Skip to main content
Log in

Electronic and optical properties of TMDs/Hg0.33Cd0.66Te

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

It is challenging to tune absorption of nanomaterials in the visible region for using them in optoelectronics applications. Heterostructures of transition metal dichalcogenides WS2, WSe2, MoS2, MoTe2, MoSe2, monolayers, and mercury cadmium telluride are investigated and calculations have been performed using density-functional theory with Van der Waals interaction. The results so obtained show that the monolayer of WS2, WSe2, MoS2, MoSe2, and MoTe2 has an absorption in the range of ~ 410–690 nm for the visible spectrum. For HgCdTe ~ 410–450 nm. However, for the heterostructure absorption rises along with wavelength and gets pushed towards the deep red end resulting in the redshift phenomenon. Strong absorption can be observed in the spectrum range of ~ 710–1050 nm for all the heterostructure. With high absorption in the visible red region may find various applications in the optical devices Schottky barrier solar cell absorbers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The author confirms that the data supporting and the findings of this study are available within the article and its supplementary material. Raw data that support findings of this study are available from the corresponding author, upon reasonable request.

References

  1. A.K. Geim, K.S. Novoselov, The rise of graphene. Nat. Mater. 6, 183–191 (2007)

    Article  CAS  Google Scholar 

  2. C. Berger et al., Ultrathin epitaxial graphite “2D electron gas properties and a route toward graphene-based nanoelectronics.” J. Phys. Chem. B 108, 19912–19916 (2004)

    Article  CAS  Google Scholar 

  3. S. Stankovich et al., Graphene-based composite materials. Nature 442, 282–286 (2006)

    Article  CAS  Google Scholar 

  4. C. Berger et al., Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. J. Phys. Chem. B 108, 19912–19916 (2004)

    Article  CAS  Google Scholar 

  5. M.J. Allen, V.C. Tung, R.B. Kaner, Honeycomb carbon: a review of graphene. Chem. Rev. 110(1), 132–145 (2010)

    Article  CAS  Google Scholar 

  6. A.H.C. Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, The electronic properties of graphene. Rev. Mod. Phys. 81(1), 109–162 (2009)

    Article  CAS  Google Scholar 

  7. H. Liu et al., Phosphorene: an unexplored 2D semiconductor with high hole mobility. ACS Nano 8(4), 4033–4041 (2014)

    Article  CAS  Google Scholar 

  8. P. Vogt et al., Silicene: compelling experimental evidence for graphene-like two-dimensional silicon. Phys. Rev. Lett. 108(15), 155501 (2012)

    Article  CAS  Google Scholar 

  9. Z. Ni et al., Tunable bandgap in silicene and germanene. Nano Lett. 12(1), 113–118 (2012)

    Article  CAS  Google Scholar 

  10. X. Duan, C. Wang, A. Pan, R. Yu, X. Duan, Two-dimensional transition metal dichalcogenides as atomically thin semiconductors: opportunities and challenge. Chem. Soc. Rev. 44(24), 8859–8876 (2015)

    Article  CAS  Google Scholar 

  11. J. Wang, F. Ma, M. Sun, Graphene, hexagonal boron nitride, and their heterostructures: properties and applications. RSC Adv. 7, 16801–16822 (2017)

    Article  CAS  Google Scholar 

  12. F. Zhang, W. Li, Y. Ma, Y. Tang, X. Dai, Tuning the Schottky contacts at the graphene/WS2 interface by electric field. RSC Adv. 7, 29350–29356 (2017)

    Article  CAS  Google Scholar 

  13. N.R. Pradhan et al., Metal to insulator quantum-phase transition in few-layered ReS2. Nano Lett. 15(12), 8377–8384 (2015)

    Article  CAS  Google Scholar 

  14. B. Liu, M. Cai, Y. Zhao, L. Wu, L. Wang, First-principles investigation of the Schottky contact for the two-dimensional MoS2 and graphene heterostructure. RSC Adv. 6, 60271–60276 (2016)

    Article  CAS  Google Scholar 

  15. A. Eftekhari, Tungsten dichalcogenides (WS2, WSe2, and WTe2): material chemistry and applications. J. Mater. Chem. A 5(35), 18299–18325 (2017)

