Abstract
Key message
We summarise recent advancements to achieve higher homologous recombination based gene targeting efficiency in different animals and plants.
Abstract
The genome editing has revolutionized the agriculture and human therapeutic sectors by its ability to create precise, stable and predictable mutations in the genome. It depends upon targeted double-strand breaks induction by the engineered endonucleases, which then gets repaired by highly conserved endogenous DNA repair mechanisms. The repairing could be done either through non-homologous end joining (NHEJ) or homology-directed repair (HDR) pathways. The HDR-based editing can be applied for precise gene targeting such as insertion of a new gene, gene replacement and altering of the regulatory sequence of a gene to control the existing protein expression. However, HDR-mediated editing is considered challenging because of lower efficiency in higher eukaryotes, thus, preventing its widespread application. This article reviews the recent progress of HDR-mediated editing and discusses novel strategies such as cell cycle synchronization, modulation of DNA damage repair factors, engineering of Cas protein favoring HDR and CRISPR-Cas reagents delivery methods to improve efficiency for generating knock-in events in both plants and animals. Further, multiplexing of described methods may be promising towards achieving higher donor template-assisted homologous recombination efficiency at the target locus.







Similar content being viewed by others
Data availability
Data sharing is not applicable to this article as no datasets were generated or analysed during the current study.
References
Acharya S, Mishra A, Paul D, Ansari AH, Azhar M, Kumar M, Rauthan R, Sharma N, Aich M, Sinha D, Sharma S (2019) Francisella novicida Cas9 interrogates genomic DNA with very high specificity and can be used for mammalian genome editing. Proc Natl Acad Sci USA 116(42):20959–20968. https://doi.org/10.1073/pnas.1818461116
Aesaert S, Impens L, Coussens G, Van Lerberge E, Vanderhaeghen R, Desmet L, Vanhevel Y, Bossuyt S, Wambua AN, Van Lijsebettens M, Inzé DL (2022) Optimized transformation and gene editing of the B104 public maize inbred by improved tissue culture and use of morphogenic regulators. Front Plant Sci 13:883847. https://doi.org/10.3389/fpls.2022.883847
Aksoy YA, Nguyen DT, Chow S, Chung RS, Guillemin GJ, Cole NJ, Hesselson D (2019) Chemical reprogramming enhances homology-directed genome editing in zebrafish embryos. Commun Biol 2(1):1–9. https://doi.org/10.1038/s42003-019-0444-0
Ali Z, Ali S, Tashkandi M, Zaidi SSEA, Mahfouz MM (2016) CRISPR-Cas9 mediated immunity to geminiviruses: differential interference and evasion. Sci Rep 6(1):1–13. https://doi.org/10.1038/srep26912
Ali Z, Shami A, Sedeek K, Kamel R, Alhabsi A, Tehseen M, Hassan N, Butt H, Kababji A, Hamdan SM, Mahfouz MM (2020) Fusion of the Cas9 endonuclease and the VirD2 relaxase facilitates homology-directed repair for precise genome engineering in rice. Commun Biol 3(1):1–13. https://doi.org/10.1038/s42003-020-0768-9
Alt-Moerbe J, Rak B, Schröder J (1986) A 3.6-kbp segment from the vir region of Ti plasmids contains genes responsible for border sequence-directed production of T region circles in E. coli. EMBO J 5(6):1129–1135. https://doi.org/10.1002/j.1460-2075.1986.tb04337.x
Anzalone AV, Randolph PB, Davis JR, Sousa AA, Koblan LW, Levy JM, Chen PJ, Wilson C, Newby GA, Raguram A, Liu DR (2019) Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576(7785):149–157. https://doi.org/10.1038/s41586-019-1711-4
Aman R, Ali Z, Butt H, Mahas A, Aljedaani F, Khan MZ, Ding S, Mahfouz M (2018) RNA virus interference via CRISPR-Cas13a system in plants. Genome Biol 19(1):1–9. https://doi.org/10.1186/s13059-017-1381-1
Aslan Y, Tadjuidje E, Zorn AM, Cha SW (2017) High-efficiency non-mosaic CRISPR-mediated knock-in and indel mutation in F0 Xenopus. Development 144(15):2852–2858. https://doi.org/10.1242/dev.152967
Atkins PA, Voytas DF (2020) Overcoming bottlenecks in plant gene editing. Curr Opin Plant Biol 54:79–84. https://doi.org/10.1016/j.pbi.2020.01.002
