Abstract
Glioblastoma is the most malignant form of glioma, which is the most commonly occurring tumor of the central nervous system. Notch signaling in glioblastoma is considered to be a marker of an undifferentiated tumor cell state, associated with tumor stem cells. Notch is also known for facilitating tumor dormancy escape, recurrence and progression after treatment. Studies in vitro suggest that reducing, removing or blocking the expression of this gene triggers tumor cell differentiation, which shifts the phenotype away from stemness status and consequently facilitates treatment. In contrast, in the vasculature, Notch appears to also function as an important receptor that defines mature non-leaking vessels, and increasing its expression promotes tumor normalization in models of cancer in vivo. Failures in clinical trials with Notch inhibitors are potentially related to their opposing effects on the tumor versus the tumor vasculature, which points to the need for a greater understanding of this signaling pathway.


Similar content being viewed by others
References
Siebel, C., & Lendahl, U. (2017). Notch signaling in development, tissue homeostasis, and disease. Physiological Reviews, 97(4), 1235–1294. https://doi.org/10.1152/physrev.00005.2017
Radtke, F., MacDonald, H. R., & Tacchini-Cottier, F. (2013). Regulation of innate and adaptive immunity by Notch. Nature Reviews Immunology, 13(6), 427–437. https://doi.org/10.1038/nri3445
Demitrack, E. S., & Samuelson, L. C. (2016). Notch regulation of gastrointestinal stem cells. The Journal of Physiology, 594(17), 4791–4803. https://doi.org/10.1113/JP271667
Edwards, A., & Brennan, K. (2021). Notch signalling in breast development and cancer. Frontiers in Cell and Developmental Biology, 9, 1709. https://doi.org/10.3389/fcell.2021.692173
Iso, T., Hamamori, Y., & Kedes, L. (2003). Notch signaling in vascular development. Arteriosclerosis, Thrombosis, and Vascular Biology, 23(4), 543–553. https://doi.org/10.1161/01.ATV.0000060892.81529.8F
Oishi, K., Kamakura, S., Isazawa, Y., Yoshimatsu, T., Kuida, K., Nakafuku, M., … Gotoh, Y. (2004). Notch promotes survival of neural precursor cells via mechanisms distinct from those regulating neurogenesis. Developmental Biology, 276(1), 172–184. https://doi.org/10.1016/j.ydbio.2004.08.039
Takebe, N., Nguyen, D., & Yang, S. X. (2014). Targeting Notch signaling pathway in cancer: Clinical development advances and challenges. Pharmacology & Therapeutics, 141(2), 140–149. https://doi.org/10.1016/j.pharmthera.2013.09.005
Espinoza, I., & Miele, L. (2013). Notch inhibitors for cancer treatment. Pharmacology & Therapeutics, 139(2), 95–110. https://doi.org/10.1016/j.pharmthera.2013.02.003
Lino, M. M., Merlo, A., & Boulay, J.-L. (2010). Notch signaling in glioblastoma: A developmental drug target? BMC Medicine, 8(1). https://doi.org/10.1186/1741-7015-8-72
Handford, P. A., Korona, B., Suckling, R., Redfield, C., & Lea, S. M. (2018). Structural insights into Notch receptor-ligand interactions. In T. Borggrefe & B. D. Giaimo (Eds.), Molecular mechanisms of Notch signaling (Vol. 1066, pp. 33–46). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-89512-3_2