    Article  CAS  Google Scholar 

  16. U. Wurstbauer, B. Miller, E. Parzinger, A.W. Holleitner, Light–matter interaction in transition metal dichalcogenides and their heterostructures. J. Phys. D 50(17), 173001 (2017)

    Article  CAS  Google Scholar 

  17. L.F. Mattheis, Band structures of transition-metal-dichalcogenide layer compounds. Phys. Rev. B 8(8), 3719 (1973)

    Article  Google Scholar 

  18. R.A. Bromley, R.B. Murray, A.D. Yoffe, The band structures of some transition metal dichalcogenides. III. Group VIA: trigonal prism materials. J. Phys. C 5(7), 759–778 (1972)

    Article  CAS  Google Scholar 

  19. T. Boker et al., Band structure of MoS2, MoSe2, and a-MoTe2: angle resolved photoelectron spectroscopy and ab initio calculations. Phys. Rev. B 64(23), 235305 (2001)

    Article  CAS  Google Scholar 

  20. K.S. Novoselov, Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. USA 102(30), 10451–10453 (2005)

    Article  CAS  Google Scholar 

  21. K.F. Mak et al., Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010)

    Article  CAS  Google Scholar 

  22. K.F. Mak, K. He, J. Shan, T.F. Heinz, Control of valley polarization in monolayer MoS2 by optical helicity. Nat. Nanotechnol. 7, 494–498 (2012)

    Article  CAS  Google Scholar 

  23. O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, A. Kis, Ultrasensitive photodetectors based on monolayer MoS2. Nat. Nanotechnol. 8, 497–501 (2013)

    Article  CAS  Google Scholar 

  24. W. Choi et al., High-detectivity multilayer MoS2 phototransistors with spectral response from ultraviolet to infrared. Adv. Mater. 24(43), 5832–5836 (2012)

    Article  CAS  Google Scholar 

  25. K. He, C. Poole, K.F. Mak, J. Shan, Experimental demonstration of continuous electronic structure tuning via strain in atomically thin MoS2. Nano Lett. 13(6), 2931–2936 (2013)

    Article  CAS  Google Scholar 

  26. V. Nicolosi, M. Chhowalla, M.G. Kanatzidis, M.S. Strano, J.N. Coleman, Liquid exfoliation of layered materials. Science 340, 1420 (2013)

    Article  CAS  Google Scholar 

  27. P. Joensen, R.F. Frindt, S.R. Morrison, Single-layer MoS2. Mater. Res. Bull. 21, 457–461 (1986)

    Article  CAS  Google Scholar 

  28. Z.Y. Zeng, Z.Y. Yin, X. Huang, H. Li, Q.Y. He, G. Lu, F. Boey, H. Zhang, Single-layer semiconducting nanosheets: high-yield preparation and device fabrication. Angew. Chem Int. Ed. 50, 11093–11097 (2011)

    Article  CAS  Google Scholar 

  29. Z. Zeng, T. Sun, J. Zhu, X. Huang, Z. Yin, G. Lu, Z. Fan, Q. Yan, H.H. Hng, H. Zhang, An effective method for the fabrication of few-layer-thick inorganic nanosheets. Angew. Chem. Int. Ed. 51, 9052–9056 (2012)

    Article  CAS  Google Scholar 

  30. K.F. Mak, C. Lee, J. Hone, J. Shan, T.F. Heinz, Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010)

    Article  CAS  Google Scholar 

  31. Gutiérrez HR, Perea-López N, Elías AL, Berkdemir A, Wang B, Lv R, López-Urías F, Crespi VH, Terrones H, Terrones M (2013) Extraordinary room-temperature photoluminescence in triangular WS2 monolayers. Nano Lett. 13: 3447−3454.

