Skip to main content
Log in

Clonal tracking in cancer and metastasis

  • Non-Thematic Review
  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

The eradication of many cancers has proven challenging due to the presence of functionally and genetically heterogeneous clones maintained by rare cancer stem cells (CSCs), which contribute to disease progression, treatment refractoriness, and late relapse. The characterization of functional CSC activity has necessitated the development of modern clonal tracking strategies. This review describes viral-based and CRISPR-Cas9-based cellular barcoding, lineage tracing, and imaging-based approaches. DNA-based cellular barcoding technology is emerging as a powerful and robust strategy that has been widely applied to in vitro and in vivo model systems, including patient-derived xenograft models. This review also highlights the potential of these methods for use in the clinical and drug discovery contexts and discusses the important insights gained from such approaches.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

Data availability does not apply to this article since no new data were generated or analyzed in this review.

Abbreviations

Cre:

Cre recombinase

CreER:

Cre recombinase to estrogen receptor

CSC:

Cancer stem cells

CML:

Chronic myeloid leukemia

CRISPR:

Clustered regularly interspaced short palindromic repeats

Cas9:

CRISPR-associated protein 9

EGFR:

Epidermal growth factor receptor

gRNA:

guide RNA

hgRNA:

homing guide RNA

NGS:

Next-generation sequencing

NSCLC:

Non-small cell lung cancer

PCR:

Polymerase chain reaction

scRNA-seq:

single-cell RNA sequencing

sgRNA:

single-guide RNA

seqFISH:

sequential small-molecule fluorescent in situ hybridization

References

  1. McGranahan, N., & Swanton, C. (2017). Clonal Heterogeneity and tumor evolution: Past, present, and the future. Cell, 168(4), 613–628.

    Article  CAS  PubMed  Google Scholar 

  2. Toh, T. B., Lim, J. J., & Chow, E. K. (2017). Epigenetics in cancer stem cells. Molecular Cancer, 16(1), 29.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Nassar, D., & Blanpain, C. (2016). Cancer stem cells: Basic concepts and therapeutic implications. Annual Review of Pathology, 11, 47–76.

    Article  CAS  PubMed  Google Scholar 

  4. Tan, C. S., Kumarakulasinghe, N. B., Huang, Y. Q., Ang, Y. L. E., Choo, J. R., Goh, B. C., et al. (2018). Third generation EGFR TKIs: Current data and future directions. Molecular Cancer, 17(1), 29.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Pasqualucci, L., Khiabanian, H., Fangazio, M., Vasishtha, M., Messina, M., Holmes, A. B., et al. (2014). Genetics of follicular lymphoma transformation. Cell Reports, 6(1), 130–140.

    Article  CAS  PubMed  Google Scholar 

  6. Theunissen, P. M. J., de Bie, M., van Zessen, D., de Haas, V., Stubbs, A. P., & van der Velden, V. H. J. (2019). Next-generation antigen receptor sequencing of paired diagnosis and relapse samples of B-cell acute lymphoblastic leukemia: Clonal evolution and implications for minimal residual disease target selection. Leukemia Research, 76, 98–104.

    Article  CAS  PubMed  Google Scholar 

  7. Matynia, A. P., Li, K. D., Szankasi, P., Schumacher, J., Liew, M., Salama, M. E., et al. (2019). Molecular fingerprinting of anatomically and temporally distinct b-cell lymphoma samples by next-generation sequencing to establish clonal relatedness. Archives of Pathology & Laboratory Medicine, 143(1), 105–111.

    Article  Google Scholar 

  8. Jiang, Y., Nie, K., Redmond, D., Melnick, A. M., Tam, W., & Elemento, O. (2015). VDJ-Seq: Deep sequencing analysis of rearranged immunoglobulin heavy chain gene to reveal clonal evolution patterns of b cell lymphoma. Journal of Visualized Experiments, 106, e53215.

    Google Scholar 

  9. Visvader, J. E. (2011). Cells of origin in cancer. Nature, 469(7330), 314–322.

    Article  CAS  PubMed  Google Scholar 

  10. Bonnet, D., & Dick, J. E. (1997). Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nature Medicine, 3(7), 730–737.

    Article  CAS  PubMed  Google Scholar 

  11. Chopra, M., & Bohlander, S. K. (2019). The cell of origin and the leukemia stem cell in acute myeloid leukemia. Genes, Chromosomes & Cancer, 58(12), 850–858.

    Article  CAS  Google Scholar 

  12. Schepers, A. G., Snippert, H. J., Stange, D. E., van den Born, M., van Es, J. H., van de Wetering, M., et al. (2012). Lineage tracing reveals Lgr5+ stem cell activity in mouse intestinal adenomas. Science, 337(6095), 730–735.

    Article  CAS  PubMed  Google Scholar 

  13. Molyneux, G., Geyer, F. C., Magnay, F. A., McCarthy, A., Kendrick, H., Natrajan, R., et al. (2010). BRCA1 basal-like breast cancers originate from luminal epithelial progenitors and not from basal stem cells. Cell Stem Cell, 7(3), 403–417.

    Article  CAS  PubMed  Google Scholar 

  14. Goldstein, A. S., Huang, J., Guo, C., Garraway, I. P., & Witte, O. N. (2010). Identification of a cell of origin for human prostate cancer. Science, 329(5991), 568–571.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. McCulloch, E. A., & Till, J. E. (2005). Perspectives on the properties of stem cells. Nature Medicine, 11(10), 1026–1028.