Rebay, I., Fleming, R. J., Fehon, R. G., Cherbas, L., Cherbas, P., & Artavanis-Tsakonas, S. (1991). Specific EGF repeats of Notch mediate interactions with delta and serrate: Implications for notch as a multifunctional receptor. Cell, 67(4), 687–699. https://doi.org/10.1016/0092-8674(91)90064-6
Sjöqvist, M., & Andersson, E. R. (2019). Do as I say, Not(ch) as I do: Lateral control of cell fate. Developmental Biology, 447(1), 58–70. https://doi.org/10.1016/j.ydbio.2017.09.032
Fiúza, U.-M., & Arias, A. M. (2007). Cell and molecular biology of Notch. Journal of Endocrinology, 194(3), 459–474. https://doi.org/10.1677/JOE-07-0242
Grochowski, C. M., Loomes, K. M., & Spinner, N. B. (2016). Jagged1 (JAG1): Structure, expression, and disease associations. Gene, 576(1 0 3), 381–384. https://doi.org/10.1016/j.gene.2015.10.065
Dufraine, J., Funahashi, Y., & Kitajewski, J. (2008). Notch signaling regulates tumor angiogenesis by diverse mechanisms. Oncogene, 27(38), 5132–5137. https://doi.org/10.1038/onc.2008.227
Andersen, P., Uosaki, H., Shenje, L. T., & Kwon, C. (2012). Non-canonical Notch signaling: Emerging role and mechanism. Trends in Cell Biology, 22(5), 257–265. https://doi.org/10.1016/j.tcb.2012.02.003
Ayaz, F., & Osborne, B. A. (2014). Non-canonical Notch signaling in cancer and immunity. Frontiers in Oncology, 4,. https://doi.org/10.3389/fonc.2014.00345
D’Souza, B., Meloty-Kapella, L., & Weinmaster, G. (2010). Canonical and non-canonical Notch ligands. In Current topics in developmental biology (Vol. 92, pp. 73–129). Elsevier. https://doi.org/10.1016/S0070-2153(10)92003-6
Kopan, R., & Ilagan Ma, X. G. (2009). The canonical Notch signaling pathway: Unfolding the activation mechanism. Cell, 137(2), 216–233. https://doi.org/10.1016/j.cell.2009.03.045
Phng, L.-K., & Gerhardt, H. (2009). Angiogenesis: A team effort coordinated by Notch. Developmental Cell, 16(2), 196–208. https://doi.org/10.1016/j.devcel.2009.01.015
Bayin, N. S., Frenster, J. D., Sen, R., Si, S., Modrek, A. S., Galifianakis, N., … Placantonakis, D. G. (2017). Notch signaling regulates metabolic heterogeneity in glioblastoma stem cells. Oncotarget, 8(39). https://doi.org/10.18632/oncotarget.18117
Dontu, G., Jackson, K. W., McNicholas, E., Kawamura, M. J., Abdallah, W. M., & Wicha, M. S. (2004). Role of Notch signaling in cell-fate determination of human mammary stem/progenitor cells. Breast Cancer Research, 6(6), R605. https://doi.org/10.1186/bcr920
Swaminathan, B., Youn, S.-W., Naiche, L. A., Du, J., Villa, S. R., Metz, J. B., … Kitajewski, J. K. (2022). Endothelial Notch signaling directly regulates the small GTPase RND1 to facilitate Notch suppression of endothelial migration. Scientific Reports, 12(1), 1655. https://doi.org/10.1038/s41598-022-05666-1
Urbanek, K., Lesiak, M., Krakowian, D., Koryciak-Komarska, H., Likus, W., Czekaj, P., … Sieroń, A. L. (2017). Notch signaling pathway and gene expression profiles during early in vitro differentiation of liver-derived mesenchymal stromal cells to osteoblasts. Laboratory Investigation, 97(10), 1225–1234. https://doi.org/10.1038/labinvest.2017.60
