Skip to main content
Log in

Genome instability syndromes caused by impaired DNA repair and aberrant DNA damage responses

  • Review
  • Published:
Cell Biology and Toxicology Aims and scope Submit manuscript

Abstract

Maintenance of genome integrity is essential for all organisms because genome information regulates cell proliferation, growth arrest, and vital metabolic processes in cells, tissues, organs, and organisms. Because genomes are constantly exposed to intrinsic and extrinsic genotoxic stress, cellular DNA repair machinery and proper DNA damage responses (DDR) have evolved to quickly eliminate genotoxic DNA lesions, thus maintaining the genome integrity suitably. In human, germline mutations in genes involved not only in cellular DNA repair pathways but also in cellular DDR machinery frequently predispose hereditary diseases associated with chromosome aberrations. These genetic syndromes typically displaying mutations in DNA repair/DDR-related genes are often called “genome instability syndromes.” Common features of these hereditary syndromes include a high incidence of cancers and developmental abnormalities including short stature, microcephaly, and/or neurological deficiencies. However, precisely how impaired DNA repair and/or dysfunctional DDR pathologically promote(s) these syndromes are poorly understood. In this review article, we summarize the clinical symptoms of several representatives “genome instability syndromes” and propose the plausible pathogenesis thereof.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

DSB:

Double-strand DNA break

DDR:

DNA damage response

NER:

Nucleotide excision repair

TLS:

Translesion DNA synthesis

CNS:

Central nervous system

ICL:

Interstrand crosslink

HR:

Homologous recombination

NHEJ:

Non-homologous end-joining

References

  • Andrews L, Mutch DG. Hereditary ovarian cancer and risk reduction. Best Pract Res Clin Obstet Gynaecol. 2017;41:31–48.

    Article  PubMed  Google Scholar 

  • Anttinen A, Koulu L, Nikoskelainen E, Portin R, Kurki T, Erkinjuntti M, et al. Neurological symptoms and natural course of xeroderma pigmentosum. Brain. 2008;131(Pt 8):1979–89.

    Article  PubMed  Google Scholar 

  • Blackford AN, Jackson SP. ATM, ATR, and DNA-PK: the trinity at the heart of the DNA damage response. Mol Cell. 2017;66(6):801–17.

    Article  PubMed  CAS  Google Scholar 

  • Broughton BC, Steingrimsdottir H, Weber CA, Lehmann AR. Mutations in the xeroderma pigmentosum group D DNA repair/transcription gene in patients with trichothiodystrophy. Nat Genet. 1994;7(2):189–94.

    Article  PubMed  CAS  Google Scholar 

  • Ceccaldi R, Rondinelli B, D'Andrea AD. Repair pathway choices and consequences at the double-strand break. Trends Cell Biol. 2016;26(1):52–64.

    Article  PubMed  CAS  Google Scholar 

  • Celeste A, Petersen S, Romanienko PJ, Fernandez-Capetillo O, Chen HT, Sedelnikova OA, et al. Genomic instability in mice lacking histone H2AX. Science. 2002;296(5569):922–7. https://doi.org/10.1126/science.1069398.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen E, Cleaver JE, Weber CA, Packman S, Barkovich AJ, Koch TK, et al. Trichothiodystrophy: clinical spectrum, central nervous system imaging, and biochemical characterization of two siblings. J Invest Dermatol. 1994;103(5 Suppl):154S–8S.

    Article  PubMed  CAS  Google Scholar 

  • Cheung RS, Taniguchi T. Recent insights into the molecular basis of Fanconi anemia: genes, modifiers, and drivers. Int J Hematol. 2017;106(3):335–44.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chistiakov DA, Voronova NV, Chistiakov AP. Ligase IV syndrome. Eur J Med Genet. 2009;52(6):373–8.