    Article  CAS  PubMed  Google Scholar 

  16. Batlle, E., & Clevers, H. (2017). Cancer stem cells revisited. Nature Medicine, 23(10), 1124–1134.

    Article  CAS  PubMed  Google Scholar 

  17. Lapidot, T., Sirard, C., Vormoor, J., Murdoch, B., Hoang, T., Caceres-Cortes, J., et al. (1994). A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature, 367(6464), 645–648.

    Article  CAS  PubMed  Google Scholar 

  18. Jamieson, C. H., Ailles, L. E., Dylla, S. J., Muijtjens, M., Jones, C., Zehnder, J. L., et al. (2004). Granulocyte-macrophage progenitors as candidate leukemic stem cells in blast-crisis CML. The New England Journal of Medicine, 351(7), 657–667.

    Article  CAS  PubMed  Google Scholar 

  19. Schatton, T., Murphy, G. F., Frank, N. Y., Yamaura, K., Waaga-Gasser, A. M., Gasser, M., et al. (2008). Identification of cells initiating human melanomas. Nature, 451(7176), 345–349.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Al-Hajj, M., Wicha, M. S., Benito-Hernandez, A., Morrison, S. J., & Clarke, M. F. (2003). Prospective identification of tumorigenic breast cancer cells. Proceedings of the National Academy of Sciences of the United States of America, 100(7), 3983–3988.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. O'Brien, C. A., Pollett, A., Gallinger, S., & Dick, J. E. (2007). A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature, 445(7123), 106–110.

    Article  CAS  PubMed  Google Scholar 

  22. Ricci-Vitiani, L., Lombardi, D. G., Pilozzi, E., Biffoni, M., Todaro, M., Peschle, C., et al. (2007). Identification and expansion of human colon-cancer-initiating cells. Nature, 445(7123), 111–115.

    Article  CAS  PubMed  Google Scholar 

  23. Dalerba, P., Dylla, S. J., Park, I. K., Liu, R., Wang, X., Cho, R. W., et al. (2007). Phenotypic characterization of human colorectal cancer stem cells. Proceedings of the National Academy of Sciences of the United States of America, 104(24), 10158–10163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hermann, P. C., Huber, S. L., Herrler, T., Aicher, A., Ellwart, J. W., Guba, M., et al. (2007). Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell, 1(3), 313–323.

    Article  CAS  PubMed  Google Scholar 

  25. Singh, S. K., Hawkins, C., Clarke, I. D., Squire, J. A., Bayani, J., Hide, T., et al. (2004). Identification of human brain tumour initiating cells. Nature, 432(7015), 396–401.

    Article  CAS  PubMed  Google Scholar 

  26. Scheel, C., Eaton, E. N., Li, S. H., Chaffer, C. L., Reinhardt, F., Kah, K. J., et al. (2011). Paracrine and autocrine signals induce and maintain mesenchymal and stem cell states in the breast. Cell, 145(6), 926–940.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chaffer, C. L., Brueckmann, I., Scheel, C., Kaestli, A. J., Wiggins, P. A., Rodrigues, L. O., et al. (2011). Normal and neoplastic nonstem cells can spontaneously convert to a stem-like state. Proceedings of the National Academy of Sciences of the United States of America, 108(19), 7950–7955.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Greaves, M., & Maley, C. C. (2012). Clonal evolution in cancer. Nature, 481(7381), 306–313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Giordano, F. A., Appelt, J. U., Link, B., Gerdes, S., Lehrer, C., Scholz, S., et al. (2015). High-throughput monitoring of integration site clonality in preclinical and clinical gene therapy studies. Molecular Therapy-Methods & Clinical Development, 2, 14061.

    Article  Google Scholar 

  30. Cartier, N., Hacein-Bey-Abina, S., Bartholomae, C. C., Veres, G., Schmidt, M., Kutschera, I., et al. (2009). Hematopoietic stem cell gene therapy with a lentiviral vector in X-linked adrenoleukodystrophy. Science, 326(5954), 818–823.

    Article  CAS  PubMed  Google Scholar 

  31. Wang, G. P., Berry, C. C., Malani, N., Leboulch, P., Fischer, A., Hacein-Bey-Abina, S., et al. (2010). Dynamics of gene-modified progenitor cells analyzed by tracking retroviral integration sites in a human SCID-X1 gene therapy trial. Blood, 115(22), 4356–4366.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Dagogo-Jack, I., & Shaw, A. T. (2018). Tumour heterogeneity and resistance to cancer therapies. Nature Reviews Clinical Oncology, 15(2), 81–94.

    Article  CAS  PubMed  Google Scholar 

  33. McGranahan, N., & Swanton, C. (2015). Biological and therapeutic impact of intratumor heterogeneity in cancer evolution. Cancer Cell, 27(1), 15–26.

    Article  CAS  PubMed  Google Scholar 

  34. Turajlic, S., Sottoriva, A., Graham, T., & Swanton, C. (2019). Resolving genetic heterogeneity in cancer. Nature Reviews Genetics, 20(7), 404–416.

    Article  CAS  PubMed  Google Scholar 

  35. Maura, F., Bolli, N., Angelopoulos, N., Dawson, K. J., Leongamornlert, D., Martincorena, I., et al. (2019). Genomic landscape and chronological reconstruction of driver events in multiple myeloma. Nature Communications, 10(1), 3835.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Mitchell, T. J., Turajlic, S., Rowan, A., Nicol, D., Farmery, J. H. R., O'Brien, T., et al. (2018). Timing the landmark events in the evolution of clear cell renal cell cancer: TRACERx renal. Cell, 173(3), 611–23.e17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Nik-Zainal, S., Van Loo, P., Wedge, D. C., Alexandrov, L. B., Greenman, C. D., Lau, K. W., et al. (2012). The life history of 21 breast cancers. Cell, 149(5), 994–1007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Eirew, P., Steif, A., Khattra, J., Ha, G., Yap, D., Farahani, H., et al. (2015). Dynamics of genomic clones in breast cancer patient xenografts at single-cell resolution. Nature, 518(7539), 422–426.