Hatakeyama, J., Sakamoto, S., & Kageyama, R. (2006). Hes1 and Hes5 regulate the development of the cranial and spinal nerve systems. Developmental Neuroscience, 28(1–2), 92–101. https://doi.org/10.1159/000090756
Kageyama, R., Ohtsuka, T., Hatakeyama, J., & Ohsawa, R. (2005). Roles of bHLH genes in neural stem cell differentiation. Experimental Cell Research, 306(2), 343–348. https://doi.org/10.1016/j.yexcr.2005.03.015
Teodorczyk, M., & Schmidt, M. H. H. (2015). Notching on cancer’s door: Notch signaling in brain tumors. Frontiers in Oncology, 4,. https://doi.org/10.3389/fonc.2014.00341
Cuevas, I. C., Slocum, A. L., Jun, P., Costello, J. F., Bollen, A. W., Riggins, G. J., … Lal, A. (2005). Meningioma transcript profiles reveal deregulated Notch signaling pathway. Cancer Research, 65(12), 5070–5075. https://doi.org/10.1158/0008-5472.CAN-05-0240
Papaioannou, M.-D., Djuric, U., Kao, J., Karimi, S., Zadeh, G., Aldape, K., & Diamandis, P. (2019). Proteomic analysis of meningiomas reveals clinically distinct molecular patterns. Neuro-Oncology, 21(8), 1028–1038. https://doi.org/10.1093/neuonc/noz084
Yokota, N., Mainprize, T. G., Taylor, M. D., Kohata, T., Loreto, M., Ueda, S., … Rutka, J. T. (2004). Identification of differentially expressed and developmentally regulated genes in medulloblastoma using suppression subtraction hybridization. Oncogene, 23(19), 3444–3453. https://doi.org/10.1038/sj.onc.1207475
Pan, W., Song, X.-Y., Hu, Q.-B., Zhang, M., & Xu, X.-H. (2019). TSP2 acts as a suppresser of cell invasion, migration and angiogenesis in medulloblastoma by inhibiting the Notch signaling pathway. Brain Research, 1718, 223–230. https://doi.org/10.1016/j.brainres.2019.05.004
Parmigiani, E., Taylor, V., & Giachino, C. (2020). Oncogenic and tumor-suppressive functions of NOTCH signaling in glioma. Cells, 9(10), 2304. https://doi.org/10.3390/cells9102304
Ludwig, K., & Kornblum, H. I. (2017). Molecular markers in glioma. Journal of neuro-oncology, 134(3), 505–512. https://doi.org/10.1007/s11060-017-2379-y
Wen, P. Y., Weller, M., Lee, E. Q., Alexander, B. M., Barnholtz-Sloan, J. S., Barthel, F. P., … van den Bent, M. J. (2020). Glioblastoma in adults: A Society for Neuro-Oncology (SNO) and European Society of Neuro-Oncology (EANO) consensus review on current management and future directions. Neuro-Oncology, 22(8), 1073–1113. https://doi.org/10.1093/neuonc/noaa106
Zhang, X.-P., Zheng, G., Zou, L., Liu, H.-L., Hou, L.-H., Zhou, P., … Chen, J.-Y. (2008). Notch activation promotes cell proliferation and the formation of neural stem cell-like colonies in human glioma cells. Molecular and Cellular Biochemistry, 307(1–2), 101–108. https://doi.org/10.1007/s11010-007-9589-0
Phillips, H. S., Kharbanda, S., Chen, R., Forrest, W. F., Soriano, R. H., Wu, T. D., … Aldape, K. (2006). Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer Cell, 9(3), 157–173. https://doi.org/10.1016/j.ccr.2006.02.019
Kanamori, M., Kawaguchi, T., Nigro, J. M., Feuerstein, B. G., Berger, M. S., Miele, L., & Pieper, R. O. (2007). Contribution of Notch signaling activation to human glioblastoma multiforme. Journal of Neurosurgery, 106(3), 417–427. https://doi.org/10.3171/jns.2007.106.3.417
