl/Journal/-85/pdf-23862-10?filename=06.pdf

  159. Henriksen EJ, Diamond-Stanic MK, Marchionne EM. Oxidative stress and the etiology of insulin resistance and type 2 diabetes. Free Radical Biology and Medicine [Internet]. 2011 [cited 2025 Feb 4];51:993–9. Available from: https://www.sciencedirect.com/science/article/pii/S0891584910014103

  160. Backe MB, Moen IW, Ellervik C, Hansen JB, Mandrup-Poulsen T. Iron regulation of pancreatic beta-cell functions and oxidative stress. Annu Rev Nutr. 2016;36:241–73. https://doi.org/10.1146/annurev-nutr-071715-050939.

    Article  CAS  PubMed  Google Scholar 

  161. Kataria Y, Wu Y, Horskjær P, de H, Mandrup-Poulsen T, Ellervik C. Iron status and gestational diabetes—a meta-analysis. Nutrients [Internet]. 2018 [cited 2024 Dec 3];10:621. Available from: https://www.mdpi.com/2072-6643/10/5/621

  162. Holendová B, Stokičová L, Plecitá-Hlavatá L. Lipid Dynamics in Pancreatic β-Cells: Linking Physiology to Diabetes Onset. Antioxidants & Redox Signaling [Internet]. 2024 [cited 2024 Dec 3];41:865–89. Available from: https://www.liebertpub.com/doi/https://doi.org/10.1089/ars.2024.0724

  163. Pantopoulos K. Inherited disorders of iron overload. Frontiers in nutrition [Internet]. 2018 [cited 2024 Dec 3];5:103. Available from: https://www.frontiersin.org/articles/https://doi.org/10.3389/fnut.2018.00103/full

  164. Balakrishnan S, Dhavamani S, Prahalathan C. β-Cell specific transcription factors in the context of diabetes mellitus and β-cell regeneration. Mechanisms of development [Internet]. 2020 [cited 2024 Dec 3];163:103634. Available from: https://www.sciencedirect.com/science/article/pii/S0925477320300393

  165. Taneera J, Ali A, Hamad M. The Role of Estrogen Signaling in Cellular Iron Metabolism in Pancreatic β Cells. Pancreas [Internet]. 2022 [cited 2024 Dec 3];51:121–7. Available from: https://journals.lww.com/pancreasjournal/fulltext/2022/02000/the_role_of_estrogen_signaling_in_cellular_iron.4.aspx

  166. Gáll T, Balla G, Balla J. Heme, heme oxygenase, and endoplasmic reticulum stress—a new insight into the pathophysiology of vascular diseases. International journal of molecular sciences [Internet]. 2019 [cited 2024 Dec 3];20:3675. Available from: https://www.mdpi.com/1422-0067/20/15/3675

  167. Schipper HM, Song W. A heme oxygenase-1 transducer model of degenerative and developmental brain disorders. International journal of molecular sciences [Internet]. 2015 [cited 2024 Dec 3];16:5400–19. Available from: https://www.mdpi.com/1422-0067/16/3/5400

  168. An J-R, Wang Q-F, Sun G-Y, Su J-N, Liu J-T, Zhang C et al. The Role of Iron Overload in Diabetic Cognitive Impairment: A Review. DMSO [Internet]. 2023 [cited 2024 Dec 3];Volume 16:3235–47. Available from: https://www.dovepress.com/the-role-of-iron-overload-in-diabetic-cognitive-impairment-a-review-peer-reviewed-fulltext-article-DMSO

  169. Marku A, Galli A, Marciani P, Dule N, Perego C, Castagna M. Iron metabolism in pancreatic beta-cell function and dysfunction. Cells [Internet]. 2021 [cited 2024 Dec 3];10:2841. Available from: https://www.mdpi.com/2073-4409/10/11/2841

