Abstract
It is challenging to tune absorption of nanomaterials in the visible region for using them in optoelectronics applications. Heterostructures of transition metal dichalcogenides WS2, WSe2, MoS2, MoTe2, MoSe2, monolayers, and mercury cadmium telluride are investigated and calculations have been performed using density-functional theory with Van der Waals interaction. The results so obtained show that the monolayer of WS2, WSe2, MoS2, MoSe2, and MoTe2 has an absorption in the range of ~ 410–690 nm for the visible spectrum. For HgCdTe ~ 410–450 nm. However, for the heterostructure absorption rises along with wavelength and gets pushed towards the deep red end resulting in the redshift phenomenon. Strong absorption can be observed in the spectrum range of ~ 710–1050 nm for all the heterostructure. With high absorption in the visible red region may find various applications in the optical devices Schottky barrier solar cell absorbers.





Similar content being viewed by others
Data availability
The author confirms that the data supporting and the findings of this study are available within the article and its supplementary material. Raw data that support findings of this study are available from the corresponding author, upon reasonable request.
References
A.K. Geim, K.S. Novoselov, The rise of graphene. Nat. Mater. 6, 183–191 (2007)
C. Berger et al., Ultrathin epitaxial graphite “2D electron gas properties and a route toward graphene-based nanoelectronics.” J. Phys. Chem. B 108, 19912–19916 (2004)
S. Stankovich et al., Graphene-based composite materials. Nature 442, 282–286 (2006)
C. Berger et al., Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. J. Phys. Chem. B 108, 19912–19916 (2004)
M.J. Allen, V.C. Tung, R.B. Kaner, Honeycomb carbon: a review of graphene. Chem. Rev. 110(1), 132–145 (2010)
A.H.C. Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, The electronic properties of graphene. Rev. Mod. Phys. 81(1), 109–162 (2009)
H. Liu et al., Phosphorene: an unexplored 2D semiconductor with high hole mobility. ACS Nano 8(4), 4033–4041 (2014)
P. Vogt et al., Silicene: compelling experimental evidence for graphene-like two-dimensional silicon. Phys. Rev. Lett. 108(15), 155501 (2012)
Z. Ni et al., Tunable bandgap in silicene and germanene. Nano Lett. 12(1), 113–118 (2012)
X. Duan, C. Wang, A. Pan, R. Yu, X. Duan, Two-dimensional transition metal dichalcogenides as atomically thin semiconductors: opportunities and challenge. Chem. Soc. Rev. 44(24), 8859–8876 (2015)
J. Wang, F. Ma, M. Sun, Graphene, hexagonal boron nitride, and their heterostructures: properties and applications. RSC Adv. 7, 16801–16822 (2017)
F. Zhang, W. Li, Y. Ma, Y. Tang, X. Dai, Tuning the Schottky contacts at the graphene/WS2 interface by electric field. RSC Adv. 7, 29350–29356 (2017)
N.R. Pradhan et al., Metal to insulator quantum-phase transition in few-layered ReS2. Nano Lett. 15(12), 8377–8384 (2015)
B. Liu, M. Cai, Y. Zhao, L. Wu, L. Wang, First-principles investigation of the Schottky contact for the two-dimensional MoS2 and graphene heterostructure. RSC Adv. 6, 60271–60276 (2016)