Li, J., Cui, Y., Gao, G., Zhao, Z., Zhang, H., & Wang, X. (2011). Notch1 is an independent prognostic factor for patients with glioma. Journal of Surgical Oncology, 103(8), 813–817. https://doi.org/10.1002/jso.21851
Purow, B. W., Haque, R. M., Noel, M. W., Su, Q., Burdick, M. J., Lee, J., … Fine, H. A. (2005). Expression of Notch-1 and its ligands, delta-like-1 and jagged-1, is critical for glioma cell survival and proliferation. Cancer Research, 65(6), 2353–2363. https://doi.org/10.1158/0008-5472.CAN-04-1890
Suvà, M. L., & Tirosh, I. (2020). The glioma stem cell model in the era of single-cell genomics. Cancer Cell, 37(5), 630–636. https://doi.org/10.1016/j.ccell.2020.04.001
Calabrese, C., Poppleton, H., Kocak, M., Hogg, T. L., Fuller, C., Hamner, B., … Gilbertson, R. J. (2007). A perivascular niche for brain tumor stem cells. Cancer Cell, 11(1), 69–82. https://doi.org/10.1016/j.ccr.2006.11.020
Zhu, T. S., Costello, M. A., Talsma, C. E., Flack, C. G., Crowley, J. G., Hamm, L. L., … Fan, X. (2011). Endothelial cells create a stem cell niche in glioblastoma by providing NOTCH ligands that nurture self-renewal of cancer stem-like cells. Cancer Research, 71(18), 6061–6072. https://doi.org/10.1158/0008-5472.CAN-10-4269
Fan, X., Khaki, L., Zhu, T. S., Soules, M. E., Talsma, C. E., Gul, N., … Eberhart, C. G. (2010). NOTCH pathway blockade depletes CD133-positive glioblastoma cells and inhibits growth of tumor neurospheres and xenografts. STEM CELLS, 28(1), 5–16. https://doi.org/10.1002/stem.254
Qiang, L., Wu, T., Zhang, H.-W., Lu, N., Hu, R., Wang, Y.-J., … Guo, Q.-L. (2012). HIF-1α is critical for hypoxia-mediated maintenance of glioblastoma stem cells by activating Notch signaling pathway. Cell Death and Differentiation, 19(2), 284–294. https://doi.org/10.1038/cdd.2011.95
Man, J., Yu, X., Huang, H., Zhou, W., Xiang, C., Huang, H., … Yu, J. S. (2018). Hypoxic induction of vasorin regulates Notch1 turnover to maintain glioma stem-like cells. Cell Stem Cell, 22(1), 104-118.e6. https://doi.org/10.1016/j.stem.2017.10.005
Cenciarelli, C., Marei, H. E., Zonfrillo, M., Casalbore, P., Felsani, A., Giannetti, S., … Mangiola, A. (2017). The interference of Notch1 target Hes1 affects cell growth, differentiation and invasiveness of glioblastoma stem cells through modulation of multiple oncogenic targets. Oncotarget, 8(11), 17873–17886. https://doi.org/10.18632/oncotarget.15013
Hai, L., Zhang, C., Li, T., Zhou, X., Liu, B., Li, S., … Yang, X. (2018). Notch1 is a prognostic factor that is distinctly activated in the classical and proneural subtype of glioblastoma and that promotes glioma cell survival via the NF-κB(p65) pathway. Cell Death & Disease, 9(2), 158. https://doi.org/10.1038/s41419-017-0119-z
Han, N., Hu, G., Shi, L., Long, G., Yang, L., Xi, Q., … Zhang, M. (2017). Notch1 ablation radiosensitizes glioblastoma cells. Oncotarget, 8(50), 88059–88068. https://doi.org/10.18632/oncotarget.21409
Wang, J., Wakeman, T. P., Lathia, J. D., Hjelmeland, A. B., Wang, X.-F., White, R. R., … Sullenger, B. A. (2009). Notch promotes radioresistance of glioma stem cells. Stem Cells, N/A-N/A.https://doi.org/10.1002/stem.261