    Article  CAS  PubMed  Google Scholar 

  39. Roerink, S. F., Sasaki, N., Lee-Six, H., Young, M. D., Alexandrov, L. B., Behjati, S., et al. (2018). Intra-tumour diversification in colorectal cancer at the single-cell level. Nature, 556(7702), 457–462.

    Article  CAS  PubMed  Google Scholar 

  40. Laks, E., McPherson, A., Zahn, H., Lai, D., Steif, A., Brimhall, J., et al. (2019). Clonal decomposition and DNA replication states defined by scaled single-cell genome sequencing. Cell, 179(5), 1207–21 e22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Pattabiraman, D. R., & Weinberg, R. A. (2014). Tackling the cancer stem cells - what challenges do they pose? Nature Reviews Drug Discovery, 13(7), 497–512.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kreso, A., & Dick, J. E. (2014). Evolution of the cancer stem cell model. Cell Stem Cell, 14(3), 275–291.

    Article  CAS  PubMed  Google Scholar 

  43. Cole, A. J., Fayomi, A. P., Anyaeche, V. I., Bai, S., & Buckanovich, R. J. (2020). An evolving paradigm of cancer stem cell hierarchies: Therapeutic implications. Theranostics, 10(7), 3083–3098.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Greaves, M. (2013). Cancer stem cells as ‘units of selection’. Evolutionary Applications, 6(1), 102–108.

    Article  PubMed  Google Scholar 

  45. Giessler, K. M., Kleinheinz, K., Huebschmann, D., Balasubramanian, G. P., Dubash, T. D., Dieter, S. M., et al. (2017). Genetic subclone architecture of tumor clone-initiating cells in colorectal cancer. The Journal of Experimental Medicine, 214(7), 2073–2088.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Barnes, D. W., Ford, C. E., Gray, S. M., & Loutit, J. F. (1959). Spontaneous and induced changes in cell populations in heavily irradiated mice. Progress in Nuclear Energy. Series 6 Biological Sciences, 2, 1–10.

  47. CNP, A HD. (1960). A minute chromosome in human chronic granulocytic leukemia. Science, 1497.

  48. Levan, A., Nichols, W. W., & Norden, A. (1963). A case of chronic myeloid leukemia with two leukemic stemlines in the blood. Hereditas, 49, 433–441.

    Article  Google Scholar 

  49. Fialkow, P. J., Gartler, S. M., & Yoshida, A. (1967). Clonal origin of chronic myelocytic leukemia in man. Proceedings of the National Academy of Sciences of the United States of America, 58(4), 1468–1471.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Maia, A. T., Ford, A. M., Jalali, G. R., Harrison, C. J., Taylor, G. M., Eden, O. B., et al. (2001). Molecular tracking of leukemogenesis in a triplet pregnancy. Blood, 98(2), 478–482.

    Article  CAS  PubMed  Google Scholar 

  51. Notta, F., Doulatov, S., Laurenti, E., Poeppl, A., Jurisica, I., & Dick, J. E. (2011). Isolation of single human hematopoietic stem cells capable of long-term multilineage engraftment. Science, 333(6039), 218–221.

    Article  CAS  PubMed  Google Scholar 

  52. Miller, P. H., Cheung, A. M., Beer, P. A., Knapp, D. J., Dhillon, K., Rabu, G., et al. (2013). Enhanced normal short-term human myelopoiesis in mice engineered to express human-specific myeloid growth factors. Blood, 121(5), e1–e4.

    Article  CAS  PubMed  Google Scholar 

  53. Bystrykh, L. V., Verovskaya, E., Zwart, E., Broekhuis, M., & de Haan, G. (2012). Counting stem cells: Methodological constraints. Nature Methods, 9(6), 567–574.

    Article  CAS  PubMed  Google Scholar 

  54. Naik, S. H., Schumacher, T. N., & Perié, L. (2014). Cellular barcoding: A technical appraisal. Experimental Hematology, 42(8), 598–608.

    Article  PubMed  Google Scholar 

  55. Cusanovich, D. A., Daza, R., Adey, A., Pliner, H. A., Christiansen, L., Gunderson, K. L., et al. (2015). Multiplex single cell profiling of chromatin accessibility by combinatorial cellular indexing. Science, 348(6237), 910–914.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kivioja, T., Vaharautio, A., Karlsson, K., Bonke, M., Enge, M., Linnarsson, S., et al. (2011). Counting absolute numbers of molecules using unique molecular identifiers. Nature Methods, 9(1), 72–74.

    Article  PubMed  Google Scholar 

  57. Golden, J. A., Fields-Berry, S. C., & Cepko, C. L. (1995). Construction and characterization of a highly complex retroviral library for lineage analysis. Proceedings of the National Academy of Sciences of the United States of America, 92(12), 5704–5708.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Schepers, K., Swart, E., van Heijst, J. W., Gerlach, C., Castrucci, M., Sie, D., et al. (2008). Dissecting t cell lineage relationships by cellular barcoding. The Journal of Experimental Medicine, 205(10), 2309–2318.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Naik, S. H., Perié, L., Swart, E., Gerlach, C., van Rooij, N., de Boer, R. J., et al. (2013). Diverse and heritable lineage imprinting of early haematopoietic progenitors. Nature, 496(7444), 229–232.