Awasthi P, Khan S, Lakhani H, Chaturvedi S, Shivani KN, Singh J, Kesarwani AK, Tiwari S (2022) Transgene-free genome editing supports CCD4 role as a negative regulator of β-carotene in banana. J Exp Bot. https://doi.org/10.1093/jxb/erac042
Baltes NJ, Gil-Humanes J, Cermak T, Atkins PA, Voytas DF (2014) DNA replicons for plant genome engineering. Plant Cell 26(1):151–163. https://doi.org/10.1105/tpc.113.119792
Bao A, Burritt DJ, Chen H, Zhou X, Cao D, Tran LP (2019) The CRISPR-Cas9 system and its applications in crop genome editing. Crit Rev Biotechnol 39(3):321–336. https://doi.org/10.1080/07388551.2018.1554621
Barone P, Wu E, Lenderts B, Anand A, Gordon-Kamm W, Svitashev S, Kumar S (2020) Efficient gene targeting in maize using inducible CRISPR-Cas9 and marker-free donor template. Mol Plant 13(8):1219–1227. https://doi.org/10.1016/j.molp.2020.06.008
Begemann MB, Gray BN, January E, Gordon GC, He Y, Liu H, Wu X, Brutnell TP, Mockler TC, Oufattole M (2017) Precise insertion and guided editing of higher plant genomes using Cpf1 CRISPR nucleases. Sci Rep 7(1):11606. https://doi.org/10.1038/s41598-017-11760-6
Bertier LD, Ron M, Huo H, Bradford KJ, Britt AB, Michelmore RW (2018) High-resolution analysis of the efficiency, heritability, and editing outcomes of CRISPR/Cas9-induced modifications of NCED4 in Lettuce (Lactuca sativa). G3 (bethesda) 8(5):1513–1521. https://doi.org/10.1534/g3.117.300396
Buchholzer M, Frommer WB (2022) An increasing number of countries regulate genome editing in crops. New Phytol. https://doi.org/10.1111/nph.18333
Buisson R, Niraj J, Pauty J, Maity R, Zhao W, Coulombe Y, Sung P, Masson JY (2014) Breast cancer proteins PALB2 and BRCA2 stimulate polymerase η in recombination-associated DNA synthesis at blocked replication forks. Cell Rep 6(3):553–564. https://doi.org/10.1016/j.celrep.2014.01.009
Bunting SF, Nussenzweig A (2013) End-joining, translocations and cancer. Nat Rev Cancer 13(7):443–454. https://doi.org/10.1038/nrc3537
Butler NM, Atkins PA, Voytas DF, Douches DS (2015) Generation and inheritance of targeted mutations in potato (Solanum tuberosum L.) using the CRISPR-Cas system. PLoS ONE 10(12):e0144591. https://doi.org/10.1371/journal.pone.0144591
Britt AB (1996) DNA damage and repair in plants. Annu rev plant physiol plant mol biol 47(1):75–100. https://doi.org/10.1146/annurev.arplant.47.1.75
Canny MD, Moatti N, Wan LCK, Fradet-Turcotte A, Krasner D, Mateos-Gomez PA, Zimmermann M, Orthwein A, Juang YC, Zhang W, Noordermeer SM, Seclen E, Wilson MD, Vorobyov A, Munro M, Ernst A, Ng TF, Cho T, Cannon PM, Sidhu SS, Sicheri F, Durocher D (2018) Inhibition of 53BP1 favors homology-dependent DNA repair and increases CRISPR-Cas9 genome-editing efficiency. Nat Biotechnol 36(1):95–102. https://doi.org/10.1038/nbt.4021
Caso F, Davies B (2022) Base editing and prime editing in laboratory animals. Lab Anim 56(1):35–49. https://doi.org/10.1177/0023677221993895
Ceccaldi R, Rondinelli B, D’Andrea AD (2016) Repair pathway choices and consequences at the double-strand break. Trends Cell Biol 26(1):52–64. https://doi.org/10.1016/j.tcb.2015.07.009
Čermák T, Baltes NJ, Čegan R, Zhang Y, Voytas DF (2015) High-frequency, precise modification of the tomato genome. Genome Biol 16:232. https://doi.org/10.1186/s13059-015-0796-9
Chang HHY, Pannunzio NR, Adachi N, Lieber MR (2017) Non-homologous DNA end joining and alternative pathways to double-strand break repair. Nat Rev Mol Cell Biol 18(8):495–506. https://doi.org/10.1038/nrm.2017.48
Chapman JR, Taylor MR, Boulton SJ (2012) Playing the end game: DNA double-strand break repair pathway choice. Mol Cell 47(4):497–510. https://doi.org/10.1016/j.molcel.2012.07.029
Charpentier M, Khedher AHY, Menoret S, Brion A, Lamribet K, Dardillac E, Boix C, Perrouault L, Tesson L, Geny S, De Cian A, Itier JM, Anegon I, Lopez B, Giovannangeli C, Concordet JP (2018) CtIP fusion to Cas9 enhances transgene integration by homology-dependent repair. Nat Commun 9(1):1133. https://doi.org/10.1038/s41467-018-03475-7
Chatterjee N, Walker GC (2017) Mechanisms of DNA damage, repair, and mutagenesis. Environ Mol Mutagen 58(5):235–263. https://doi.org/10.1002/em.22087