    Article  PubMed  Google Scholar 

  • Chrzanowska KH, Gregorek H, Dembowska-Baginska B, Kalina MA, Digweed M. Nijmegen breakage syndrome (NBS). Orphanet J Rare Dis. 2012;7:13.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ciaffardini F, Nicolai S, Caputo M, Canu G, Paccosi E, Costantino M, et al. The cockayne syndrome B protein is essential for neuronal differentiation and neuritogenesis. Cell Death Dis. 2014;5:e1268. https://doi.org/10.1038/cddis.2014.228.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Clauson C, Scharer OD, Niedernhofer L. Advances in understanding the complex mechanisms of DNA interstrand cross-link repair. Cold Spring Harb Perspect Biol. 2013;5(10):a012732.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cunniff C, Bassetti JA, et al. Bloom’s syndrome: clinical spectrum, molecular pathogenesis, and cancer predisposition. Mol Syndromo. 2017;l 8(1):4–23. https://doi.org/10.1159/000452082.

    Article  CAS  Google Scholar 

  • de Bruin C, Mericq V, Andrew SF, van Duyvenvoorde HA, Verkaik NS, Losekoot M, et al. An XRCC4 splice mutation associated with severe short stature, gonadal failure, and early-onset metabolic syndrome. J Clin Endocrinol Metab. 2015;100(5):E789–98.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • De Silva IU, McHugh PJ, Clingen PH, Hartley JA. Defining the roles of nucleotide excision repair and recombination in the repair of DNA interstrand cross-links in mammalian cells. Mol Cell Biol. 2000;20(21):7980–90.

    Article  PubMed  PubMed Central  Google Scholar 

  • de Winter JP, Joenje H. The genetic and molecular basis of Fanconi anemia. Mutat Res. 2009;668(1–2):11–9.

    Article  PubMed  CAS  Google Scholar 

  • Deans B, Griffin CS, Maconochie M, Thacker J. Xrcc2 is required for genetic stability, embryonic neurogenesis and viability in mice. EMBO J. 2000;19(24):6675–85.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dvorak CC, Cowan MJ. Radiosensitive severe combined immunodeficiency disease. Immunol Allergy Clin N Am. 2010;30(1):125–42.

    Article  Google Scholar 

  • Fong YW, Inouye C, Yamaguchi T, Cattoglio C, Grubisic I, Tjian R. A DNA repair complex functions as an Oct4/Sox2 coactivator in embryonic stem cells. Cell. 2011;147(1):120–31. https://doi.org/10.1016/j.cell.2011.08.038.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Giglia-Mari G, Coin F, Ranish JA, Hoogstraten D, Theil A, Wijgers N, et al. A new, tenth subunit of TFIIH is responsible for the DNA repair syndrome trichothiodystrophy group a. Nat Genet. 2004;36(7):714–9.

    Article  PubMed  CAS  Google Scholar 

  • Gonzalo S, Kreienkamp R. DNA repair defects and genome instability in Hutchinson-Gilford progeria syndrome. Curr Opin Cell Biol. 2015;34:75–83. https://doi.org/10.1016/j.ceb.2015.05.007.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gonzalo S, Kreienkamp R, Askjaer P. Hutchinson-Gilford progeria syndrome: a premature aging disease caused by LMNA gene mutations. Ageing Res Rev. 2017;33:18–29. https://doi.org/10.1016/j.arr.2016.06.007.

    Article  PubMed  CAS  Google Scholar 

  • Goodman MF, Woodgate R. Translesion DNA polymerases. Cold Spring Harb Perspect Biol. 2013;5(10):a010363.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gowen LC, Johnson BL, Latour AM, Sulik KK, Koller BH. Brca1 deficiency results in early embryonic lethality characterized by neuroepithelial abnormalities. Nat Genet. 1996;12(2):191–4.

    Article  PubMed  CAS  Google Scholar 

  • Graham JM Jr, Anyane-Yeboa K, Raams A, Appeldoorn E, Kleijer WJ, Garritsen VH, et al. Cerebro-oculo-facio-skeletal syndrome with a nucleotide excision-repair defect and a mutated XPD gene, with prenatal diagnosis in a triplet pregnancy. Am J Hum Genet. 2001;69(2):291–300.