    Article  CAS  PubMed  Google Scholar 

  60. Gerrits, A., Dykstra, B., Kalmykowa, O. J., Klauke, K., Verovskaya, E., Broekhuis, M. J., et al. (2010). Cellular barcoding tool for clonal analysis in the hematopoietic system. Blood, 115(13), 2610–2618.

    Article  CAS  PubMed  Google Scholar 

  61. Cornils, K., Thielecke, L., Hüser, S., Forgber, M., Thomaschewski, M., Kleist, N., et al. (2014). Multiplexing clonality: combining RGB marking and genetic barcoding. Nucleic Acids Research, 42(7), e56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Aalam, S. M. M., Tang, X., Song, J., Ray, U., Russell, S. J., Weroha, S. J., et al. (2022). DNA barcoded competitive clone-initiating cell analysis reveals novel features of metastatic growth in a cancer xenograft model. NAR Cancer, 4(3), zcac022.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Nguyen, L. V., Makarem, M., Carles, A., Moksa, M., Kannan, N., Pandoh, P., et al. (2014). Clonal analysis via barcoding reveals diverse growth and differentiation of transplanted mouse and human mammary stem cells. Cell Stem Cell, 14(2), 253–263.

    Article  CAS  PubMed  Google Scholar 

  64. Grosselin, J., Sii-Felice, K., Payen, E., Chretien, S., Tronik-Le Roux, D., & Leboulch, P. (2013). Arrayed lentiviral barcoding for quantification analysis of hematopoietic dynamics. Stem Cells, 31(10), 2162–2171.

    Article  CAS  PubMed  Google Scholar 

  65. Cheung, A. M., Nguyen, L. V., Carles, A., Beer, P., Miller, P. H., Knapp, D. J., et al. (2013). Analysis of the clonal growth and differentiation dynamics of primitive barcoded human cord blood cells in NSG mice. Blood, 122(18), 3129–3137.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Seth, S., Li, C. Y., Ho, I. L., Corti, D., Loponte, S., Sapio, L., et al. (2019). Pre-existing functional heterogeneity of tumorigenic compartment as the origin of chemoresistance in pancreatic tumors. Cell Reports, 26(6), 1518–32 e9.

    Article  CAS  PubMed  Google Scholar 

  67. Biddy, B. A., Kong, W., Kamimoto, K., Guo, C., Waye, S. E., Sun, T., et al. (2018). Single-cell mapping of lineage and identity in direct reprogramming. Nature, 564(7735), 219–224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. McKenna, A., & Gagnon, J. A. (2019). Recording development with single cell dynamic lineage tracing. Development, 146(12).

  69. Al'Khafaji, A. M., Deatherage, D., & Brock, A. (2018). Control of lineage-specific gene expression by functionalized gRNA barcodes. ACS Synthetic Biology, 7(10), 2468–2474.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Rebbeck, C., Raths, F., Ben Cheik, B., Gouin, K., Hannon, G. J., & Knott, S. R. V. (2018). SmartCodes: Functionalized barcodes that enable targeted retrieval of clonal lineages from a heterogeneous population. bioRxiv, 352617.

  71. Akimov, Y., Bulanova, D., Abyzova, M., Wennerberg, K., & Aittokallio, T. (2019). DNA barcode-guided lentiviral CRISPRa tool to trace and isolate individual clonal lineages in heterogeneous cancer cell populations. bioRxiv, 622506.

  72. Alemany, A., Florescu, M., Baron, C. S., Peterson-Maduro, J., & van Oudenaarden, A. (2018). Whole-organism clone tracing using single-cell sequencing. Nature, 556(7699), 108–112.

    Article  CAS  PubMed  Google Scholar 

  73. Spanjaard, B., Hu, B., Mitic, N., Olivares-Chauvet, P., Janjuha, S., Ninov, N., et al. (2018). Simultaneous lineage tracing and cell-type identification using CRISPR-Cas9-induced genetic scars. Nature Biotechnology, 36(5), 469–473.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. McKenna, A., Findlay, G. M., Gagnon, J. A., Horwitz, M. S., Schier, A. F., & Shendure, J. (2016). Whole-organism lineage tracing by combinatorial and cumulative genome editing. Science, 353(6298), aaf7907.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Kalhor, R., Mali, P., & Church, G. M. (2017). Rapidly evolving homing CRISPR barcodes. Nature Methods, 14(2), 195–200.

    Article  CAS  PubMed  Google Scholar 

  76. Kalhor, R., Kalhor, K., Mejia, L., Leeper, K., Graveline, A., Mali, P., et al. (2018). Developmental barcoding of whole mouse via homing CRISPR. Science, 361(6405).

  77. Bowling, S., Sritharan, D., Osorio, F. G., Nguyen, M., Cheung, P., Rodriguez-Fraticelli, A., et al. (2020). An engineered CRISPR-Cas9 mouse line for simultaneous readout of lineage histories and gene expression profiles in single cells. Cell, 181(6), 1410–22 e27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Guernet, A., Mungamuri, S. K., Cartier, D., Sachidanandam, R., Jayaprakash, A., Adriouch, S., et al. (2016). CRISPR-barcoding for intratumor genetic heterogeneity modeling and functional analysis of oncogenic driver mutations. Molecular Cell, 63(3), 526–538.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Rogers, Z. N., McFarland, C. D., Winters, I. P., Seoane, J. A., Brady, J. J., Yoon, S., et al. (2018). Mapping the in vivo fitness landscape of lung adenocarcinoma tumor suppression in mice. Nature Genetics, 50(4), 483–486.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Katti, A., Diaz, B. J., Caragine, C. M., Sanjana, N. E., & Dow, L. E. (2022). CRISPR in cancer biology and therapy. Nature Reviews. Cancer, 22(5), 259–279.