Che P, Wu E, Simon MK, Anand A, Lowe K, Gao H, Sigmund AL, Yang M, Albertsen MC, Gordon-Kamm W, Jones TJ (2022) Wuschel2 enables highly efficient CRISPR-Cas targeted genome editing during rapid de novo shoot regeneration in sorghum. Commun Biol 5(1):344. https://doi.org/10.1038/s42003-022-03308-w
Chen H, Neubauer M, Wang JP (2022a) Enhancing HR frequency for precise genome editing in plants. Front Plant Sci 13:883421. https://doi.org/10.3389/fpls.2022.883421
Chen J, Li S, He Y, Li J, Xia L (2022b) An update on precision genome editing by homology-directed repair in plants. Plant Physiol 188(4):1780–1794. https://doi.org/10.1093/plphys/kiac037
Chu VT, Weber T, Wefers B, Wurst W, Sander S, Rajewsky K, Kühn R (2015) Increasing the efficiency of homology-directed repair for CRISPR-Cas9 induced precise gene editing in mammalian cells. Nat Biotechnol 33(5):543–548. https://doi.org/10.1038/nbt.3198
Dahan-Meir T, Filler-Hayut S, Melamed-Bessudo C, Bocobza S, Czosnek H, Aharoni A, Levy AA (2018) Efficient in planta gene targeting in tomato using geminiviral replicons and the CRISPR-Cas9 system. Plant J 95(1):5–16. https://doi.org/10.1111/tpj.13932
Danilo B, Perrot L, Mara K, Botton E, Nogué F, Mazier M (2019) Efficient and transgene-free gene targeting using Agrobacterium-mediated delivery of the CRISPR-Cas9 system in tomato. Plant Cell Rep 38(4):459–462. https://doi.org/10.1007/s00299-019-02373-6
Danna K, Nathans D (1971) Specific cleavage of simian virus 40 DNA by restriction endonuclease of Hemophilus influenzae. Proc Natl Acad Sci USA 68(12):2913–2917. https://doi.org/10.1073/pnas.68.12.2913
Debernardi JM, Tricoli DM, Ercoli MF, Hayta S, Ronald P, Palatnik JF, Dubcovsky J (2020) A GRF-GIF chimeric protein improves the regeneration efficiency of transgenic plants. Nat Biotechnol 38(11):1274–1279. https://doi.org/10.1038/s41587-020-0703-0
Deriano L, Roth DB (2013) Modernizing the nonhomologous end-joining repertoire: alternative and classical NHEJ share the stage. Annu Rev Genet 47:433–455. https://doi.org/10.1146/annurev-genet-110711-155540
Dong C, Fontana J, Patel A, Carothers JM, Zalatan JG (2018) Synthetic CRISPR-Cas gene activators for transcriptional reprogramming in bacteria. Nat Commun 9(1):2489. https://doi.org/10.1038/s41467-018-04901-6
Dong OX, Yu S, Jain R, Zhang N, Duong PQ, Butler C, Li Y, Lipzen A, Martin JA, Barry KW, Schmutz J, Tian L, Ronald PC (2020) Marker-free carotenoid-enriched rice generated through targeted gene insertion using CRISPR-Cas9. Nat Commun 11(1):1178. https://doi.org/10.1038/s41467-020-14981-y
Eini O, Schumann N, Niessen M, Varrelmann M (2022) Targeted mutagenesis in plants using Beet curly top virus for efficient delivery of CRISPR-Cas12a components. New Biotechnol 67:1–11. https://doi.org/10.1016/j.nbt.2021.12.002
Escribano-Díaz C, Orthwein A, Fradet-Turcotte A, Xing M, Young JT, Tkáč J, Cook MA, Rosebrock AP, Munro M, Canny MD, Xu D, Durocher D (2013) A cell cycle-dependent regulatory circuit composed of 53BP1-RIF1 and BRCA1-CtIP controls DNA repair pathway choice. Mol Cell 49(5):872–883. https://doi.org/10.1016/j.molcel.2013.01.001
Feng Z, Zhang B, Ding W, Liu X, Yang DL, Wei P, Cao F, Zhu S, Zhang F, Mao Y, Zhu JK (2013a) Efficient genome editing in plants using a CRISPR/Cas system. Cell Res 23(10):1229–1232. https://doi.org/10.1038/cr.2013.114
Feng L, Fong KW, Wang J, Wang W, Chen J (2013b) RIF1 counteracts BRCA1-mediated end resection during DNA repair. J Biol Chem 288(16):11135–11143. https://doi.org/10.1074/jbc.m113.457440
Gaj T, Gersbach CA, Barbas CF 3rd (2013) ZFN, TALEN, and CRISPR-Cas based methods for genome engineering. Trends Biotechnol 31(7):397–405. https://doi.org/10.1016/j.tibtech.2013.04.004
Gao H, Gadlage MJ, Lafitte HR, Lenderts B, Yang M, Schroder M, Farrell J, Snopek K, Peterson D, Feigenbutz L, Jones S, St Clair G, Rahe M, Sanyour-Doyel N, Peng C, Wang L, Young JK, Beatty M, Dahlke B, Hazebroek J, Greene TW, Cigan AM, Chilcoat ND, Meeley RB (2020) Superior field performance of waxy corn engineered using CRISPR-Cas9. Nat Biotechnol 38(5):579–581. https://doi.org/10.1038/s41587-020-0444-0