    Article  PubMed  CAS  Google Scholar 

  • Guainazzi A, Scharer OD. Using synthetic DNA interstrand crosslinks to elucidate repair pathways and identify new therapeutic targets for cancer chemotherapy. Cell Mol Life Sci. 2010;67(21):3683–97.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hanada K, Budzowska M, Davies SL, van Drunen E, Onizawa H, Beverloo HB, et al. The structure-specific endonuclease Mus81 contributes to replication restart by generating double-strand DNA breaks. Nat Struct Mol Biol. 2007;14(11):1096–104.

    Article  PubMed  CAS  Google Scholar 

  • Hanada K, Budzowska M, Modesti M, Maas A, Wyman C, Essers J, et al. The structure-specific endonuclease Mus81-Eme1 promotes conversion of interstrand DNA crosslinks into double-strands breaks. EMBO J. 2006;25(20):4921–32.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hanada K, Hickson ID. Molecular genetics of RecQ helicase disorders. Cell Mol Life Sci. 2007;64(17):2306–22.

    Article  PubMed  CAS  Google Scholar 

  • Hanada K, Ukita T, Kohno Y, Saito K, Kato J, Ikeda H. RecQ DNA helicase is a suppressor of illegitimate recombination in Escherichia coli. Proc Natl Acad Sci U S A. 1997;94(8):3860–5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Harberts E, Gaspari AA. TLR signaling and DNA repair: are they associated? J Invest Dermatol. 2013;133(2):296–302.

    Article  PubMed  CAS  Google Scholar 

  • Harreld JH, Smith EC, Prose NS, Puri PK, Barboriak DP. Trichothiodystrophy with dysmyelination and central osteosclerosis. AJNR Am J Neuroradiol. 2010;31(1):129–30.

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto S, Anai H, Hanada K. Mechanisms of interstrand DNA crosslink repair and human disorders. Genes Environ. 2016;38:9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hoeijmakers JH. DNA damage, aging, and cancer. N Engl J Med. 2009;361(15):1475–85.

    Article  PubMed  CAS  Google Scholar 

  • Jackson SP, Bartek J. The DNA-damage response in human biology and disease. Nature. 2009;461(7267):1071–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jaspers NG, Raams A, Silengo MC, Wijgers N, Niedernhofer LJ, Robinson AR, et al. First reported patient with human ERCC1 deficiency has cerebro-oculo-facio-skeletal syndrome with a mild defect in nucleotide excision repair and severe developmental failure. Am J Hum Genet. 2007;80(3):457–66.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Johnson-Tesch BA, Gawande RS, Zhang L, MacMillan ML, Nascene DR. Fanconi anemia: correlating central nervous system malformations and genetic complementation groups. Pediatr Radiol. 2017;47(7):868–76.

    Article  PubMed  Google Scholar 

  • Karikkineth AC, Scheibye-Knudsen M, Fivenson E, Croteau DL, Bohr VA. Cockayne syndrome: clinical features, model systems and pathways. Ageing Res Rev. 2017;33:3–17.

    Article  PubMed  CAS  Google Scholar 

  • Katsuki Y, Takata M. Defects in homologous recombination repair behind the human diseases: FA and HBOC. Endocr Relat Cancer. 2016;23(10):T19–37.

    Article  PubMed  CAS  Google Scholar 

  • Keijzers G, Bakula D, Scheibye-Knudsen M. Monogenic diseases of DNA repair. N Engl J Med. 2017;377(19):1868–76.

    Article  PubMed  CAS  Google Scholar 

  • Kerzendorfer C, O’Driscoll M. Human DNA damage response and repair deficiency syndromes: linking genomic instability and cell cycle checkpoint proficiency. DNA Repair (Amst). 2009;8(9):1139–52.