  32. M. Chhowalla, H.S. Shin, G. Eda, L.J. Li, K.P. Loh, H. Zhang, The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 5, 263–275 (2013)

    Article  Google Scholar 

  33. J. Wang, H. Shu, P. Liang, N. Wang, D. Cao, X. Chen, Thickness-dependent phase stability and electronic properties of GaN nanosheets and MoS2/GaN van der Waals heterostructures. J. Phys. Chem. C 123(6), 3861–3867 (2019)

    Article  CAS  Google Scholar 

  34. P.A. Nwofe, K.T. Ramakrishna-Reddy, J.K. Tan, I. Forbes, R.W. Miles, Thickness dependent optical properties of thermally evaporated SnS thin films. Phys. Procedia 25, 150–157 (2012)

    Article  CAS  Google Scholar 

  35. R.A.B. Villaos, C.P. Crisostomo, Z.-Q. Huang, S.-M. Huang, A.A.B. Padama, M.A. Albao, H. Lin, F.-C. Chuang, Thickness dependent electronic properties of Pt dichalcogenides. NPJ 2D Mater. Appl. 3, 2 (2019)

    Article  CAS  Google Scholar 

  36. P. Tyagi, A.G. Vedeshwar, N.C. Mehra, Thickness dependent optical properties of CdI2 films. Phys. B 304(1–4), 166–174 (2001)

    Article  CAS  Google Scholar 

  37. A. Zubair, M.T. Choudhary, M.S. Bashar, M.A. Sami, Thickness dependent correlation between structural and optical properties of textured CdSe thin film. AIP Adv. 9, 045123 (2019)

    Article  CAS  Google Scholar 

  38. A.S. Solieman, M.M. Hafiz, A.A. Abu-Sehly, A.A. Alfaqeer, Dependence of optical properties on the thickness of amorphous Ge30Se70 thin films. J Taibah Univ. Sci. 8(3), 282–288 (2014)

    Article  Google Scholar 

  39. B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, A. Kis, Single-layer MoS2 transistors. Nat. Nanotechnol. 6, 147–150 (2011)

    Article  CAS  Google Scholar 

  40. Y. Deng et al., Black phosphorus-monolayer MoS2 van der Waals heterojunction p–n diode. ACS Nano 8, 8292–8299 (2014)

    Article  CAS  Google Scholar 

  41. H. Zhang, Y.N. Zhang, H. Liu, L.M. Liu, Novel heterostructures by stacking layered molybdenum disulphides and nitrides for solar energy conversion. J. Mater. Chem. A 2, 15389–15395 (2014)

    Article  CAS  Google Scholar 

  42. J. Liao, B. Sa, J. Zhou, R. Ahuja, Z. Sun, Design of high efficiency visible-light photocatalysts for water splitting: MoS2/AlN (GaN) heterostructure. J. Phys. Chem. C 118, 17594–17599 (2014)

    Article  CAS  Google Scholar 

  43. Z. Sun, A. Martinez, F. Wang, Optical modulators with 2D layered materials. Nat. Photonics 10(4), 227–238 (2016)

    Article  CAS  Google Scholar 

  44. T. Roy et al., Dual-gated MoS2/WSe2 van der Waals tunnel diodes and transistors. ACS Nano 9(2), 2071–2079 (2015)

    Article  CAS  Google Scholar 

  45. M.-H. Chiu et al., Determination of band alignment in the single-layer MoS2/WSe2 heterojunction. Nat. Commun. 6, 7666 (2015)

    Article  CAS  Google Scholar 

  46. R. Cheng et al., Electroluminescence and photocurrent generation from atomically sharp WSe2/MoS2 heterojunction p–n diodes. Nano Lett. 14(10), 5590–5597 (2014)

    Article  CAS  Google Scholar 

  47. P. Rivero, C.M. Horvath, Z. Zhu, J. Guan, D. Tomanek, S. Barraza-Lopez, Simulated scanning tunnelling microscopy images of few-layer phosphorus capped by graphene and hexagonal boron nitride monolayers. Phys. Rev. B 91(11), 115413 (2015)

    Article  CAS  Google Scholar 

  48. F. Yi, H. Ren, J. Shan, X. Sun, D. Wei, Z. Liu, Wearable energy sources based on 2D materials. Chem. Soc. Rev. 47(9), 3152–3188 (2018)

    Article  CAS  Google Scholar 

  49. C. Chen et al., MoS2-on-MXene heterostructures as highly reversible anode materials for lithium-ion batteries. Angew. Chem. 130(7), 1864–1868 (2018)