  170. Ježek P, Jabůrek M, Plecitá-Hlavatá L Contribution of Oxidative Stress and Impaired Biogenesis of Pancreatic β-Cells to Type 2 Diabetes., Antioxidants. & Redox Signaling [Internet]. 2019 [cited 2024 Dec 3];31:722–51. Available from: https://www.liebertpub.com/doi/https://doi.org/10.1089/ars.2018.7656

  171. Day EA, Ford RJ, Steinberg GR. AMPK as a therapeutic target for treating metabolic diseases. Trends in Endocrinology & Metabolism [Internet]. 2017 [cited 2025 Feb 4];28:545–60. Available from: https://www.cell.com/trends/endocrinology-metabolism/fulltext/S1043-2760(17)30068-1

  172. Hardie DG. AMP-activated protein kinase: a master switch in glucose and lipid metabolism. Rev Endocr Metab Disord. 2004;5(2):119–25. https://doi.org/10.1023/B:REMD.0000021433.63915.bb.

    Article  CAS  PubMed  Google Scholar 

  173. Wu L, Zhang L, Li B, Jiang H, Duan Y, Xie Z et al. AMP-activated protein kinase (AMPK) regulates energy metabolism through modulating thermogenesis in adipose tissue. Frontiers in physiology [Internet]. 2018 [cited 2024 Dec 3];9:122. Available from: https://www.frontiersin.org/articles/https://doi.org/10.3389/fphys.2018.00122/full

  174. Huang J, Simcox J, Mitchell TC, Jones D, Cox J, Luo B et al. Iron regulates glucose homeostasis in liver and muscle via AMP-activated protein kinase in mice. The FASEB Journal [Internet]. 2013 [cited 2024 Dec 3];27:2845. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3688748/

  175. Chen Z, Cao B, Liu L, Tang X, Xu H. Association between obesity and anemia in an nationally representative sample of United States adults: a cross-sectional study. Frontiers in Nutrition [Internet]. 2024 [cited 2024 Dec 3];11:1304127. Available from: https://www.frontiersin.org/articles/https://doi.org/10.3389/fnut.2024.1304127/full

  176. Rajabnia M, Hajimirzaei SM, Hatamnejad MR, Shahrokh S, Ghavami SB, Farmani M, et al. Obesity, a challenge in the management of inflammatory bowel diseases. Immunol Res. 2022;70:742–51. https://doi.org/10.1007/s12026-022-09315-7.

    Article  PubMed  Google Scholar 

  177. Reichert CO, da Cunha J, Levy D, Maselli LMF, Bydlowski SP, Spada C. Hepcidin: homeostasis and diseases related to iron metabolism. Acta Haematol. 2017;137:220–36.

    Article  CAS  PubMed  Google Scholar 

  178. Yao J, Wu D, Qiu Y. Adipose tissue macrophage in obesity-associated metabolic diseases. Frontiers in immunology [Internet]. 2022 [cited 2024 Dec 3];13:977485. Available from: https://www.frontiersin.org/articles/https://doi.org/10.3389/fimmu.2022.977485/full

  179. Gotardo ÉMF, dos SANTOS AN, Miyashiro RA, Gambero S, Rocha T, Ribeiro ML et al. Mice that are fed a high-fat diet display increased hepcidin expression in adipose tissue. Journal of nutritional science and vitaminology [Internet]. 2013 [cited 2024 Dec 3];59:454–61. Available from: https://www.jstage.jst.go.jp/article/jnsv/59/5/59_454/_article/-char/ja/

  180. Sagar P, Angmo S, Sandhir R, Rishi V, Yadav H, Singhal NK. Effect of hepcidin antagonists on anemia during inflammatory disorders. Pharmacol Ther. 2021;226:107877.