A. Eftekhari, Tungsten dichalcogenides (WS2, WSe2, and WTe2): material chemistry and applications. J. Mater. Chem. A 5(35), 18299–18325 (2017)
U. Wurstbauer, B. Miller, E. Parzinger, A.W. Holleitner, Light–matter interaction in transition metal dichalcogenides and their heterostructures. J. Phys. D 50(17), 173001 (2017)
L.F. Mattheis, Band structures of transition-metal-dichalcogenide layer compounds. Phys. Rev. B 8(8), 3719 (1973)
R.A. Bromley, R.B. Murray, A.D. Yoffe, The band structures of some transition metal dichalcogenides. III. Group VIA: trigonal prism materials. J. Phys. C 5(7), 759–778 (1972)
T. Boker et al., Band structure of MoS2, MoSe2, and a-MoTe2: angle resolved photoelectron spectroscopy and ab initio calculations. Phys. Rev. B 64(23), 235305 (2001)
K.S. Novoselov, Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. USA 102(30), 10451–10453 (2005)
K.F. Mak et al., Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010)
K.F. Mak, K. He, J. Shan, T.F. Heinz, Control of valley polarization in monolayer MoS2 by optical helicity. Nat. Nanotechnol. 7, 494–498 (2012)
O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, A. Kis, Ultrasensitive photodetectors based on monolayer MoS2. Nat. Nanotechnol. 8, 497–501 (2013)
W. Choi et al., High-detectivity multilayer MoS2 phototransistors with spectral response from ultraviolet to infrared. Adv. Mater. 24(43), 5832–5836 (2012)
K. He, C. Poole, K.F. Mak, J. Shan, Experimental demonstration of continuous electronic structure tuning via strain in atomically thin MoS2. Nano Lett. 13(6), 2931–2936 (2013)
V. Nicolosi, M. Chhowalla, M.G. Kanatzidis, M.S. Strano, J.N. Coleman, Liquid exfoliation of layered materials. Science 340, 1420 (2013)
P. Joensen, R.F. Frindt, S.R. Morrison, Single-layer MoS2. Mater. Res. Bull. 21, 457–461 (1986)
Z.Y. Zeng, Z.Y. Yin, X. Huang, H. Li, Q.Y. He, G. Lu, F. Boey, H. Zhang, Single-layer semiconducting nanosheets: high-yield preparation and device fabrication. Angew. Chem Int. Ed. 50, 11093–11097 (2011)
Z. Zeng, T. Sun, J. Zhu, X. Huang, Z. Yin, G. Lu, Z. Fan, Q. Yan, H.H. Hng, H. Zhang, An effective method for the fabrication of few-layer-thick inorganic nanosheets. Angew. Chem. Int. Ed. 51, 9052–9056 (2012)
K.F. Mak, C. Lee, J. Hone, J. Shan, T.F. Heinz, Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010)
Gutiérrez HR, Perea-López N, Elías AL, Berkdemir A, Wang B, Lv R, López-Urías F, Crespi VH, Terrones H, Terrones M (2013) Extraordinary room-temperature photoluminescence in triangular WS2 monolayers. Nano Lett. 13: 3447−3454.
M. Chhowalla, H.S. Shin, G. Eda, L.J. Li, K.P. Loh, H. Zhang, The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 5, 263–275 (2013)
J. Wang, H. Shu, P. Liang, N. Wang, D. Cao, X. Chen, Thickness-dependent phase stability and electronic properties of GaN nanosheets and MoS2/GaN van der Waals heterostructures. J. Phys. Chem. C 123(6), 3861–3867 (2019)
P.A. Nwofe, K.T. Ramakrishna-Reddy, J.K. Tan, I. Forbes, R.W. Miles, Thickness dependent optical properties of thermally evaporated SnS thin films. Phys. Procedia 25, 150–157 (2012)