Yi, L., Zhou, X., Li, T., Liu, P., Hai, L., Tong, L., … Yang, X. (2019). Notch1 signaling pathway promotes invasion, self-renewal and growth of glioma initiating cells via modulating chemokine system CXCL12/CXCR4. Journal of Experimental & Clinical Cancer Research : CR, 38, 339. https://doi.org/10.1186/s13046-019-1319-4
Gagliardi, F., Narayanan, A., Reni, M., Franzin, A., Mazza, E., Boari, N., … Mortini, P. (2014). The role of CXCR4 in highly malignant human gliomas biology: Current knowledge and future directions. Glia, 62(7), 1015–1023. https://doi.org/10.1002/glia.22669
Folkman, J. (2007). Angiogenesis: An organizing principle for drug discovery? Nature Reviews. Drug Discovery, 6(4), 273–286. https://doi.org/10.1038/nrd2115
Carmeliet, P. (2005). Angiogenesis in life, disease and medicine. Nature, 438(7070), 932–936. https://doi.org/10.1038/nature04478
Carmeliet, P., & Jain, R. K. (2011). Molecular mechanisms and clinical applications of angiogenesis. Nature, 473(7347), 298–307. https://doi.org/10.1038/nature10144
Fonseca, C. G., Barbacena, P., & Franco, C. A. (2020). Endothelial cells on the move: Dynamics in vascular morphogenesis and disease. Vascular Biology, 2(1), H29–H43. https://doi.org/10.1530/VB-20-0007
Yetkin-Arik, B., Vogels, I. M. C., Neyazi, N., van Duinen, V., Houtkooper, R. H., van Noorden, C. J. F., … Schlingemann, R. O. (2019). Endothelial tip cells in vitro are less glycolytic and have a more flexible response to metabolic stress than non-tip cells. Scientific Reports, 9(1), 10414. https://doi.org/10.1038/s41598-019-46503-2
Hellström, M., Phng, L.-K., Hofmann, J. J., Wallgard, E., Coultas, L., Lindblom, P., … Betsholtz, C. (2007). Dll4 signalling through Notch1 regulates formation of tip cells during angiogenesis. Nature, 445(7129), 776–780. https://doi.org/10.1038/nature05571
Blanco, R., & Gerhardt, H. (2013). VEGF and Notch in tip and stalk cell selection. Cold Spring Harbor Perspectives in Medicine, 3(1), a006569. https://doi.org/10.1101/cshperspect.a006569
Suchting, S., Freitas, C., le Noble, F., Benedito, R., Breant, C., Duarte, A., & Eichmann, A. (2007). The Notch ligand delta-like 4 negatively regulates endothelial tip cell formation and vessel branching. Proceedings of the National Academy of Sciences, 104(9), 3225–3230. https://doi.org/10.1073/pnas.0611177104
Patel, N. S., Li, J.-L., Generali, D., Poulsom, R., Cranston, D. W., & Harris, A. L. (2005). Up-regulation of delta-like 4 ligand in human tumor vasculature and the role of basal expression in endothelial cell function. Cancer Research, 65(19), 8690–8697. https://doi.org/10.1158/0008-5472.CAN-05-1208
Thurston, G., Noguera-Troise, I., & Yancopoulos, G. D. (2007). The delta paradox: DLL4 blockade leads to more tumour vessels but less tumour growth. Nature Reviews Cancer, 7(5), 327–331. https://doi.org/10.1038/nrc2130
Rehman, A. O., & Wang, C.-Y. (2006). Notch signaling in the regulation of tumor angiogenesis. Trends in Cell Biology, 16(6), 293–300. https://doi.org/10.1016/j.tcb.2006.04.003
Jakobsson, L., Franco, C. A., Bentley, K., Collins, R. T., Ponsioen, B., Aspalter, I. M., … Gerhardt, H. (2010). Endothelial cells dynamically compete for the tip cell position during angiogenic sprouting. Nature Cell Biology, 12(10), 943–953. https://doi.org/10.1038/ncb2103