    Article  CAS  PubMed  Google Scholar 

  181. Nili M, David L, Elferich J, Shinde U, Rotwein P. Proteomic analysis and molecular modelling characterize the iron-regulatory protein haemojuvelin/repulsive guidance molecule c. Biochemical Journal [Internet]. 2013 [cited 2024 Dec 3];452:87–95. Available from: https://portlandpress.com/biochemj/article-abstract/452/1/87/46184

  182. Rochette L, Gudjoncik A, Guenancia C, Zeller M, Cottin Y, Vergely C. The iron-regulatory hormone hepcidin: a possible therapeutic target? Pharmacol Ther. 2015;146:35–52.

    Article  CAS  PubMed  Google Scholar 

  183. Moreno-Navarrete JM, Moreno M, Puig J, Blasco G, Ortega F, Xifra G et al. Hepatic iron content is independently associated with serum hepcidin levels in subjects with obesity. Clinical Nutrition [Internet]. 2017 [cited 2024 Dec 3];36:1434–9. Available from: https://www.sciencedirect.com/science/article/pii/S0261561416312626?casa_token=BsytCWP-XREAAAAA:11esd6-1hNxxs_sDda6npbZFzk98BFmg0QKiKlg1Myk7FfSGFSueH5HNP0iL-Dv-k-QHXbF6QA

  184. Xiao L, Luo G, Li H, Yao P, Tang Y. Dietary iron overload mitigates atherosclerosis in high-fat diet-fed Apolipoprotein E knockout mice: role of dysregulated hepatic fatty acid metabolism. Biochimica et biophysica acta (BBA)-Molecular and cell biology of lipids. 2021;1866:159004.

    Article  CAS  PubMed  Google Scholar 

  185. Iannone F, Lapadula G. Obesity and inflammation-targets for OA therapy. Current drug targets [Internet]. 2010 [cited 2024 Dec 3];11:586–98. Available from: https://www.ingentaconnect.com/content/ben/cdt/2010/00000011/00000005/art00008

  186. Martínez-Uña M, López-Mancheño Y, Diéguez C, Fernández-Rojo MA, Novelle MG. Unraveling the role of leptin in liver function and its relationship with liver diseases. International journal of molecular sciences [Internet]. 2020 [cited 2024 Dec 3];21:9368. Available from: https://www.mdpi.com/1422-0067/21/24/9368

  187. Chung B, Matak P, McKie AT, Sharp P. Leptin increases the expression of the iron regulatory hormone hepcidin in HuH7 human hepatoma cells. The Journal of nutrition [Internet]. 2007 [cited 2024 Dec 3];137:2366–70. Available from: https://www.sciencedirect.com/science/article/pii/S0022316622094147

  188. Lin D, Medeiros DM. The microbiome as a major function of the gastrointestinal tract and its implication in micronutrient metabolism and chronic diseases. Nutr Res. 2023;112:30–45.

    Article  CAS  PubMed  Google Scholar 

  189. Schoeler M, Caesar R. Dietary lipids, gut microbiota and lipid metabolism. Rev Endocr Metab Disord. 2019;20:461–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Flint HJ, Duncan SH, Scott KP, Louis P. Links between diet, gut microbiota composition and gut metabolism. Proc Nutr Soc. 2015;74:13–22.

    Article  CAS  PubMed  Google Scholar 

  191. Li S, You J, Wang Z, Liu Y, Wang B, Du M, et al. Curcumin alleviates high-fat diet-induced hepatic steatosis and obesity in association with modulation of gut microbiota in mice. Food Res Int. 2021;143:110270.

    Article  CAS  PubMed  Google Scholar 

  192. Liang H, Jiang F, Cheng R, Luo Y, Wang J, Luo Z, et al. A high-fat diet and high-fat and high-cholesterol diet may affect glucose and lipid metabolism differentially through gut microbiota in mice. Exp Anim. 2021;70:73–83.

    Article  CAS  PubMed  Google Scholar 

  193. Abbaspour N, Hurrell R, Kelishadi R. Review on iron and its importance for human health. J Res Med Sciences: Official J Isfahan Univ Med Sci. 2014;19:164.