Gao X, Chen J, Dai X, Zhang D, Zhao Y (2016) An effective strategy for reliably isolating heritable and Cas9-free Arabidopsis mutants generated by CRISPR/Cas9-mediated genome editing. Plant Physiol 171(3):1794–1800. https://doi.org/10.1104/pp.16.00663
Gelvin SB (2003) Agrobacterium-mediated plant transformation: the biology behind the “gene-jockeying” tool. Microbiol Mol Biol Rev 67(1):16–37. https://doi.org/10.1128/mmbr.67.1.16-37.2003
Gil-Humanes J, Wang Y, Liang Z, Shan Q, Ozuna CV, Sánchez-León S, Baltes NJ, Starker C, Barro F, Gao C, Voytas DF (2017) High-efficiency gene targeting in hexaploid wheat using DNA replicons and CRISPR/Cas9. Plant J 89(6):1251–1262. https://doi.org/10.1111/tpj.13446
Gorbunova VV, Levy AA (1999) How plants make ends meet: DNA double-strand break repair. Trends Plant Sci 4(7):263–269. https://doi.org/10.1016/s1360-1385(99)01430-2
Guo Q, Mintier G, Ma-Edmonds M, Storton D, Wang X, Xiao X, Kienzle B, Zhao D, Feder JN (2018) “Cold shock” increases the frequency of homology directed repair gene editing in induced pluripotent stem cells. Sci Rep 8(1):2080. https://doi.org/10.1038/s41598-018-20358-5
Gutschner T, Haemmerle M, Genovese G, Draetta GF, Chin L (2016) Post-translational regulation of Cas9 during G1 enhances homology-directed repair. Cell Rep 14(6):1555–1566. https://doi.org/10.1016/j.celrep.2016.01.019
Hackley CR (2021) A novel set of Cas9 fusion proteins to stimulate homologous recombination: Cas9-HRs. CRISPR J 4(2):253–263. https://doi.org/10.1089/crispr.2020.0034
Hahn F, Eisenhut M, Mantegazza O, Weber APM (2018) Homology-directed repair of a defective Glabrous gene in Arabidopsis with Cas9-based gene targeting. Front Plant Sci 9:424. https://doi.org/10.3389/fpls.2018.00424
He Y, Zhu M, Wang L, Wu J, Wang Q, Wang R, Zhao Y (2018) Programmed self-elimination of the CRISPR/Cas9 construct greatly accelerates the isolation of edited and transgene-free rice plants. Mol Plant 11(9):1210–1213. https://doi.org/10.1016/j.molp.2018.05.005
Heyer WD, Ehmsen KT, Liu J (2010) Regulation of homologous recombination in eukaryotes. Annu Rev Genet 44:113–139. https://doi.org/10.1146/annurev-genet-051710-150955
Hu Z, Cools T, De Veylder L (2016) Mechanisms used by plants to cope with DNA damage. Annu Rev Plant Biol 67:439–462. https://doi.org/10.1146/annurev-arplant-043015-111902
Ito Y, Nishizawa-Yokoi A, Endo M, Mikami M, Toki S (2015) CRISPR-Cas9 mediated mutagenesis of the RIN locus that regulates tomato fruit ripening. Biochem Biophys Res Commun 467(1):76–82. https://doi.org/10.1016/j.bbrc.2015.09.117
Jang DE, Lee JY, Lee JH, Koo OJ, Bae HS, Jung MH, Bae JH, Hwang WS, Chang YJ, Lee YH, Lee HW, Yeom SC (2018) Multiple sgRNAs with overlapping sequences enhance CRISPR-Cas9 mediated knock-in efficiency. Exp Mol Med 50(4):1–9. https://doi.org/10.1038/s12276-018-0037-x
Jayathilaka K, Sheridan SD, Bold TD, Bochenska K, Logan HL, Weichselbaum RR, Bishop DK, Connell PP (2008) A chemical compound that stimulates the human homologous recombination protein RAD51. Proc Natl Acad Sci USA 105(41):15848–15853. https://doi.org/10.1073/pnas.0808046105
Jayavaradhan R, Pillis DM, Goodman M, Zhang F, Zhang Y, Andreassen PR, Malik P (2019) CRISPR-Cas9 fusion to dominant-negative 53BP1 enhances HDR and inhibits NHEJ specifically at Cas9 target sites. Nat Commun 10(1):2866. https://doi.org/10.1038/s41467-019-10735-7
Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337(6096):816–821. https://doi.org/10.1126/science.1225829
Kaur N, Alok A, Shivani, Kaur N, Pandey P, Awasthi P, Tiwari S (2018) CRISPR/Cas9-mediated efficient editing in phytoene desaturase (PDS) demonstrates precise manipulation in banana cv. Rasthali genome. Funct Integr Genomics 18(1):89–99. https://doi.org/10.1007/s10142-017-0577-5
Kaur N, Alok A, Shivani KP, Kaur N, Awasthi P, Chaturvedi S, Pandey P, Pandey A, Pandey AK, Tiwari S (2020) CRISPR-Cas9 directed editing of lycopene epsilon-cyclase modulates metabolic flux for β-carotene biosynthesis in banana fruit. Metab Eng 59:76–86. https://doi.org/10.1016/j.ymben.2020.01.008
