Skip to main content
Log in

Investigating the effect of structural modifications on the performance of transistors based on black phosphorene nanoribbons

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

The modern electronic devices’ development heavily relies on the miniaturization of MOSFET transistors. On the other hand, reduction in transistor sizes will face significant challenges, like short-channel effects. To enhance transistor performance, it is essential to explore and utilize new materials. Black phosphorene has emerged as a promising material for constructing transistors and other electronic components. Accurate modeling is crucial for predicting the behavior of future nanoscale transistors. One of proposed simulation methods is the top-of-barrier model. This study analyzes transistors based on black phosphorene nanoribbons. The electronic structure of these nanoribbons is calculated using the tight-binding method with up to five nearest neighbors. The top-of-barrier computational approach within the Landauer framework is employed to determine device characteristics. Initial evaluations of a structure without antidots show that creating an off-center antidot increases the on current to 4.98 mA. The threshold voltage also rises by 0.2 V, indicating an increase in the energy band gap, which reduces the off current significantly. The on/off current ratio can be improved by up to 2500 times with an optimal antidot design. Non-central antidots do not significantly affect the threshold voltage or off current.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  1. Veeraraghavan, S., Fossum, J.G.: Short-channel effects in soi mosfets. IEEE Trans. Electron Device. 36(3), 522–528 (1989). https://doi.org/10.1109/16.19963

    Article  MATH  Google Scholar 

  2. Lundstrom, M.S., Antoniadis, D.A.: Compact models and the physics of nanoscale fets. IEEE Trans. Electron Device. 61(2), 225–233 (2013)

    Article  MATH  Google Scholar 

  3. Natori, K.: Ballistic metal-oxide-semiconductor field effect transistor. J. Appl. Phys. 76(8), 4879–4890 (1994)

    Article  MATH  Google Scholar 

  4. Wann, C.H., Noda, K., Tanaka, T., Yoshida, M., Hu, C.: A comparative study of advanced mosfet concepts. IEEE Trans. Electron Device. 43(10), 1742–1753 (1996)

    Article  MATH  Google Scholar 

  5. Meric, I., Han, M.Y., Young, A.F., Ozyilmaz, B., Kim, P., Shepard, K.L.: Current saturation in zero-bandgap, top-gated graphene field-effect transistors. Nat. Nanotechnol. 3(11), 654–659 (2008)

    Article  Google Scholar 

  6. Yazdanpanah, A., Pourfath, M., Fathipour, M., Kosina, H., Selberherr, S.: A numerical study of line-edge roughness scattering in graphene nanoribbons. IEEE Trans. Electron Device. 59(2), 433–440 (2011)

    Article  MATH  Google Scholar 

  7. Schwierz, F.: Graphene transistors. Nat. Nanotechnol. 5(7), 487–496 (2010)

    Article  MATH  Google Scholar 

  8. Kou, L., Chen, C., Smith, S.C.: Phosphorene: fabrication, properties, and applications. The J. Phys. Chem. Lett. 6(14), 2794–2805 (2015)

    Article  MATH  Google Scholar 

  9. Li, L., Kim, J., Jin, C., Ye, G.J., Qiu, D.Y., Da Jornada, F.H., Shi, Z., Chen, L., Zhang, Z., Yang, F., et al.: Direct observation of the layer-dependent electronic structure in phosphorene. Nat. Nanotechnol. 12(1), 21–25 (2017)

    Article  Google Scholar 

  10. Moez, M., Karamitaheri, H.: Line-edge roughness effects on the electronic properties of armchair black phosphorene nanoribbons. IEEE Trans. Electron Device. 68(10), 5114–5119 (2021)

    Article  MATH  Google Scholar 

  11. Gaddemane, G., Vandenberghe, W.G., Put, M.L., Chen, S., Tiwari, S., Chen, E., Fischetti, M.V.: Theoretical studies of electronic transport in monolayer and bilayer phosphorene: a critical overview. Phys. Rev. B 98(11), 115416 (2018)

    Article  Google Scholar 

  12. Hanson, G.W.: Fundamentals of Nanoelectronics. Pearson Education, ??? (2019)

  13. Carvalho, A., Wang, M., Zhu, X., Rodin, A.S., Su, H., Castro Neto, A.H.: Phosphorene: from theory to applications. Nat. Rev. Mater. 1(11), 1–16 (2016)

    Article  Google Scholar 

  14. Liu, H., Neal, A.T., Zhu, Z., Luo, Z., Xu, X., Tománek, D., Ye, P.D.: Phosphorene: an unexplored 2d semiconductor with a high hole mobility. ACS Nano 8(4), 4033–4041 (2014)