Mühleder, S., Fernández-Chacón, M., Garcia-Gonzalez, I., & Benedito, R. (2021). Endothelial sprouting, proliferation, or senescence: Tipping the balance from physiology to pathology. Cellular and Molecular Life Sciences: CMLS, 78(4), 1329–1354. https://doi.org/10.1007/s00018-020-03664-y
Siekmann, A. F., & Lawson, N. D. (2007). Notch signalling and the regulation of angiogenesis. Cell Adhesion & Migration, 1(2), 104–105. https://doi.org/10.4161/cam.1.2.4488
Xiu, M., Liu, Y., & Kuang, B. (2020). The oncogenic role of Jagged1/Notch signaling in cancer. Biomedicine & Pharmacotherapy, 129, 110416. https://doi.org/10.1016/j.biopha.2020.110416
Benedito, R., Roca, C., Sörensen, I., Adams, S., Gossler, A., Fruttiger, M., & Adams, R. H. (2009). The Notch ligands Dll4 and Jagged1 have opposing effects on angiogenesis. Cell, 137(6), 1124–1135. https://doi.org/10.1016/j.cell.2009.03.025
Kofler, N. M., Shawber, C. J., Kangsamaksin, T., Reed, H. O., Galatioto, J., & Kitajewski, J. (2011). Notch signaling in developmental and tumor angiogenesis. Genes & Cancer, 2(12), 1106–1116. https://doi.org/10.1177/1947601911423030
Simons, M., Gordon, E., & Claesson-Welsh, L. (2016). Mechanisms and regulation of endothelial VEGF receptor signalling. Nature Reviews Molecular Cell Biology, 17(10), 611–625. https://doi.org/10.1038/nrm.2016.87
Hasan, S. S., Tsaryk, R., Lange, M., Wisniewski, L., Moore, J. C., Lawson, N. D., … Siekmann, A. F. (2017). Endothelial Notch signalling limits angiogenesis via control of artery formation. Nature Cell Biology, 19(8), 928–940. https://doi.org/10.1038/ncb3574
Pitulescu, M. E., Schmidt, I., Giaimo, B. D., Antoine, T., Berkenfeld, F., Ferrante, F., … Adams, R. H. (2017). Dll4 and Notch signalling couples sprouting angiogenesis and artery formation. Nature Cell Biology, 19(8), 915–927. https://doi.org/10.1038/ncb3555
Hovinga, K. E., Shimizu, F., Wang, R., Panagiotakos, G., Van Der Heijden, M., Moayedpardazi, H., … Tabar, V. (2010). Inhibition of Notch signaling in glioblastoma targets cancer stem cells via an endothelial cell intermediate. STEM CELLS, 28(6), 1019–1029. https://doi.org/10.1002/stem.429
Borovski, T., Verhoeff, J. J. C., ten Cate, R., Cameron, K., de Vries, N. A., van Tellingen, O., … Sprick, M. R. (2009). Tumor microvasculature supports proliferation and expansion of glioma-propagating cells. International Journal of Cancer, 125(5), 1222–1230. https://doi.org/10.1002/ijc.24408
Fessler, E., Borovski, T., & Medema, J. P. (2015). Endothelial cells induce cancer stem cell features in differentiated glioblastoma cells via bFGF. Molecular Cancer, 14(1), 157. https://doi.org/10.1186/s12943-015-0420-3
Nandhu, M. S., Hu, B., Cole, S. E., Erdreich-Epstein, A., Rodriguez-Gil, D. J., & Viapiano, M. S. (2014). Novel paracrine modulation of Notch–DLL4 signaling by fibulin-3 promotes angiogenesis in high-grade gliomas. Cancer Research, 74(19), 5435–5448. https://doi.org/10.1158/0008-5472.CAN-14-0685
Hai, L., Liu, P., Yu, S., Yi, L., Tao, Z., Zhang, C., … Yang, X. (2018). Jagged1 is clinically prognostic and promotes invasion of glioma-initiating cells by activating NF-κB(p65) signaling. Cellular Physiology and Biochemistry, 51(6), 2925–2937. https://doi.org/10.1159/000496044