    Article  CAS  PubMed  Google Scholar 

  81. Hillary, V. E., & Ceasar, S. A. (2023). A Review on the Mechanism and applications of CRISPR/Cas9/Cas12/Cas13/Cas14 proteins utilized for genome engineering. Molecular Biotechnology, 65(3), 311–325.

    Article  CAS  PubMed  Google Scholar 

  82. Hughes, N. W., Qu, Y., Zhang, J., Tang, W., Pierce, J., Wang, C., et al. (2022). Machine-learning-optimized Cas12a barcoding enables the recovery of single-cell lineages and transcriptional profiles. Molecular Cell, 82(16), 3103–18 e8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Gutierrez, C., Al'Khafaji, A. M., Brenner, E., Johnson, K. E., Gohil, S. H., Lin, Z., et al. (2021). Multifunctional barcoding with ClonMapper enables high-resolution study of clonal dynamics during tumor evolution and treatment. Nature Cancer, 2(7), 758–772.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Chen, C., Liao, Y., & Peng, G. (2022). Connecting past and present: single-cell lineage tracing. Protein & Cell, 13(11), 790–807.

    Article  Google Scholar 

  85. Rees, H. A., & Liu, D. R. (2018). Publisher correction: Base editing: Precision chemistry on the genome and transcriptome of living cells. Nature Reviews. Genetics, 19(12), 801.

    Article  CAS  PubMed  Google Scholar 

  86. Umkehrer, C., Holstein, F., Formenti, L., Jude, J., Froussios, K., Neumann, T., et al. (2021). Isolating live cell clones from barcoded populations using CRISPRa-inducible reporters. Nature Biotechnology, 39(2), 174–178.

    Article  CAS  PubMed  Google Scholar 

  87. Hwang, B., Lee, W., Yum, S. Y., Jeon, Y., Cho, N., Jang, G., et al. (2019). Lineage tracing using a Cas9-deaminase barcoding system targeting endogenous L1 elements. Nature Communications, 10(1), 1234.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Liu, K., Deng, S., Ye, C., Yao, Z., Wang, J., Gong, H., et al. (2021). Mapping single-cell-resolution cell phylogeny reveals cell population dynamics during organ development. Nature Methods, 18(12), 1506–1514.

    Article  CAS  PubMed  Google Scholar 

  89. Kosicki, M., Tomberg, K., & Bradley, A. (2018). Repair of double-strand breaks induced by CRISPR-Cas9 leads to large deletions and complex rearrangements. Nature Biotechnology, 36(8), 765–771.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Wang, H. X., Li, M., Lee, C. M., Chakraborty, S., Kim, H. W., Bao, G., et al. (2017). CRISPR/Cas9-Based genome editing for disease modeling and therapy: Challenges and opportunities for nonviral delivery. Chemical Reviews, 117(15), 9874–9906.

    Article  CAS  PubMed  Google Scholar 

  91. Tsai, S. Q., & Joung, J. K. (2016). Defining and improving the genome-wide specificities of CRISPR-Cas9 nucleases. Nature Reviews. Genetics, 17(5), 300–312.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Yin, H., Song, C. Q., Suresh, S., Kwan, S. Y., Wu, Q., Walsh, S., et al. (2018). Partial DNA-guided Cas9 enables genome editing with reduced off-target activity. Nature Chemical Biology, 14(3), 311–316.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Fu, Y., Sander, J. D., Reyon, D., Cascio, V. M., & Joung, J. K. (2014). Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nature Biotechnology, 32(3), 279–284.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Hu, J. H., Miller, S. M., Geurts, M. H., Tang, W., Chen, L., Sun, N., et al. (2018). Evolved Cas9 variants with broad PAM compatibility and high DNA specificity. Nature, 556(7699), 57–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Pei, W., Feyerabend, T. B., Rossler, J., Wang, X., Postrach, D., Busch, K., et al. (2017). Polylox barcoding reveals haematopoietic stem cell fates realized in vivo. Nature, 548(7668), 456–460.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Pei, W., Wang, X., Rossler, J., Feyerabend, T. B., Hofer, T., & Rodewald, H. R. (2019). Using Cre-recombinase-driven Polylox barcoding for in vivo fate mapping in mice. Nature Protocols, 14(6), 1820–1840.

    Article  CAS  PubMed  Google Scholar 

  97. Pei, W., Shang, F., Wang, X., Fanti, A. K., Greco, A., Busch, K., et al. (2020). Resolving fates and single-cell transcriptomes of hematopoietic stem cell clones by polyloxexpress barcoding. Cell Stem Cell, 27(3), 383–95 e8.

    Article  CAS  PubMed  Google Scholar 

  98. Livet, J., Weissman, T. A., Kang, H., Draft, R. W., Lu, J., Bennis, R. A., et al. (2007). Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system. Nature, 450(7166), 56–62.