Kleinstiver BP, Sousa AA, Walton RT, Tak YE, Hsu JY, Clement K, Welch MM, Horng JE, Malagon-Lopez J, Scarfò I, Maus MV, Pinello L, Aryee MJ, Joung JK (2019) Engineered CRISPR-Cas12a variants with increased activities and improved targeting ranges for gene, epigenetic and base editing. Nat Biotechnol 37(3):276–282. https://doi.org/10.1038/s41587-018-0011-0
Koch B, Nijmeijer B, Kueblbeck M, Cai Y, Walther N, Ellenberg J (2018) Generation and validation of homozygous fluorescent knock-in cells using CRISPR-Cas9 genome editing. Nat Protoc 13(6):1465–1487. https://doi.org/10.1038/nprot.2018.042
Koltun ES, Tsuhako AL, Brown DS, Aay N, Arcalas A, Chan V, Du H, Engst S, Ferguson K, Franzini M, Galan A, Holst CR, Huang P, Kane B, Kim MH, Li J, Markby D, Mohan M, Noson K, Plonowski A, Richards SJ, Robertson S, Shaw K, Stott G, Stout TJ, Young J, Yu P, Zaharia CA, Zhang W, Zhou P, Nuss JM, Xu W, Kearney PC (2012) Discovery of XL413, a potent and selective CDC7 inhibitor. Bioorg Med Chem Lett 22(11):3727–3731. https://doi.org/10.1016/j.bmcl.2012.04.024
Komor AC, Badran AH, Liu DR (2017) CRISPR-based technologies for the manipulation of eukaryotic genomes. Cell 168(1–2):20–36. https://doi.org/10.1016/j.cell.2016.10.044
Komor AC, Kim YB, Packer MS, Zuris JA, Liu DR (2016) Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533(7603):420–424. https://doi.org/10.1038/nature17946
Kurihara T, Kouyama-Suzuki E, Satoga M, Li X, Badawi M, Thiha BDN, Yanagawa T, Uemura T, Mori T, Tabuchi K (2020) DNA repair protein RAD51 enhances the CRISPR-Cas9 mediated knock-in efficiency in brain neurons. Biochem Biophys Res Commun 524(3):621–628. https://doi.org/10.1016/j.bbrc.2020.01.132
Li G, Zhang X, Wang H, Liu D, Li Z, Wu Z, Yang H (2020) Increasing CRISPR-Cas9 mediated homology-directed DNA repair by histone deacetylase inhibitors. Int J Biochem Cell Biol 125:1–9. https://doi.org/10.1016/j.biocel.2020
Li G, Zhang X, Zhong C, Mo J, Quan R, Yang J, Liu D, Li Z, Yang H, Wu Z (2017) Small molecules enhance CRISPR-Cas9 mediated homology-directed genome editing in primary cells. Sci Rep 27(1):8943103. https://doi.org/10.1038/s41598-017-09306-x
Li JF, Norville JE, Aach J, McCormack M, Zhang D, Bush J, Church GM, Sheen J (2013) Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nat Biotechnol 31(8):688–691. https://doi.org/10.1038/nbt.2654
Lin S, Staahl BT, Alla RK, Doudna JA (2014) Enhanced homology-directed human genome engineering by controlled timing of CRISPR/Cas9 delivery. Elife 3:e04766. https://doi.org/10.7554/elife.04766
Maher MF, Nasti RA, Vollbrecht M, Starker CG, Clark MD, Voytas DF (2020) Plant gene editing through de novo induction of meristems. Nat Biotechnol 38(1):84–89. https://doi.org/10.1038/s41587-019-0337-2
Manghwar H, Lindsey K, Zhang X, Jin S (2019) CRISPR-Cas system: recent advances and future prospects for genome editing. Trends Plant Sci 24(12):1102–1125. https://doi.org/10.1016/j.tplants.2019.09.006
Manova V, Gruszka D (2015) DNA damage and repair in plants—from models to crops. Front Plant Sci 6:885. https://doi.org/10.3389/fpls.2015.00885
Maruyama T, Dougan SK, Truttmann MC, Bilate AM, Ingram JR, Ploegh HL (2015) Increasing the efficiency of precise genome editing with CRISPR-Cas9 by inhibition of nonhomologous end joining. Nat Biotechnol 33(5):538–542. https://doi.org/10.1038/nbt.3190
Maurissen TL, Woltjen K (2020) Synergistic gene editing in human iPS cells via cell cycle and DNA repair modulation. Nat Commun 11(1):2876. https://doi.org/10.1038/s41467-020-16643-5
Miki D, Zhang W, Zeng W, Feng Z, Zhu JK (2018) CRISPR-Cas9 mediated gene targeting in Arabidopsis using sequential transformation. Nat Commun 9(1):1967. https://doi.org/10.1038/s41467-018-04416-0
Miller JC, Tan S, Qiao G, Barlow KA, Wang J, Xia DF, Meng X, Paschon DE, Leung E, Hinkley SJ, Dulay GP, Hua KL, Ankoudinova I, Cost GJ, Urnov FD, Zhang HS, Holmes MC, Zhang L, Gregory PD, Rebar EJ (2011) A TALE nuclease architecture for efficient genome editing. Nat Biotechnol 29(2):143–148. https://doi.org/10.1038/nbt.1755
Newbold A, Salmon JM, Martin BP, Stanley K, Johnstone RW (2014) The role of p21(waf1/cip1) and p27(Kip1) in HDACi-mediated tumor cell death and cell cycle arrest in the Eμ-myc model of B-cell lymphoma. Oncogene 33(47):5415–5423. https://doi.org/10.1038/onc.2013.482