    Article  CAS  Google Scholar 

  • Khanna A. DNA damage in cancer therapeutics: a boon or a curse? Cancer Res. 2015;75(11):2133–8.

    Article  PubMed  CAS  Google Scholar 

  • Koob M, Laugel V, Durand M, Fothergill H, Dalloz C, Sauvanaud F, et al. Neuroimaging in Cockayne syndrome. AJNR Am J Neuroradiol. 2010;31(9):1623–30.

    Article  PubMed  CAS  Google Scholar 

  • Koob M, Rousseau F, Laugel V, Meyer N, Armspach JP, Girard N, et al. Cockayne syndrome: a diffusion tensor imaging and volumetric study. Br J Radiol. 2016;89(1067):20151033.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kubota M, Ohta S, Ando A, Koyama A, Terashima H, Kashii H, et al. Nationwide survey of Cockayne syndrome in Japan: incidence, clinical course and prognosis. Pediatr Int. 2015;57(3):339–47.

    Article  PubMed  Google Scholar 

  • Le May N, Mota-Fernandes D, et al. NER factors are recruited to active promoters and facilitate chromatin modification for transcription in the absence of exogenous genotoxic attack. Mol Cell. 2010;38(1):54–66. https://doi.org/10.1016/jmolcel201003.004.

    Article  PubMed  Google Scholar 

  • Legerski RJ. Repair of DNA interstrand cross-links during S phase of the mammalian cell cycle. Environ Mol Mutagen. 2010;51(6):540–51.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Lehmann AR, McGibbon D, Stefanini M. Xeroderma pigmentosum. Orphanet J Rare Dis. 2011;6:70. https://doi.org/10.1186/1750-1172-6-70.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lindor NM, Furuichi Y, Kitao S, Shimamoto A, Arndt C, Jalal S. Rothmund-Thomson syndrome due to RECQ4 helicase mutations: report and clinical and molecular comparisons with Bloom syndrome and Werner syndrome. Am J Med Genet. 2000;90(3):223–8.

    Article  PubMed  CAS  Google Scholar 

  • Luo G, Yao MS, Bender CF, Mills M, Bladl AR, Bradley A, et al. Disruption of mRad50 causes embryonic stem cell lethality, abnormal embryonic development, and sensitivity to ionizing radiation. Proc Natl Acad Sci U S A. 1999;96(13):7376–81.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Masutani C, Kusumoto R, Iwai S, Hanaoka F. Mechanisms of accurate translesion synthesis by human DNA polymerase eta. EMBO J. 2000;19(12):3100–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Masutani C, Kusumoto R, Yamada A, Dohmae N, Yokoi M, Yuasa M, et al. The XPV (xeroderma pigmentosum variant) gene encodes human DNA polymerase eta. Nature. 1999;399(6737):700–4.

    Article  PubMed  CAS  Google Scholar 

  • Matsuura S, Tauchi H, Nakamura A, Kondo N, Sakamoto S, Endo S, et al. Positional cloning of the gene for Nijmegen breakage syndrome. Nat Genet. 1998;19(2):179–81.

    Article  PubMed  CAS  Google Scholar 

  • Mehta A, Haber JE. Sources of DNA double-strand breaks and models of recombinational DNA repair. Cold Spring Harb Perspect Biol. 2014;6(9):a016428.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Meira LB, Graham JM Jr, Greenberg CR, Busch DB, Doughty AT, Ziffer DW, et al. Manitoba aboriginal kindred with original cerebro-oculo- facio-skeletal syndrome has a mutation in the Cockayne syndrome group B (CSB) gene. Am J Hum Genet. 2000;66(4):1221–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mo D, Zhao Y, Balajee AS. Human RecQL4 helicase plays multifaceted roles in the genomic stability of normal and cancer cells. Cancer Lett. 2018;413:1–10.