Qiu, X., Wang, C., You, N., Chen, B., Wang, X., Chen, Y., & Lin, Z. (2014). High Jagged1 expression is associated with poor outcome in primary glioblastoma. Medical Oncology, 32(1), 341. https://doi.org/10.1007/s12032-014-0341-9
Jubb, A. M., Browning, L., Campo, L., Turley, H., Steers, G., Thurston, G., … Ansorge, O. (2012). Expression of vascular Notch ligands delta-like 4 and jagged-1 in glioblastoma. Histopathology, 60(5), 740–747. https://doi.org/10.1111/j.1365-2559.2011.04138.x
Qiu, X., Chen, L., Wang, C., Lin, Z., Chen, B., You, N., … Wang, X. (2016). The vascular Notch Ligands delta-like ligand 4 (DLL4) and Jagged1 (JAG1) have opposing correlations with microvascularization but a uniform prognostic effect in primary glioblastoma: A preliminary study. World Neurosurgery, 88, 447–458. https://doi.org/10.1016/j.wneu.2015.10.058
Kimberly, W. T., LaVoie, M. J., Ostaszewski, B. L., Ye, W., Wolfe, M. S., & Selkoe, D. J. (2003). γ-Secretase is a membrane protein complex comprised of presenilin, nicastrin, aph-1, and pen-2. Proceedings of the National Academy of Sciences, 100(11), 6382–6387. https://doi.org/10.1073/pnas.1037392100
Francis, R., McGrath, G., Zhang, J., Ruddy, D. A., Sym, M., Apfeld, J., … Curtis, D. (2002). aph-1 and pen-2 are required for Notch pathway signaling, gamma-secretase cleavage of betaAPP, and presenilin protein accumulation. Developmental Cell, 3(1), 85–97. https://doi.org/10.1016/s1534-5807(02)00189-2
Wolfe, M. S., Xia, W., Ostaszewski, B. L., Diehl, T. S., Kimberly, W. T., & Selkoe, D. J. (1999). Two transmembrane aspartates in presenilin-1 required for presenilin endoproteolysis and gamma-secretase activity. Nature, 398(6727), 513–517. https://doi.org/10.1038/19077
Crystal, A. S., Morais, V. A., Pierson, T. C., Pijak, D. S., Carlin, D., Lee, V.M.-Y., & Doms, R. W. (2003). Membrane topology of γ-secretase component PEN-2. Journal of Biological Chemistry, 278(22), 20117–20123. https://doi.org/10.1074/jbc.M213107200
De Strooper, B. (2003). Aph-1, Pen-2, and nicastrin with presenilin generate an active gamma-secretase complex. Neuron, 38(1), 9–12. https://doi.org/10.1016/s0896-6273(03)00205-8
Li, T., Li, Y.-M., Ahn, K., Price, D. L., Sisodia, S. S., & Wong, P. C. (2011). Increased expression of PS1 is sufficient to elevate the level and activity of γ-secretase in vivo. PLoS ONE, 6(11), e28179. https://doi.org/10.1371/journal.pone.0028179
Xia, W. (2019). γ-Secretase and its modulators: Twenty years and beyond. Neuroscience letters, 701, 162–169. https://doi.org/10.1016/j.neulet.2019.02.011
Tong, G., Wang, J.-S., Sverdlov, O., Huang, S.-P., Slemmon, R., Croop, R., … Dockens, R. C. (2012). Multicenter, randomized, double-blind, placebo-controlled, single-ascending dose study of the oral γ-secretase inhibitor BMS-708163 (Avagacestat): Tolerability profile, pharmacokinetic parameters, and pharmacodynamic markers. Clinical Therapeutics, 34(3), 654–667. https://doi.org/10.1016/j.clinthera.2012.01.022
Chan, D., Kaplan, J., Gordon, G., & Desai, J. (2021). Activity of the gamma secretase inhibitor AL101 in desmoid tumors: A case report of 2 adult cases. Current Oncology, 28(5), 3659–3667. https://doi.org/10.3390/curroncol28050312