R.A.B. Villaos, C.P. Crisostomo, Z.-Q. Huang, S.-M. Huang, A.A.B. Padama, M.A. Albao, H. Lin, F.-C. Chuang, Thickness dependent electronic properties of Pt dichalcogenides. NPJ 2D Mater. Appl. 3, 2 (2019)
P. Tyagi, A.G. Vedeshwar, N.C. Mehra, Thickness dependent optical properties of CdI2 films. Phys. B 304(1–4), 166–174 (2001)
A. Zubair, M.T. Choudhary, M.S. Bashar, M.A. Sami, Thickness dependent correlation between structural and optical properties of textured CdSe thin film. AIP Adv. 9, 045123 (2019)
A.S. Solieman, M.M. Hafiz, A.A. Abu-Sehly, A.A. Alfaqeer, Dependence of optical properties on the thickness of amorphous Ge30Se70 thin films. J Taibah Univ. Sci. 8(3), 282–288 (2014)
B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, A. Kis, Single-layer MoS2 transistors. Nat. Nanotechnol. 6, 147–150 (2011)
Y. Deng et al., Black phosphorus-monolayer MoS2 van der Waals heterojunction p–n diode. ACS Nano 8, 8292–8299 (2014)
H. Zhang, Y.N. Zhang, H. Liu, L.M. Liu, Novel heterostructures by stacking layered molybdenum disulphides and nitrides for solar energy conversion. J. Mater. Chem. A 2, 15389–15395 (2014)
J. Liao, B. Sa, J. Zhou, R. Ahuja, Z. Sun, Design of high efficiency visible-light photocatalysts for water splitting: MoS2/AlN (GaN) heterostructure. J. Phys. Chem. C 118, 17594–17599 (2014)
Z. Sun, A. Martinez, F. Wang, Optical modulators with 2D layered materials. Nat. Photonics 10(4), 227–238 (2016)
T. Roy et al., Dual-gated MoS2/WSe2 van der Waals tunnel diodes and transistors. ACS Nano 9(2), 2071–2079 (2015)
M.-H. Chiu et al., Determination of band alignment in the single-layer MoS2/WSe2 heterojunction. Nat. Commun. 6, 7666 (2015)
R. Cheng et al., Electroluminescence and photocurrent generation from atomically sharp WSe2/MoS2 heterojunction p–n diodes. Nano Lett. 14(10), 5590–5597 (2014)
P. Rivero, C.M. Horvath, Z. Zhu, J. Guan, D. Tomanek, S. Barraza-Lopez, Simulated scanning tunnelling microscopy images of few-layer phosphorus capped by graphene and hexagonal boron nitride monolayers. Phys. Rev. B 91(11), 115413 (2015)
F. Yi, H. Ren, J. Shan, X. Sun, D. Wei, Z. Liu, Wearable energy sources based on 2D materials. Chem. Soc. Rev. 47(9), 3152–3188 (2018)
C. Chen et al., MoS2-on-MXene heterostructures as highly reversible anode materials for lithium-ion batteries. Angew. Chem. 130(7), 1864–1868 (2018)
O. Zakharov, A. Rubio, X. Blase, M.L. Cohen, S.G. Louie, Quasiparticle band structures of six II-VI compounds: ZnS, ZnSe, ZnTe, CdS, CdSe, and CdTe. Phys. Rev. B. 50(15), 10780–10787 (1994)
P. Norton, HgCdTe infrared detectors. Optoelectron. Rev. 10(3), 159–174 (2002)
M. Penna, A. Marnetto, F. Bertazzi, E. Bellotti, M. Goano, Empirical pseudopotential and full-Brillouin-zone k·p electronic structure of CdTe, HgTe, and Hg1−xCdxTe. J. Electron. Mater. 38(8), 1717–1725 (2009)
A. Rogalski, HgCdTe infrared detector material: history, status and outlook. Rep. Prog. Phys. 68(10), 2267 (2005)
S. Richard, F. Aniel, G. Fishman, Energy-band structure of Ge, Si, and GaAs: A thirty-band kp method. Phys. Rev. B 70(23), 235204 (2004)
S. Rolland, Properties of Narrow Gap Cadmium-Based Compounds (EMIS Data reviews Series), vol. 10, P. Capper, Ed. London: Inspec, 1994, chap. A3.2, pp. 80–85.