    Article  PubMed  CAS  Google Scholar 

  • Moshous D, Callebaut I, de Chasseval R, Corneo B, Cavazzana-Calvo M, Le Deist F, et al. Artemis, a novel DNA double-strand break repair/V(D)J recombination protein, is mutated in human severe combined immune deficiency. Cell. 2001;105(2):177–86.

    Article  PubMed  CAS  Google Scholar 

  • Mocquet V, Laine JP, et al. Sequential recruitment of the repair factors during NER: the role of XPG in initiating the resynthesis step. EMBO J. 2008;27(1):155–67. https://doi.org/10.1038/sj.emboj.7601948.

    Article  PubMed  CAS  Google Scholar 

  • Muniandy PA, Thapa D, Thazhathveetil AK, Liu ST, Seidman MM. Repair of laser-localized DNA interstrand cross-links in G1 phase mammalian cells. J Biol Chem. 2009;284(41):27908–17.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Natale V, Raquer H. Xeroderma pigmentosum-Cockayne syndrome complex. Orphanet J Rare Dis. 2017;12(1):65.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nikitaki Z, Mavragani IV, Laskaratou DA, Gika V, Moskvin VP, Theofilatos K, et al. Systemic mechanisms and effects of ionizing radiation: a new ‘old’ paradigm of how the bystanders and distant can become the players. Semin Cancer Biol. 2016;37-38:77–95.

    Article  PubMed  CAS  Google Scholar 

  • Oshima J, Sidorova JM, Monnat RJ Jr. Werner syndrome: clinical features, pathogenesis and potential therapeutic interventions. Ageing Res Rev. 2017;33:105–14.

    Article  PubMed  CAS  Google Scholar 

  • Pacher P, Beckman JS, Liaudet L. Nitric oxide and peroxynitrite in health and disease. Physiol Rev. 2007;87(1):315–424.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Palmai-Pallag T, Bachrati CZ. Inflammation-induced DNA damage and damage-induced inflammation: a vicious cycle. Microbes Infect. 2014;16(10):822–32.

    Article  PubMed  CAS  Google Scholar 

  • Pani B, Nudler E. Mechanistic insights into transcription coupled DNA repair. DNA Repair (Amst). 2017;56:42–50.

    Article  CAS  Google Scholar 

  • Petermann E, Orta ML, Issaeva N, Schultz N, Helleday T. Hydroxyurea-stalled replication forks become progressively inactivated and require two different RAD51-mediated pathways for restart and repair. Mol Cell. 2010;37(4):492–502.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pittman DL, Schimenti JC. Midgestation lethality in mice deficient for the RecA-related gene, Rad51d/Rad51l3. Genesis. 2000;26(3):167–73.

    Article  PubMed  CAS  Google Scholar 

  • de la Rojo, Vega M, Krajisnik A, Zhang DD, Wondrak GT. Targeting NRF2 for improved skin barrier function and photoprotection: focus on the achiote-derived apocarotenoid bixin. Nutrients. 2017;9(12)

  • Saldivar JC, Cortez D, Cimprich KA. The essential kinase ATR: ensuring faithful duplication of a challenging genome. Nat Rev Mol Cell Biol. 2017;18(10):622–36.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sedelnikova OA, Nakamura A, Kovalchuk O, Koturbash I, Mitchell SA, Marino SA, et al. DNA double-strand breaks form in bystander cells after microbeam irradiation of three-dimensional human tissue models. Cancer Res. 2007;67(9):4295–302.

    Article  PubMed  CAS  Google Scholar 

  • Sharan SK, Morimatsu M, Albrecht U, Lim DS, Regel E, Dinh C, et al. Embryonic lethality and radiation hypersensitivity mediated by Rad51 in mice lacking Brca2. Nature. 1997;386(6627):804–10.

    Article  PubMed  CAS  Google Scholar 

  • Shibata A. Regulation of repair pathway choice at two-ended DNA double-strand breaks. Mutat Res. 2017;803-805:51–5.