Orozco BM, Kong LJ, Batts LA, Elledge S, Hanley-Bowdoin L (2000) The multifunctional character of a geminivirus replication protein is reflected by its complex oligomerization properties. J Biol Chem 275(9):6114–6122. https://doi.org/10.1074/jbc.275.9.6114
Osakabe K, Osakabe Y, Toki S (2010) Site-directed mutagenesis in Arabidopsis using custom-designed zinc finger nucleases. Proc Natl Acad Sci USA 107(26):12034–12039. https://doi.org/10.1073/pnas.1000234107
Park KE, Powell A, Sandmaier SE, Kim CM, Mileham A, Donovan DM, Telugu BP (2017) Targeted gene knock-in by CRISPR-Cas ribonucleoproteins in porcine zygotes. Sci Rep 7:424–458. https://doi.org/10.1038/srep42458
Pawelczak KS, Gavande NS, VanderVere-Carozza PS, Turchi JJ (2018) Modulating DNA repair pathways to improve precision genome engineering. ACS Chem Biol 13(2):389–396. https://doi.org/10.1021/acschembio.7b00777
Pinder J, Salsman J, Dellaire G (2015) Nuclear domain “knock-in” screen for the evaluation and identification of small molecule enhancers of CRISPR-based genome editing. Nucleic Acids Res 43(19):9379–9392. https://doi.org/10.1093/nar/gkv993
Puchta H (2005) The repair of double-strand breaks in plants: mechanisms and consequences for genome evolution. J Exp Bot 56(409):1–14. https://doi.org/10.1093/jxb/eri025
Puchta H (2017) Applying CRISPR-Cas for genome engineering in plants: the best is yet to come. Curr Opin Plant Biol 36:1–8. https://doi.org/10.1016/j.pbi.2016.11.011
Qi LS, Larson MH, Gilbert LA, Doudna JA, Weissman JS, Arkin AP, Lim WA (2013a) Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152(5):1173–1183. https://doi.org/10.1016/j.cell.2013.02.022
Qi Y, Zhang Y, Zhang F, Baller JA, Cleland SC, Ryu Y, Starker CG, Voytas DF (2013b) Increasing frequencies of site-specific mutagenesis and gene targeting in Arabidopsis by manipulating DNA repair pathways. Genome Res 23(3):547–554. https://doi.org/10.1101/gr.145557.112
Quadros RM, Miura H, Harms DW, Akatsuka H, Sato T, Aida T, Redder R, Richardson GP, Inagaki Y, Sakai D, Buckley SM, Seshacharyulu P, Batra SK, Behlke MA, Zeiner SA, Jacobi AM, Izu Y, Thoreson WB, Urness LD, Mansour SL, Ohtsuka M, Gurumurthy CB (2017) Easi-CRISPR: a robust method for one-step generation of mice carrying conditional and insertion alleles using long ssDNA donors and CRISPR ribonucleoproteins. Genome Biol 18(1):92. https://doi.org/10.1186/s13059-017-1220-4
Que Q, Chen Z, Kelliher T, Skibbe D, Dong S, Chilton MD (2019) Plant DNA repair pathways and their applications in genome engineering. Methods Mol Biol 917:3–24. https://doi.org/10.1007/978-1-4939-8991-1_1
Rees HA, Yeh WH, Liu DR (2019) Development of hRad51-Cas9 nickase fusions that mediate HDR without double-stranded breaks. Nat Commun 10(1):2212. https://doi.org/10.1038/s41467-019-09983-4
Riesenberg S, Maricic T (2018) Targeting repair pathways with small molecules increases precise genome editing in pluripotent stem cells. Nat Commun 9(1):2164. https://doi.org/10.1038/s41467-018-04609-7
Roobol A, Carden MJ, Newsam RJ, Smales CM (2009) Biochemical insights into the mechanisms central to the response of mammalian cells to cold stress and subsequent rewarming. FEBS J 276(1):286–302. https://doi.org/10.1111/j.1742-4658.2008.06781.x
Roth N, Klimesch J, Dukowic-Schulze S, Pacher M, Mannuss A, Puchta H (2012) The requirement for recombination factors differs considerably between different pathways of homologous double-strand break repair in somatic plant cells. Plant J 72(5):781–790. https://doi.org/10.1111/j.1365-313x.2012.05119.x
Sakaue-Sawano A, Ohtawa K, Hama H, Kawano M, Ogawa M, Miyawaki A (2008) Tracing the silhouette of individual cells in S/G2/M phases with fluorescence. Chem Biol 15(12):1243–1248. https://doi.org/10.1016/j.chembiol.2008.10.015
Salsman J, Dellaire G (2017) Precision genome editing in the CRISPR era. Biochem Cell Biol 95(2):187–201. https://doi.org/10.1139/bcb-2016-0137
Schiml S, Fauser F, Puchta H (2014) The CRISPR-Cas system can be used as nuclease for in planta gene targeting and as paired nickases for directed mutagenesis in Arabidopsis resulting in heritable progeny. Plant J 80(6):1139–1150. https://doi.org/10.1111/tpj.12704