    Article  Google Scholar 

  50. O. Zakharov, A. Rubio, X. Blase, M.L. Cohen, S.G. Louie, Quasiparticle band structures of six II-VI compounds: ZnS, ZnSe, ZnTe, CdS, CdSe, and CdTe. Phys. Rev. B. 50(15), 10780–10787 (1994)

    Article  CAS  Google Scholar 

  51. P. Norton, HgCdTe infrared detectors. Optoelectron. Rev. 10(3), 159–174 (2002)

    CAS  Google Scholar 

  52. M. Penna, A. Marnetto, F. Bertazzi, E. Bellotti, M. Goano, Empirical pseudopotential and full-Brillouin-zone k·p electronic structure of CdTe, HgTe, and Hg1xCdxTe. J. Electron. Mater. 38(8), 1717–1725 (2009)

    Article  CAS  Google Scholar 

  53. A. Rogalski, HgCdTe infrared detector material: history, status and outlook. Rep. Prog. Phys. 68(10), 2267 (2005)

    Article  CAS  Google Scholar 

  54. S. Richard, F. Aniel, G. Fishman, Energy-band structure of Ge, Si, and GaAs: A thirty-band kp method. Phys. Rev. B 70(23), 235204 (2004)

    Article  CAS  Google Scholar 

  55. S. Rolland, Properties of Narrow Gap Cadmium-Based Compounds (EMIS Data reviews Series), vol. 10, P. Capper, Ed. London: Inspec, 1994, chap. A3.2, pp. 80–85.

  56. Z. Sun, A. Martinez, F. Wang, Optical modulators with 2D layered materials. Nature Photon. 10(4), 227–238 (2016)

    Article  CAS  Google Scholar 

  57. K.S. Novoselov, A. Mishchenko, A. Carvalho, A.C. Neto, 2D materials and van der Waals heterostructures. Science 353(6298), aac9439 (2016)

    Article  CAS  Google Scholar 

  58. M.-L. Tsai et al., Monolayer MoS2 heterojunction solar cells. ACS Nano 8(8), 8317–8322 (2014)

    Article  CAS  Google Scholar 

  59. M. Bernardi, M.A. Palummo, J.C. Grossman, Extraordinary sunlight absorption and one nano-meter thick photovoltaics using two-dimensional monolayer materials. Nano Lett. 13(8), 3664–3670 (2013)

    Article  CAS  Google Scholar 

  60. L.-Y. Gan et al., Photovoltaic heterojunctions of fullerenes with MoS2 and WS2 monolayers. J. Phys. Chem. Lett. 5(8), 1445–1449 (2014)

    Article  CAS  Google Scholar 

  61. M. Shanmugam, C.A. Durcan, B. Yu, Layered semiconductor molybdenum di-sulfide nanomembrane based Schottky-barrier solar cells. Nanoscale 4(23), 7399–7405 (2012)

    Article  CAS  Google Scholar 

  62. M. Shanmugam et al., Molybdenum disulphide/titanium dioxide nanocomposite-poly 3-hexylthiophene bulk heterojunction solar cell. Appl. Phys. Lett. 100(15), 153901 (2012)

    Article  CAS  Google Scholar 

  63. Y. Lin, P. Ren, C. Weic, Fabrication of MoS2/TiO2 heterostructures with enhanced photocatalytic activity. Cryst Eng Commun. 22, 3377–3526 (2019)

    Google Scholar 

  64. B. Qiu, X. Zhao, G. Hu, W. Yue, J. Ren, X. Yuan, Optical properties of graphene/MoS2 heterostructure: first principles calculations. Nanomaterials (Basel) 8(11), 962 (2018)

    Article  CAS  Google Scholar 

  65. G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996)

    Article  CAS  Google Scholar 

  66. R.Y. Miao, X.X. Li, Q. Lei et al., Room temperature hydrogen spill over achieving stoichiometric hydrogenation of NO3− and NO2− into N2 over Cu-Pd nanowire network. Rare Met. 41, 851–858 (2022)