    Article  CAS  PubMed  Google Scholar 

  99. Cai, D., Cohen, K. B., Luo, T., Lichtman, J. W., & Sanes, J. R. (2013). Improved tools for the brainbow toolbox. Nature Methods, 10(6), 540–547.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Weissman, T. A., & Pan, Y. A. (2015). Brainbow: new resources and emerging biological applications for multicolor genetic labeling and analysis. Genetics, 199(2), 293–306.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Snippert, H. J., van der Flier, L. G., Sato, T., van Es, J. H., van den Born, M., Kroon-Veenboer, C., et al. (2010). Intestinal crypt homeostasis results from neutral competition between symmetrically dividing Lgr5 stem cells. Cell, 143(1), 134–144.

    Article  CAS  PubMed  Google Scholar 

  102. Ritsma, L., Ellenbroek, S. I. J., Zomer, A., Snippert, H. J., de Sauvage, F. J., Simons, B. D., et al. (2014). Intestinal crypt homeostasis revealed at single-stem-cell level by in vivo live imaging. Nature, 507(7492), 362–365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Weber, K., Thomaschewski, M., Warlich, M., Volz, T., Cornils, K., Niebuhr, B., et al. (2011). RGB marking facilitates multicolor clonal cell tracking. Nature Medicine, 17(4), 504–509.

    Article  CAS  PubMed  Google Scholar 

  104. Gambera, S., Abarrategi, A., Gonzalez-Camacho, F., Morales-Molina, A., Roma, J., Alfranca, A., et al. (2018). Clonal dynamics in osteosarcoma defined by RGB marking. Nature Communications, 9(1), 3994.

    Article  PubMed  PubMed Central  Google Scholar 

  105. van der Heijden, M., Miedema, D. M., Waclaw, B., Veenstra, V. L., Lecca, M. C., Nijman, L. E., et al. (2019). Spatiotemporal regulation of clonogenicity in colorectal cancer xenografts. Proceedings of the National Academy of Sciences of the United States of America, 116(13), 6140–6145.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Wiktor-Brown, D. M., Kwon, H. S., Nam, Y. S., So, P. T., & Engelward, B. P. (2008). Integrated one- and two-photon imaging platform reveals clonal expansion as a major driver of mutation load. Proceedings of the National Academy of Sciences of the United States of America, 105(30), 10314–10319.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Malide, D., Metais, J. Y., & Dunbar, C. E. (2012). Dynamic clonal analysis of murine hematopoietic stem and progenitor cells marked by 5 fluorescent proteins using confocal and multiphoton microscopy. Blood, 120(26), e105–e116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Wu, J. W., Turcotte, R., Alt, C., Runnels, J. M., Tsao, H., & Lin, C. P. (2016). Defining clonal color in fluorescent multi-clonal tracking. Scientific Reports, 6, 24303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Mohme, M., Maire, C. L., Riecken, K., Zapf, S., Aranyossy, T., Westphal, M., et al. (2017). Optical barcoding for single-clone tracking to study tumor heterogeneity. Molecular Therapy, 25(3), 621–633.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Zhong, Z. A., Sun, W., Chen, H., Zhang, H., Lay, Y. E., Lane, N. E., et al. (2015). Optimizing tamoxifen-inducible Cre/loxp system to reduce tamoxifen effect on bone turnover in long bones of young mice. Bone, 81, 614–619.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Ansari, A. M., Ahmed, A. K., Matsangos, A. E., Lay, F., Born, L. J., Marti, G., et al. (2016). Cellular GFP toxicity and immunogenicity: Potential confounders in in vivo cell tracking experiments. Stem Cell Reviews and Reports, 12(5), 553–559.

    Article  CAS  PubMed  Google Scholar 

  112. Stripecke, R., Carmen Villacres, M., Skelton, D., Satake, N., Halene, S., & Kohn, D. (1999). Immune response to green fluorescent protein: Implications for gene therapy. Gene Therapy, 6(7), 1305–1312.

    Article  CAS  PubMed  Google Scholar 

  113. Skelton, D., Satake, N., & Kohn, D. B. (2001). The enhanced green fluorescent protein (eGFP) is minimally immunogenic in C57BL/6 mice. Gene Therapy, 8(23), 1813–1814.

    Article  CAS  PubMed  Google Scholar 

  114. Yang, Z., Wang, Y., Li, Y., Liu, Q., Zeng, Q., & Xu, X. (2014). Options for tracking GFP-Labeled transplanted myoblasts using in vivo fluorescence imaging: implications for tracking stem cell fate. BMC Biotechnology, 14, 55.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Frieda, K. L., Linton, J. M., Hormoz, S., Choi, J., Chow, K. K., Singer, Z. S., et al. (2017). Synthetic recording and in situ readout of lineage information in single cells. Nature, 541(7635), 107–111.

    Article  CAS  PubMed  Google Scholar 

  116. Wang, Z., & Zhu, J. (2017). MEMOIR: A novel system for neural lineage tracing. Neuroscience Bulletin, 33(6), 763–765.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Raj, B., Wagner, D. E., McKenna, A., Pandey, S., Klein, A. M., Shendure, J., et al. (2018). Simultaneous single-cell profiling of lineages and cell types in the vertebrate brain. Nature Biotechnology, 36(5), 442–450.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Yao, Z., Mich, J. K., Ku, S., Menon, V., Krostag, A. R., Martinez, R. A., et al. (2017). A single-cell roadmap of lineage bifurcation in human esc models of embryonic brain development. Cell Stem Cell, 20(1), 120–134.