Schmidt C, Schindele P, Puchta H (2019) From gene editing to genome engineering: restructuring plant chromosomes via CRISPR-Cas. aBIOTECH 1:21–31. https://doi.org/10.1007/s42994-019-00002-0
Shan Q, Wang Y, Li J, Zhang Y, Chen K, Liang Z, Zhang K, Liu J, Xi JJ, Qiu JL, Gao C (2013) Targeted genome modification of crop plants using a CRISPR-Cas system. Nat Biotechnol 31(8):686–688. https://doi.org/10.1038/nbt.2650
Shen H, Li Z (2022) DNA double-strand break repairs and their application in plant DNA integration. Genes 13(2):322. https://doi.org/10.3390/genes13020322
Shi J, Gao H, Wang H, Lafitte HR, Archibald RL, Yang M, Hakimi SM, Mo H, Habben JE (2017) ARGOS8 variants generated by CRISPR-Cas9 improve maize grain yield under field drought stress conditions. Plant Biotechnol J 15(2):207–221. https://doi.org/10.1111/pbi.12603
Soda N, Verma L, Giri J (2018) CRISPR-Cas9 based plant genome editing: significance, opportunities and recent advances. Plant Physiol Biochem 131:2–11. https://doi.org/10.1016/j.plaphy.2017.10.024
Song X, Liu C, Wang N, Huang H, He S, Gong C, Wei Y (2021) Delivery of CRISPR/Cas systems for cancer gene therapy and immunotherapy. Adv Drug Deliv Rev 168:158–180. https://doi.org/10.1016/j.addr.2020.04.010
Spampinato CP (2017) Protecting DNA from errors and damage: an overview of DNA repair mechanisms in plants compared to mammals. Cell Mol Life Sci 74(9):1693–1709. https://doi.org/10.1007/s00018-016-2436-2
Sretenovic S, Qi Y (2022) Plant prime editing goes prime. Nat Plants 8(1):20–22. https://doi.org/10.1038/s41477-021-01047-0
Steinert J, Schiml S, Puchta H (2016) Homology-based double-strand break-induced genome engineering in plants. Plant Cell Rep 35(7):1429–1438. https://doi.org/10.1007/s00299-016-1981-3
Symington LS (2014) End resection at double-strand breaks: mechanism and regulation. Cold Spring Harb Perspect Biol 6(8):a016436. https://doi.org/10.1101/cshperspect.a016436
Takayama K, Igai K, Hagihara Y, Hashimoto R, Hanawa M, Sakuma T, Tachibana M, Sakurai F, Yamamoto T, Mizuguchi H (2017) Highly efficient biallelic genome editing of human ES/iPS cells using a CRISPR-Cas9 or TALEN system. Nucleic Acids Res 45(9):5198–5207. https://doi.org/10.1093/nar/gkx130
Taleei R, Nikjoo H (2013) Biochemical DSB-repair model for mammalian cells in G1 and early S phases of the cell cycle. Mutat Res 756(1–2):206–212. https://doi.org/10.1016/j.mrgentox.2013.06.004
Tang XD, Gao F, Liu MJ, Fan QL, Chen DK, Ma WTC (2019) Methods for enhancing clustered regularly interspaced short palindromic repeats-Cas9 mediated homology-directed repair efficiency. Front Genet 10:551. https://doi.org/10.3389/fgene.2019.00551
Tian Y, Wong VW, Wong GL, Yang W, Sun H, Shen J, Tong JH, Go MY, Cheung YS, Lai PB, Zhou M, Xu G, Huang TH, Yu J, To KF, Cheng AS, Chan HL (2015) Histone deacetylase HDAC8 promotes insulin resistance and β-catenin activation in NAFLD-associated hepatocellular carcinoma. Cancer Res 75(22):4803–4816. https://doi.org/10.1158/0008-5472.can-14-3786
Vartak SV, Raghavan SC (2015) Inhibition of nonhomologous end joining to increase the specificity of CRISPR-Cas9 genome editing. FEBS J 282(22):4289–4294. https://doi.org/10.1111/febs.13416
Wienert B, Nguyen DN, Guenther A, Feng SJ, Locke MN, Wyman SK, Shin J, Kazane KR, Gregory GL, Carter MAM, Wright F, Conklin BR, Marson A, Richardson CD, Corn JE (2020) Timed inhibition of CDC7 increases CRISPR-Cas9 mediated templated repair. Nat Commun 11(1):2109. https://doi.org/10.1038/s41467-020-15845-1
Wu WH, Ma XM, Huang JQ, Lai Q, Jiang FN, Zou CY, Chen LT, Yu L (2022) CRISPR-Cas9 (D10A) nickase-mediated Hb CS gene editing and genetically modified fibroblast identification. Bioengineered 13(5):13398–13406. https://doi.org/10.1080/21655979.2022.2069940
Xu RF, Li H, Qin RY, Li J, Qiu CH, Yang YC, Ma H, Li L, Wei PC, Yang JB (2015) Generation of inheritable and “transgene clean” targeted genome-modified rice in later generations using the CRISPR/Cas9 system. Sci Rep 5:11491. https://doi.org/10.1038/srep11491