    Article  PubMed  CAS  Google Scholar 

  • Shiloh Y, Ziv Y. The ATM protein kinase: regulating the cellular response to genotoxic stress, and more. Nat Rev Mol Cell Biol. 2013;14(4):197–210.

    Article  CAS  PubMed  Google Scholar 

  • Shiloh Y, Lederman HM. Ataxia-telangiectasia (A-T): an emerging dimension of premature ageing. Ageing Res Rev. 2017;33:76–88. https://doi.org/10.1016/j.arr.2016.05.002.

    Article  PubMed  CAS  Google Scholar 

  • Shimizu I, Yoshida Y, Suda M, Minamino T. DNA damage response and metabolic disease. Cell Metab. 2014;20(6):967–77.

    Article  PubMed  CAS  Google Scholar 

  • Simon T, Kohlhase J, Wilhelm C, Kochanek M, De Carolis B, Berthold F. Multiple malignant diseases in a patient with Rothmund-Thomson syndrome with RECQL4 mutations: case report and literature review. Am J Med Genet A. 2010;152A(6):1575–9.

    PubMed  CAS  Google Scholar 

  • Singh A, Compe E, Le May N, Egly JM. TFIIH subunit alterations causing xeroderma pigmentosum and trichothiodystrophy specifically disturb several steps during transcription. Am J Hum Genet. 2015;96(2):194–207.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stadler J, Richly H. Regulation of DNA repair mechanisms: how the chromatin environment regulates the DNA damage response. Int J Mol Sci. 2017;18(8):1715. https://doi.org/10.3390/ijms18081715.

    Article  PubMed Central  Google Scholar 

  • Stracker TH, Roig I, Knobel PA, Marjanovic M. The ATM signaling network in development and disease. Front Genet. 2013;4:37.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sugimoto M. A cascade leading to premature aging phenotypes including abnormal tumor profiles in Werner syndrome (review). Int J Mol Med. 2014;33(2):247–53.

    Article  PubMed  CAS  Google Scholar 

  • Szabo C, Ischiropoulos H, Radi R. Peroxynitrite: biochemistry, pathophysiology and development of therapeutics. Nat Rev Drug Discov. 2007;6(8):662–80.

    Article  PubMed  CAS  Google Scholar 

  • Taylor AM, Groom A, Byrd PJ. Ataxia-telangiectasia-like disorder (ATLD)-its clinical presentation and molecular basis. DNA Repair (Amst). 2004;3(8–9):1219–25.

    Article  CAS  Google Scholar 

  • Theil AF, Nonnekens J, Steurer B, Mari PO, de Wit J, Lemaitre C, et al. Disruption of TTDA results in complete nucleotide excision repair deficiency and embryonic lethality. PLoS Genet. 2013;9(4):e1003431.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tokunaga A, Anai H, Hanada K. Mechanisms of gene targeting in higher eukaryotes. Cell Mol Life Sci. 2016;73(3):523–33.

    Article  PubMed  CAS  Google Scholar 

  • Tsuzuki T, Fujii Y, Sakumi K, Tominaga Y, Nakao K, Sekiguchi M, et al. Targeted disruption of the Rad51 gene leads to lethality in embryonic mice. Proc Natl Acad Sci U S A. 1996;93(13):6236–40.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ueda T, Kanda F, Aoyama N, Fujii M, Nishigori C, Toda T. Neuroimaging features of xeroderma pigmentosum group a. Brain Behav. 2012;2(1):1–5.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ueda T, Kanda F, Nishiyama M, Nishigori C, Toda T. Quantitative analysis of brain atrophy in patients with xeroderma pigmentosum group a carrying the founder mutation in Japan. J Neurol Sci. 2017;381:103–6.

    Article  PubMed  CAS  Google Scholar 

  • Vaisman A, Woodgate R. Translesion DNA polymerases in eukaryotes: what makes them tick? Crit Rev Biochem Mol Biol. 2017;52(3):274–303.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • van der Burg M, Ijspeert H, Verkaik NS, Turul T, Wiegant WW, Morotomi-Yano K, et al. A DNA-PKcs mutation in a radiosensitive T-B- SCID patient inhibits Artemis activation and nonhomologous end-joining. J Clin Invest. 2009;119(1):91–8.