    Article  CAS  PubMed  Google Scholar 

  119. Kong, W., Biddy, B. A., Kamimoto, K., Amrute, J. M., Butka, E. G., & Morris, S. A. (2020). CellTagging: Combinatorial indexing to simultaneously map lineage and identity at single-cell resolution. Nature Protocols, 15(3), 750–772.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Weinreb, C., Rodriguez-Fraticelli, A., Camargo, F. D., & Klein, A. M. (2020). Lineage tracing on transcriptional landscapes links state to fate during differentiation. Science, 367(6479).

  121. Fennell, K. A., Vassiliadis, D., Lam, E. Y. N., Martelotto, L. G., Balic, J. J., Hollizeck, S., et al. (2022). Non-genetic determinants of malignant clonal fitness at single-cell resolution. Nature, 601(7891), 125–131.

    Article  CAS  PubMed  Google Scholar 

  122. Oren, Y., Tsabar, M., Cuoco, M. S., Amir-Zilberstein, L., Cabanos, H. F., Hutter, J. C., et al. (2021). Cycling cancer persister cells arise from lineages with distinct programs. Nature, 596(7873), 576–582.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Lu, X., Lofgren, S. M., Zhao, Y., & Mazur, P. K. (2023). Multiplexed transcriptomic profiling of the fate of human CAR T cells in vivo via genetic barcoding with shielded small nucleotides. Nature Biomedical Engineering, 7(9), 1170–1187.

    Article  CAS  PubMed  Google Scholar 

  124. Kreso, A., O'Brien, C. A., van Galen, P., Gan, O. I., Notta, F., Brown, A. M., et al. (2013). Variable clonal repopulation dynamics influence chemotherapy response in colorectal cancer. Science, 339(6119), 543–548.

    Article  CAS  PubMed  Google Scholar 

  125. Nguyen, L. V., Cox, C. L., Eirew, P., Knapp, D. J., Pellacani, D., Kannan, N., et al. (2014). DNA barcoding reveals diverse growth kinetics of human breast tumour subclones in serially passaged xenografts. Nature Communications, 5, 5871.

    Article  CAS  PubMed  Google Scholar 

  126. Merino, D., Weber, T. S., Serrano, A., Vaillant, F., Liu, K., Pal, B., et al. (2019). Barcoding reveals complex clonal behavior in patient-derived xenografts of metastatic triple negative breast cancer. Nature Communications, 10(1), 766.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Lan, X., Jörg, D. J., Cavalli, F. M. G., Richards, L. M., Nguyen, L. V., Vanner, R. J., et al. (2017). Fate mapping of human glioblastoma reveals an invariant stem cell hierarchy. Nature, 549(7671), 227–232.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Belderbos, M. E., Koster, T., Ausema, B., Jacobs, S., Sowdagar, S., Zwart, E., et al. (2017). Clonal selection and asymmetric distribution of human leukemia in murine xenografts revealed by cellular barcoding. Blood, 129(24), 3210–3220.

    Article  CAS  PubMed  Google Scholar 

  129. Wylie, A. A., Schoepfer, J., Jahnke, W., Cowan-Jacob, S. W., Loo, A., Furet, P., et al. (2017). The allosteric inhibitor ABL001 enables dual targeting of BCR-ABL1. Nature, 543(7647), 733–737.

    Article  CAS  PubMed  Google Scholar 

  130. Berthelet, J., Wimmer, V. C., Whitfield, H. J., Serrano, A., Boudier, T., Mangiola, S., et al. (2021). The site of breast cancer metastases dictates their clonal composition and reversible transcriptomic profile. Science Advances, 7(28).

  131. Lomakin, A., Svedlund, J., Strell, C., Gataric, M., Shmatko, A., Rukhovich, G., et al. (2022). Spatial genomics maps the structure, nature and evolution of cancer clones. Nature, 611(7936), 594–602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Quinn, J. J., Jones, M. G., Okimoto, R. A., Nanjo, S., Chan, M. M., Yosef, N., et al. (2021). Single-cell lineages reveal the rates, routes, and drivers of metastasis in cancer xenografts. Science, 371(6532).

  133. Mariani, A., Wang, C., Oberg, A. L., Riska, S. M., Torres, M., Kumka, J., et al. (2019). Genes associated with bowel metastases in ovarian cancer. Gynecologic Oncology, 154(3), 495–504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Bhang, H. E., Ruddy, D. A., Krishnamurthy Radhakrishna, V., Caushi, J. X., Zhao, R., Hims, M. M., et al. (2015). Studying clonal dynamics in response to cancer therapy using high-complexity barcoding. Nature Medicine, 21(5), 440–448.

    Article  CAS  PubMed  Google Scholar 

  135. Hata, A. N., Niederst, M. J., Archibald, H. L., Gomez-Caraballo, M., Siddiqui, F. M., Mulvey, H. E., et al. (2016). Tumor cells can follow distinct evolutionary paths to become resistant to epidermal growth factor receptor inhibition. Nature Medicine, 22(3), 262–269.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Roh, V., Abramowski, P., Hiou-Feige, A., Cornils, K., Rivals, J. P., Zougman, A., et al. (2018). Cellular barcoding identifies clonal substitution as a hallmark of local recurrence in a surgical model of head and neck squamous cell carcinoma. Cell Reports, 25(8), 2208–22.e7.

    Article  CAS  PubMed  Google Scholar 

  137. Baldwin, L. A., Bartonicek, N., Yang, J., Wu, S. Z., Deng, N., Roden, D. L., et al. (2022). DNA barcoding reveals ongoing immunoediting of clonal cancer populations during metastatic progression and immunotherapy response. Nature Communications, 13(1), 6539.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Ragulan, C., Desai, K., Lawrence, P. V., Ikami, Y., Aalam, M. M., Ps, H., et al. (2023). Context-specific GITR agonism potentiates anti-PD-L1 and CD40-based immuno-chemotherapy combination in heterogeneous pancreatic tumors. bioRxiv, 2023 06.16.545301.