Xu J, Zheng Z, Du X, Shi B, Wang J, Gao D, Zhu Q, Chen X, Han J (2020a) A cytokine screen using CRISPR-Cas9 knock-in reporter pig iPS cells reveals that Activin A regulates NANOG. Stem Cell Res Ther 11(1):67. https://doi.org/10.1186/s13287-020-1588-z
Xu Y, Lin Q, Li X, Wang F, Chen Z, Wang J, Li W, Fan F, Tao Y, Jiang Y, Wei X, Zhang R, Zhu QH, Bu Q, Yang J, Gao C (2020b) Fine-tuning the amylose content of rice by precise base editing of the Wx gene. Plant Biotechnol J 19(1):11–13. https://doi.org/10.1111/pbi.13433
Yamato T, Handa A, Arazoe T, Kuroki M, Nozaka A, Kamakura T, Ohsato S, Arie T, Kuwata S (2019) Single crossover-mediated targeted nucleotide substitution and knock-in strategies with CRISPR-Cas9 system in the rice blast fungus. Sci Rep 9(1):7427. https://doi.org/10.1038/s41598-019-43913-0
Yang D, Scavuzzo MA, Chmielowiec J, Sharp R, Bajic A, Borowiak M (2016) Enrichment of G2/M cell cycle phase in human pluripotent stem cells enhances HDR-mediated gene repair with customizable endonucleases. Sci Rep 6(1):1–15. https://doi.org/10.1038/srep21264
Yao X, Zhang M, Wang X, Ying W, Hu X, Dai P, Meng F, Shi L, Sun Y, Yao N, Zhong W (2018) Tild-CRISPR allows for efficient and precise gene knock-in in mouse and human cells. Dev Cell 45(4):526–536. https://doi.org/10.1016/j.devcel.2018.04.021
Zhang JP, Li XL, Li GH, Chen W, Arakaki C, Botimer GD, Baylink D, Zhang L, Wen W, Fu YW, Xu J (2014) Efficient precise knock-in with a double cut HDR donor after CRISPR-Cas9 mediated double-stranded DNA cleavage. Genome Biol 18(1):1–8. https://doi.org/10.1186/s13059-017-1164-8
Zhang JP, Li XL, Li GH, Chen W, Arakaki C, Botimer GD, Baylink D, Zhang L, Wen W, Fu YW, Xu J, Chun N, Yuan W, Cheng T, Zhang XB (2017) Efficient precise knockin with a double cut HDR donor after CRISPR/Cas9-mediated double-stranded DNA cleavage. Genome Biol 18(1):35. https://doi.org/10.1186/s13059-017-1164-8
Zhao Y, Zhang C, Liu W, Gao W, Liu C, Song G, Li WX, Mao L, Chen B, Xu Y, Li X, Xie C (2016) An alternative strategy for targeted gene replacement in plants using a dual-sgRNA/Cas9 design. Sci Rep 6:23890. https://doi.org/10.1038/srep23890
Zhou H, Liu B, Weeks DP, Spalding MH, Yang B (2014) Large chromosomal deletions and heritable small genetic changes induced by CRISPR-Cas9 in rice. Nucleic Acids Res 42(17):10903–10914. https://doi.org/10.1093/nar/gku806
Zhu H, Li C, Gao C (2020) Applications of CRISPR-Cas in agriculture and plant biotechnology. Nat Rev Mol Cell Biol 21(11):661–677. https://doi.org/10.1038/s41580-020-00288-9
Acknowledgements
The authors express their gratitude to the National Agri-Food Biotechnology Institute (NABI), Department of Biotechnology (DBT) for research facilities and support. We are also thankful to DBT for junior research fellowship to S.S. and Council of Scientific and Industrial Research (CSIR) for junior research fellowship to R.C. The present research was also supported by the Biotechnology Industry Research Assistance Council (BIRAC) for a banana biofortification project grant. S.S. and R.C. are thankful to Regional Centre for Biotechnology for PhD registration. Authors would like to acknowledge DBT-eLibrary Consortium (DelCON) for providing access to online journals.
Funding
This work was supported by the Department of Biotechnology (DBT), Ministry of Science & Technology, Government of India.
Author information
Authors and Affiliations
Contributions
S.T. conceived and designed the idea. S.S. and R.C. performed the literature survey. S.S. and R.C. and S.T. wrote the manuscript. S.T. and R.D. contributed to the editing and revision of the manuscript. All authors have read and agreed to the published version of the manuscript.
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflicts of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Singh, S., Chaudhary, R., Deshmukh, R. et al. Opportunities and challenges with CRISPR-Cas mediated homologous recombination based precise editing in plants and animals. Plant Mol Biol 111, 1–20 (2023). https://doi.org/10.1007/s11103-022-01321-5
Received:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1007/s11103-022-01321-5