    Google Scholar 

  194. Yilmaz B, Li H. Gut microbiota and iron: the crucial actors in health and disease. Pharmaceuticals. 2018;11:98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Malesza IJ, Bartkowiak-Wieczorek J, Winkler-Galicki J, Nowicka A, Dzięciołowska D, Błaszczyk M, et al. The dark side of iron: the relationship between iron, inflammation and gut microbiota in selected diseases associated with iron deficiency anaemia—a narrative review. Nutrients. 2022;14:3478.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Jaeggi T, Kortman GA, Moretti D, Chassard C, Holding P, Dostal A, et al. Iron fortification adversely affects the gut microbiome, increases pathogen abundance and induces intestinal inflammation in Kenyan infants. Gut. 2015;64:731–42.

    Article  CAS  PubMed  Google Scholar 

  197. Seyoum Y, Baye K, Humblot C. Iron homeostasis in host and gut bacteria – a complex interrelationship. Gut Microbes. 2021;13:1874855.

    Article  PubMed  PubMed Central  Google Scholar 

  198. Xiong Q, Zhao J, Tian C, Ma W, Miao L, Liang L, et al. Regulation of a high-iron diet on lipid metabolism and gut microbiota in mice. Animals. 2022;12:2063.

    Article  PubMed  PubMed Central  Google Scholar 

  199. Gu K, Wu A, Yu B, Zhang T, Lai X, Chen J, et al. Iron overload induces colitis by modulating ferroptosis and interfering gut microbiota in mice. Sci Total Environ. 2023;905:167043.

    Article  CAS  PubMed  Google Scholar 

  200. Rodríguez C, Romero E, Garrido-Sanchez L, Alcaín-Martínez G, Andrade R, Taminiau B, et al. Microbiota insights in Clostridium difficile infection and inflammatory bowel disease. Gut Microbes. 2020;12:1725220.

    Article  PubMed  PubMed Central  Google Scholar 

  201. Rodrigues VF, Elias-Oliveira J, Pereira ÍS, Pereira JA, Barbosa SC, Machado MSG, et al. Akkermansia muciniphila and gut immune system: a good friendship that attenuates inflammatory bowel disease, obesity, and diabetes. Front Immunol. 2022;13:934695.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Abenavoli L, Scarpellini E, Colica C, Boccuto L, Salehi B, Sharifi-Rad J, et al. Gut microbiota and obesity: a role for probiotics. Nutrients. 2019;11:2690.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. You H, Tan Y, Yu D, Qiu S, Bai Y, He J, et al. The therapeutic effect of SCFA-mediated regulation of the intestinal environment on obesity. Front Nutr. 2022;9:886902.

    Article  PubMed  PubMed Central  Google Scholar 

  204. Jia X, Xu W, Zhang L, Li X, Wang R, Wu S. Impact of Gut Microbiota and Microbiota-Related Metabolites on Hyperlipidemia. Front Cell Infect Microbiol [Internet]. 2021 [cited 2025 Jul 19];11. Available from: https://www.frontiersin.org/journals/cellular-and-infection-microbiology/articles/https://doi.org/10.3389/fcimb.2021.634780/full

  205. Peng L, Li Z-R, Green RS, Holzman IR, Lin J. Butyrate Enhances the Intestinal Barrier by Facilitating Tight Junction Assembly via Activation of AMP-Activated Protein Kinase in Caco-2 Cell Monolayers. J Nutr [Internet]. 2009 [cited 2025 Jul 19];139:1619–25. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2728689/

  206. Fujisaka S, Watanabe Y, Tobe K. The gut microbiome: a core regulator of metabolism. J Endocrinol. 2023;256:e220111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Yu Y, Raka F, Adeli K. The role of the gut microbiota in lipid and lipoprotein metabolism. J Clin Med. 2019;8:2227.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Long Q, Luo F, Li B, Li Z, Guo Z, Chen Z, et al. Gut microbiota and metabolic biomarkers in metabolic dysfunction-associated steatotic liver disease. Hepatol Commun. 2024;8:e0310.