    Article  CAS  Google Scholar 

  67. J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996)

    Article  CAS  Google Scholar 

  68. H.J. Monkhorst, J.D. Pack, Special points for brillouin-zone integrations. Phys. Rev. B 13, 5188 (1976)

    Article  Google Scholar 

  69. S. Grimme, Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27, 1787–1799 (2006)

    Article  CAS  Google Scholar 

  70. F. Tran, B. Blaha, Accurate band gaps of semiconductors and insulators with a semi-local exchange-correlation potential. Phys. Rev. Lett. 102, 226401 (2009)

    Article  CAS  Google Scholar 

  71. G.L. Hansen, J.L. Schmit, T.N. Casselman, Energy gap versus alloy composition and temperature in Hg1xCdxTe. J. Appl. Phys. 53(10), 7099–7101 (1982)

    Article  CAS  Google Scholar 

  72. L.-J. Kong, G.-H. Liu, Y.-J. Zhang, Tuning the electronic and optical properties of phosphorene by transition-metal and non-metallic atom co-doping. RSC Adv. 6(13), 10919–10929 (2016)

    Article  CAS  Google Scholar 

  73. S. Choudhary, A.K. Garg, Enhanced absorption in MoS2/Hg0.33Cd0.66Te heterostructure for application in solar cell absorbers. IEEE Trans. Nano Technol. 18, 989–994 (2019)

    Article  CAS  Google Scholar 

  74. R. Kochar, S. Choudhary, MoS2/phosphorene heterostructure for optical absorption in visible region. IEEE J. Quantum Electron. 54(4), 7000306 (2018)

    Article  Google Scholar 

  75. A. Jain, A.J.H. McGaughey, Strongly anisotropic in-plane thermal transport in single-layer black phosphorene. Nat. Sci. Rep. 5, 8501 (2015)

    Article  CAS  Google Scholar 

  76. A. Maniyar, S. Choudhary, Visible region absorption in TMDs/phosphorene heterostructures for use in solar energy conversion applications. RSC Adv. 10, 31730–31739 (2020)

    Article  CAS  Google Scholar 

  77. G.R. Berdiyorov, Optical properties of functionalized Ti3C2T2 (T = F, O, OH) M-Xene: first-principles calculations”. AIP Adv. 6(5), 055105 (2016)

    Article  CAS  Google Scholar 

  78. J. Schmidt, Light-induced degradation in crystalline silicon solar cells. Solid State Phenom. 95(96), 187–196 (2004)

    Google Scholar 

  79. L. Liang, J. Wang, W. Lin, B.G. Sumpter, V. Meunier, M. Pan, Electronic bandgap and edge reconstruction in phosphorene materials. Nano Lett. 14, 6400–6406 (2014)

    Article  CAS  Google Scholar 

  80. L.-J. Kong, G.-H. Liu, Y.-J. Zhang, Tuning the electronic and optical properties of phosphorene by transition-metal and non-metallic atom co-doping. RSC Adv. 6, 10919–10929 (2016)

    Article  CAS  Google Scholar 

  81. M. Zhao, W. Zhang, M. Liu, C. Zou, Y. Yang, Y. Dong, L. Zhang, S. Huang, Interlayer coupling in anisotropic/isotropic van der Waals heterostructures of ReS2 and MoS2 monolayers. Nano Res. 9, 3772 (2016)

    Article  CAS  Google Scholar 

  82. M.-Y. Li, C.-H. Chen, Y. Shi, L.-J. Li, Heterostructures based on two-dimensional layered materials and their potential applications. Mater. Today 19(6), 322–335 (2015)

    Article  CAS  Google Scholar 

  83. M. Padmanabhan et al., Light-induced degradation and regeneration of multi crystalline silicon Al-BSF and PERC solar cells. Physica Status Solidi Rapid Res. Lett. 10(12), 874–881 (2016)

    Article  CAS  Google Scholar 

Download references

Funding

There was no funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ravi Shankar Verma.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verma, R.S., Choudhary, S. Electronic and optical properties of TMDs/Hg0.33Cd0.66Te. J Mater Sci: Mater Electron 33, 11542–11554 (2022). https://doi.org/10.1007/s10854-022-08127-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1007/s10854-022-08127-7