Z. Sun, A. Martinez, F. Wang, Optical modulators with 2D layered materials. Nature Photon. 10(4), 227–238 (2016)
K.S. Novoselov, A. Mishchenko, A. Carvalho, A.C. Neto, 2D materials and van der Waals heterostructures. Science 353(6298), aac9439 (2016)
M.-L. Tsai et al., Monolayer MoS2 heterojunction solar cells. ACS Nano 8(8), 8317–8322 (2014)
M. Bernardi, M.A. Palummo, J.C. Grossman, Extraordinary sunlight absorption and one nano-meter thick photovoltaics using two-dimensional monolayer materials. Nano Lett. 13(8), 3664–3670 (2013)
L.-Y. Gan et al., Photovoltaic heterojunctions of fullerenes with MoS2 and WS2 monolayers. J. Phys. Chem. Lett. 5(8), 1445–1449 (2014)
M. Shanmugam, C.A. Durcan, B. Yu, Layered semiconductor molybdenum di-sulfide nanomembrane based Schottky-barrier solar cells. Nanoscale 4(23), 7399–7405 (2012)
M. Shanmugam et al., Molybdenum disulphide/titanium dioxide nanocomposite-poly 3-hexylthiophene bulk heterojunction solar cell. Appl. Phys. Lett. 100(15), 153901 (2012)
Y. Lin, P. Ren, C. Weic, Fabrication of MoS2/TiO2 heterostructures with enhanced photocatalytic activity. Cryst Eng Commun. 22, 3377–3526 (2019)
B. Qiu, X. Zhao, G. Hu, W. Yue, J. Ren, X. Yuan, Optical properties of graphene/MoS2 heterostructure: first principles calculations. Nanomaterials (Basel) 8(11), 962 (2018)
G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996)
R.Y. Miao, X.X. Li, Q. Lei et al., Room temperature hydrogen spill over achieving stoichiometric hydrogenation of NO3− and NO2− into N2 over Cu-Pd nanowire network. Rare Met. 41, 851–858 (2022)
J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996)
H.J. Monkhorst, J.D. Pack, “Special points for brillouin-zone integrations. Phys. Rev. B 13, 5188 (1976)
S. Grimme, Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27, 1787–1799 (2006)
F. Tran, B. Blaha, Accurate band gaps of semiconductors and insulators with a semi-local exchange-correlation potential. Phys. Rev. Lett. 102, 226401 (2009)
G.L. Hansen, J.L. Schmit, T.N. Casselman, Energy gap versus alloy composition and temperature in Hg1−xCdxTe. J. Appl. Phys. 53(10), 7099–7101 (1982)
L.-J. Kong, G.-H. Liu, Y.-J. Zhang, Tuning the electronic and optical properties of phosphorene by transition-metal and non-metallic atom co-doping. RSC Adv. 6(13), 10919–10929 (2016)
S. Choudhary, A.K. Garg, Enhanced absorption in MoS2/Hg0.33Cd0.66Te heterostructure for application in solar cell absorbers. IEEE Trans. Nano Technol. 18, 989–994 (2019)
R. Kochar, S. Choudhary, MoS2/phosphorene heterostructure for optical absorption in visible region. IEEE J. Quantum Electron. 54(4), 7000306 (2018)
A. Jain, A.J.H. McGaughey, Strongly anisotropic in-plane thermal transport in single-layer black phosphorene. Nat. Sci. Rep. 5, 8501 (2015)
A. Maniyar, S. Choudhary, Visible region absorption in TMDs/phosphorene heterostructures for use in solar energy conversion applications. RSC Adv. 10, 31730–31739 (2020)
G.R. Berdiyorov, Optical properties of functionalized Ti3C2T2 (T = F, O, OH) M-Xene: first-principles calculations”. AIP Adv. 6(5), 055105 (2016)
J. Schmidt, Light-induced degradation in crystalline silicon solar cells. Solid State Phenom. 95(96), 187–196 (2004)
L. Liang, J. Wang, W. Lin, B.G. Sumpter, V. Meunier, M. Pan, Electronic bandgap and edge reconstruction in phosphorene materials. Nano Lett. 14, 6400–6406 (2014)
L.-J. Kong, G.-H. Liu, Y.-J. Zhang, Tuning the electronic and optical properties of phosphorene by transition-metal and non-metallic atom co-doping. RSC Adv. 6, 10919–10929 (2016)
M. Zhao, W. Zhang, M. Liu, C. Zou, Y. Yang, Y. Dong, L. Zhang, S. Huang, Interlayer coupling in anisotropic/isotropic van der Waals heterostructures of ReS2 and MoS2 monolayers. Nano Res. 9, 3772 (2016)
M.-Y. Li, C.-H. Chen, Y. Shi, L.-J. Li, Heterostructures based on two-dimensional layered materials and their potential applications. Mater. Today 19(6), 322–335 (2015)
M. Padmanabhan et al., Light-induced degradation and regeneration of multi crystalline silicon Al-BSF and PERC solar cells. Physica Status Solidi Rapid Res. Lett. 10(12), 874–881 (2016)
Funding
There was no funding.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Verma, R.S., Choudhary, S. Electronic and optical properties of TMDs/Hg0.33Cd0.66Te. J Mater Sci: Mater Electron 33, 11542–11554 (2022). https://doi.org/10.1007/s10854-022-08127-7
Received:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1007/s10854-022-08127-7