    Article  Google Scholar 

  15. Urban, J., Braüer, S., McKinnon, A.W., Horn, J., Hjort, K., Pagnia, H., Koops, H.W.P., Hartnagel, H.L.: The scanning tunneling microscope as a tool for nanolithography: writing nanostructures on si (110) in air. Microelectron. Eng. 27(1), 113–116 (1995). https://doi.org/10.1016/0167-9317(94)00068-6

    Article  Google Scholar 

  16. Tong, X., Wolkow, R.A.: Electron-induced h atom desorption patterns created with a scanning tunneling microscope: implications for controlled atomic-scale patterning on h-si(100). Surf. Sci. 600(16), 199–203 (2006). https://doi.org/10.1016/j.susc.2006.06.038

    Article  Google Scholar 

  17. Nazari, A., Faez, R., Shamloo, H.: Modeling comparison of graphene nanoribbon field effect transistors with single vacancy defect. Superlattices and Microstructures 97, 28–45 (2016) https://doi.org/10.1016/j.spmi.2016.06.008

  18. Rahman, A., Guo, J., Datta, S., Lundstrom, M.S.: Theory of ballistic nanotransistors. IEEE Trans. Electron Device. 50(9), 1853–1864 (2003)

    Article  MATH  Google Scholar 

  19. Tsuchiya, H., Ando, H., Sawamoto, S., Maegawa, T., Hara, T., Yao, H., Ogawa, M.: Comparisons of performance potentials of silicon nanowire and graphene nanoribbon mosfets considering first-principles bandstructure effects. IEEE Trans. Electron Devices. 57(2), 406–414 (2010)

    Article  Google Scholar 

  20. Martin, P.C., Schwinger, J.: Theory of many-particle systems. i. Physical Review 115(6), 1342 (1959)

  21. Cao, X., Guo, J.: Simulation of phosphorene field-effect transistor at the scaling limit. IEEE Trans. Electron Device. 62(2), 659–665 (2014)

    Article  MATH  Google Scholar 

  22. Hirsbrunner, M.R., Philip, T.M., Basa, B., Kim, Y., Park, M.J., Gilbert, M.J.: A review of modeling interacting transient phenomena with non-equilibrium green functions. Rep. Prog. Phys. 82(4), 046001 (2019)

    Article  MathSciNet  Google Scholar 

  23. Liu, F., Wang, Y., Liu, X., Wang, J., Guo, H.: Ballistic transport in monolayer black phosphorus transistors. IEEE Trans. Electron Device. 61(11), 3871–3876 (2014)

    Article  MATH  Google Scholar 

  24. GEIM, A.K., NOVOSELOV, K.S.: The rise of graphene, pp. 11–19. https://doi.org/10.1142/9789814287005_0002 . https://www.worldscientific.com/doi/abs/10.1142/9789814287005_0002

  25. Zhang, X., Pan, Y., Ye, M., Quhe, R., Wang, Y., Guo, Y., Zhang, H., Dan, Y., Song, Z., Li, J., et al.: Three-layer phosphorene-metal interfaces. Nano Res. 11, 707–721 (2018)

    Article  MATH  Google Scholar 

  26. Feng, Q., Yan, F., Luo, W., Wang, K.: Charge trap memory based on few-layer black phosphorus. Nanoscale 8(5), 2686–2692 (2016)

    Article  MATH  Google Scholar 

  27. Taghizadeh Sisakht, E., Zare, M.H., Fazileh, F.: Scaling laws of band gaps of phosphorene nanoribbons: a tight-binding calculation. Phys. Rev. B 91(8), 085409 (2015)

    Article  Google Scholar 

  28. Quhe, R., Li, Q., Zhang, Q., Wang, Y., Zhang, H., Li, J., Zhang, X., Chen, D., Liu, K., Ye, Y., et al.: Simulations of quantum transport in sub-5-nm monolayer phosphorene transistors. Phys. Rev. Appl. 10(2), 024022 (2018)

    Article  MATH  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

A. S. and H. K. both did the simulations and wrote the text. Figures prepared by A. S..

Corresponding author

Correspondence to Hossein Karamitaheri.

Ethics declarations

Competing interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shabani, A., Karamitaheri, H. Investigating the effect of structural modifications on the performance of transistors based on black phosphorene nanoribbons. J Comput Electron 24, 31 (2025). https://doi.org/10.1007/s10825-024-02268-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10825-024-02268-0

Keywords