  139. O'Leary, B., Hrebien, S., Morden, J. P., Beaney, M., Fribbens, C., Huang, X., et al. (2018). Early circulating tumor DNA dynamics and clonal selection with palbociclib and fulvestrant for breast cancer. Nature Communications, 9(1), 896.

    Article  PubMed  PubMed Central  Google Scholar 

  140. Nong, J., Gong, Y., Guan, Y., Yi, X., Yi, Y., Chang, L., et al. (2018). Circulating tumor DNA analysis depicts subclonal architecture and genomic evolution of small cell lung cancer. Nature Communications, 9(1), 3114.

    Article  PubMed  PubMed Central  Google Scholar 

  141. Gogenur, M., Hadi, N. A., Qvortrup, C., Andersen, C. L., & Gogenur, I. (2022). ctDNA for Risk of recurrence assessment in patients treated with neoadjuvant treatment: A systematic review and meta-analysis. Annals of Surgical Oncology, 29(13), 8666–8674.

    Article  PubMed  Google Scholar 

  142. Zhu, G., Ye, X., Dong, Z., Lu, Y. C., Sun, Y., Liu, Y., et al. (2015). Highly sensitive droplet digital PCR method for detection of EGFR-activating mutations in plasma cell-free DNA from patients with advanced non-small cell lung cancer. The Journal of Molecular Diagnostics, 17(3), 265–272.

    Article  CAS  PubMed  Google Scholar 

  143. Heitzer, E., Ulz, P., Belic, J., Gutschi, S., Quehenberger, F., Fischereder, K., et al. (2013). Tumor-associated copy number changes in the circulation of patients with prostate cancer identified through whole-genome sequencing. Genome Medicine, 5(4), 30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Ganesamoorthy, D., Robertson, A. J., Chen, W., Hall, M. B., Cao, M. D., Ferguson, K., et al. (2022). Whole genome deep sequencing analysis of cell-free DNA in samples with low tumour content. BMC Cancer, 22(1), 85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Goh, G., McGranahan, N., & Wilson, G. A. (2019). Computational methods for analysis of tumor clonality and evolutionary history. Methods in Molecular Biology, 1878, 217–226.

    Article  CAS  PubMed  Google Scholar 

  146. Salehi, S., Kabeer, F., Ceglia, N., Andronescu, M., Williams, M. J., Campbell, K. R., et al. (2021). Clonal fitness inferred from time-series modelling of single-cell cancer genomes. Nature, 595(7868), 585–590.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Becker, W. R., Nevins, S. A., Chen, D. C., Chiu, R., Horning, A. M., Guha, T. K., et al. (2022). Single-cell analyses define a continuum of cell state and composition changes in the malignant transformation of polyps to colorectal cancer. Nature Genetics, 54(7), 985–995.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Kester, L., de Barbanson, B., Lyubimova, A., Chen, L. T., van der Schrier, V., Alemany, A., et al. (2022). Integration of multiple lineage measurements from the same cell reconstructs parallel tumor evolution. Cell Genomics, 2(2), 100096.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Kebschull, J. M., & Zador, A. M. (2018). Cellular barcoding: lineage tracing, screening and beyond. Nature Methods, 15(11), 871–879.

    Article  CAS  PubMed  Google Scholar 

  150. Aalam, S. M. M., Beer, P. A., & Kannan, N. (2019). Assays for functionally defined normal and malignant mammary stem cells. Advances in Cancer Research, 141, 129–174.

    Article  CAS  PubMed  Google Scholar 

  151. Sankaran, V. G., Weissman, J. S., & Zon, L. I. (2022). Cellular barcoding to decipher clonal dynamics in disease. Science, 378(6616), eabm5874.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Lu, R., Neff, N. F., Quake, S. R., & Weissman, I. L. (2011). Tracking single hematopoietic stem cells in vivo using high-throughput sequencing in conjunction with viral genetic barcoding. Nature Biotechnology, 29(10), 928–933.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The authors were supported in part by grants to N.K. from the Mayo Clinic Breast Cancer SPORE (CA116201-12CEP) and the Mayo Clinic Ovarian Cancer SPORE (P50 CA136393-DRP). M.R. was supported by the NIH T32 grant. L.V.N. was supported by the ESMO Translational Research Fellowship and the Conquer Cancer ASCO Young Investigator Award.

Author information

Authors and Affiliations

Authors

Contributions

SMA and LN prepared the draft of the manuscript. SMA and MR prepared the figures and tables for the manuscript. NK conceptualized, supervised, and finalized the manuscript.

Corresponding author

Correspondence to Nagarajan Kannan.

Ethics declarations

Ethics approval and consent to participate

No human or animal subjects were used in this study. The authors have conducted their research ethically and in accordance with the guidelines set forth by their institution. The authors have also followed best practices in data collection, analysis, and reporting.

Conflict of interest

The authors declare no competing interests.

Additional information

This material is the authors’ original work, which has not been previously published elsewhere.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aalam, S.M.M., Nguyen, L.V., Ritting, M.L. et al. Clonal tracking in cancer and metastasis. Cancer Metastasis Rev 43, 639–656 (2024). https://doi.org/10.1007/s10555-023-10149-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1007/s10555-023-10149-4

Keywords

Profiles

  1. Nagarajan Kannan