    Article  PubMed  PubMed Central  Google Scholar 

  209. Jian Z, Zeng L, Xu T, Sun S, Yan S, Zhao S, et al. The intestinal microbiome associated with lipid metabolism and obesity in humans and animals. J Appl Microbiol. 2022;133:2915–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Rivera-Iñiguez I, Panduro A, Roman S, González-Aldaco K. What do we know about nutrient-based strategies targeting molecular mechanisms associated with obesity-related fatty liver disease? Ann Hepatol. 2023;28:100874.

    Article  PubMed  Google Scholar 

  211. Cunningham AL, Stephens JW, Harris DA. A review on gut microbiota: a central factor in the pathophysiology of obesity. Lipids Health Dis. 2021;20:65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Lei L, Zhao N, Zhang L, Chen J, Liu X, Piao S. Gut microbiota is a potential goalkeeper of dyslipidemia. Front Endocrinol (Lausanne). 2022;13:950826.

    Article  PubMed  Google Scholar 

  213. Wang X, Wu Q, Zhong M, Chen Y, Wang Y, Li X, et al. Adipocyte-derived ferroptotic signaling mitigates obesity. Cell Metab. 2025;37:673–e6917.

    Article  CAS  PubMed  Google Scholar 

  214. Qi J, Kim J-W, Zhou Z, Lim C-W, Kim B. Ferroptosis affects the progression of nonalcoholic steatohepatitis via the modulation of lipid peroxidation-mediated cell death in mice. Am J Pathol. 2020;190:68–81.

    Article  CAS  PubMed  Google Scholar 

  215. Speakman JR. Ferroptosis in adipose tissue: a promising pathway for treating obesity? Cell Metab. 2025;37:560–1.

    Article  CAS  PubMed  Google Scholar 

  216. Ma W, Jia L, Xiong Q, Du H. Iron Overload Protects from Obesity by Ferroptosis. Foods [Internet]. 2021 [cited 2025 Jul 19];10:1787. Available from: https://www.mdpi.com/2304-8158/10/8/1787

  217. Zhou D, Lu P, Mo X, Yang B, Chen T, Yao Y, et al. Ferroptosis and metabolic syndrome and complications: association, mechanism, and translational applications. Front Endocrinol (Lausanne). 2023;14:1248934.

    Article  PubMed  Google Scholar 

  218. Luo Y, Chen H, Liu H, Jia W, Yan J, Ding W, et al. Protective effects of ferroptosis Inhibition on high fat diet-induced liver and renal injury in mice. Int J Clin Exp Pathol. 2020;13:2041–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  219. Park GC, Bang S-Y, Kim JM, Shin S-C, Cheon Y-I, Kim KM, et al. Inhibiting ferroptosis prevents the progression of steatotic liver disease in obese mice. Antioxidants. 2024;13:1336.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Liu W, Zou H, You D, Zhang H, Xu L. Sodium houttuybonate promotes the browning of white adipose tissue by inhibiting ferroptosis via the AMPK-NRF2-HO1 pathway. Antioxidants. 2024;13:1057.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the generous in-house support of the Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, UAE.

Funding

This work was supported by research grant 2101050170 (MH), University of Sharjah, Sharjah, UAE, and the Iron Biology Research Group operation budget, the Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, UAE.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, MH; methodology, MH, RH, RR, JS; original draft preparation, BR, RR, and MH; reviewing and editing, MH, JSM, JT, JR. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Mawieh Hamad.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rah, B., Rafiq, R., Sharafain, J. et al. Modulation of hepcidin synthesis: the core link in the bi-directional relationship between iron and obesity. Rev Endocr Metab Disord (2025). https://doi.org/10.1007/s11154-025-09997-y

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11154-025-09997-y

Keywords