    PubMed  Google Scholar 

  • Vargas FR, de Almeida JC, Llerena Junior JC, Reis DF. RAPADILINO syndrome. Am J Med Genet. 1992;44(6):716–9.

    Article  PubMed  CAS  Google Scholar 

  • Wakeling EL, Cruwys M, Suri M, Brady AF, Aylett SE, Hall C. Central osteosclerosis with trichothiodystrophy. Pediatr Radiol. 2004;34(7):541–6.

    Article  PubMed  Google Scholar 

  • Waltes R, Kalb R, Gatei M, Kijas AW, Stumm M, Sobeck A, et al. Human RAD50 deficiency in a Nijmegen breakage syndrome-like disorder. Am J Hum Genet. 2009;84(5):605–16.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Weeda G, Eveno E, Donker I, Vermeulen W, Chevallier-Lagente O, Taieb A, et al. A mutation in the XPB/ERCC3 DNA repair transcription gene, associated with trichothiodystrophy. Am J Hum Genet. 1997;60(2):320–9.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Wood RD. Mammalian nucleotide excision repair proteins and interstrand crosslink repair. Environ Mol Mutagen. 2010;51(6):520–6.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Woodbine L, Gennery AR, Jeggo PA. The clinical impact of deficiency in DNA non-homologous end-joining. DNA Repair (Amst). 2014;16:84–96.

    Article  CAS  Google Scholar 

  • Xiao Y, Weaver DT. Conditional gene targeted deletion by Cre recombinase demonstrates the requirement for the double-strand break repair Mre11 protein in murine embryonic stem cells. Nucleic Acids Res. 1997;25(15):2985–91.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ying S, Minocherhomji S, Chan KL, Palmai-Pallag T, Chu WK, Wass T, et al. MUS81 promotes common fragile site expression. Nat Cell Biol. 2013;15(8):1001–7.

    Article  PubMed  CAS  Google Scholar 

  • Yokote K, Chanprasert S, Lee L, Eirich K, Takemoto M, Watanabe A, et al. WRN mutation update: mutation spectrum, patient registries, and translational prospects. Hum Mutat. 2017;38(1):7–15.

    Article  PubMed  CAS  Google Scholar 

  • Yoon HK, Sargent MA, Prendiville JS, Poskitt KJ. Cerebellar and cerebral atrophy in trichothiodystrophy. Pediatr Radiol. 2005;35(10):1019–23.

    Article  PubMed  Google Scholar 

  • Zhou H, Randers-Pehrson G, Waldren CA, Vannais D, Hall EJ, Hei TK. Induction of a bystander mutagenic effect of alpha particles in mammalian cells. Proc Natl Acad Sci U S A. 2000;97(5):2099–104.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhu J, Petersen S, Tessarollo L, Nussenzweig A. Targeted disruption of the Nijmegen breakage syndrome gene NBS1 leads to early embryonic lethality in mice. Curr Biol. 2001;11(2):105–9.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Margaret Biswas, from Edanz group (www.edanzediting.com/ac) for editing a draft of this manuscript.

Funding

This study is partially funded by the Practical Research Project for Rare/ Intractable Diseases, Japan Agency for Medical Research and Development, AMED to KH; a Grant-in-Aid for Scientific Research (C) (grant number 16K07119), Japan Society for the Promotion of Science (JSPS), The Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan to TT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katsuhiro Hanada.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Terabayashi, T., Hanada, K. Genome instability syndromes caused by impaired DNA repair and aberrant DNA damage responses. Cell Biol Toxicol 34, 337–350 (2018). https://doi.org/10.1007/s10565-018-9429-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1007/s10565-018-9429-x

Keywords