Azaro, A., Baldini, C., Rodon, J., Soria, J.-C., Yuen, E., Lithio, A., … Massard, C. (2021). Phase 1 study of 2 high dose intensity schedules of the pan-Notch inhibitor crenigacestat (LY3039478) in combination with prednisone in patients with advanced or metastatic cancer. Investigational New Drugs, 39(1), 193–201. https://doi.org/10.1007/s10637-020-00944-z
Habets, R. A., de Bock, C. E., Serneels, L., Lodewijckx, I., Verbeke, D., Nittner, D., … de Strooper, B. (2019). Safe targeting of T cell acute lymphoblastic leukemia by pathology-specific NOTCH inhibition. Science Translational Medicine. https://doi.org/10.1126/scitranslmed.aau6246
Wu, G., Sankaranarayanan, S., Wong, J., Tugusheva, K., Michener, M. S., Shi, X., … Savage, M. J. (2012). Characterization of plasma β-secretase (BACE1) activity and soluble amyloid precursor proteins as potential biomarkers for Alzheimer’s disease. Journal of Neuroscience Research, 90(12), 2247–2258. https://doi.org/10.1002/jnr.23122
Wei, P., Walls, M., Qiu, M., Ding, R., Denlinger, R. H., Wong, A., … Smeal, T. (2010). Evaluation of selective γ-secretase inhibitor PF-03084014 for its antitumor efficacy and gastrointestinal safety to guide optimal clinical trial design. Molecular Cancer Therapeutics, 9(6), 1618–1628. https://doi.org/10.1158/1535-7163.MCT-10-0034
Feng, J., Wang, J., Liu, Q., Li, J., Zhang, Q., Zhuang, Z., … Gao, H. (2019). DAPT, a γ-secretase inhibitor, suppresses tumorigenesis, and progression of growth hormone-producing adenomas by targeting Notch signaling. Frontiers in Oncology, 9, 809. https://doi.org/10.3389/fonc.2019.00809
Aktas, C. C., Zeybek, N. D., & Piskin, A. K. (2015). In vitro effects of phenytoin and DAPT on MDA-MB-231 breast cancer cells. Acta Biochimica Et Biophysica Sinica, 47(9), 680–686. https://doi.org/10.1093/abbs/gmv066
Luo, X., Tan, H., Zhou, Y., Xiao, T., Wang, C., & Li, Y. (2013). Notch1 signaling is involved in regulating Foxp3 expression in T-ALL. Cancer Cell International, 13(1), 34. https://doi.org/10.1186/1475-2867-13-34
Keyghobadi, F., Mehdipour, M., Nekoukar, V., Firouzi, J., Kheimeh, A., Nobakht Lahrood, F., … Ebrahimi, M. (2020). Long-term inhibition of Notch in A-375 melanoma cells enhances tumor growth through the enhancement of AXIN1, CSNK2A3, and CEBPA2 as intermediate genes in Wnt and Notch pathways. Frontiers in Oncology, 10, 531. https://doi.org/10.3389/fonc.2020.00531
Gilbert, C. A., Daou, M.-C., Moser, R. P., & Ross, A. H. (2010). γ-Secretase inhibitors enhance temozolomide treatment of human gliomas by inhibiting neurosphere repopulation and xenograft recurrence. Cancer Research, 70(17), 6870–6879. https://doi.org/10.1158/0008-5472.CAN-10-1378
Grudzien, P., Lo, S., Albain, K. S., Robinson, P., Rajan, P., Strack, P. R., … Foreman, K. E. (2010). Inhibition of Notch signaling reduces the stem-like population of breast cancer cells and prevents mammosphere formation. Anticancer Research, 30(10), 3853–3867.
Messersmith, W. A., Shapiro, G. I., Cleary, J. M., Jimeno, A., Dasari, A., Huang, B., … LoRusso, P. M. (2015). A phase I, dose-finding study in patients with advanced solid malignancies of the oral γ-secretase inhibitor PF-03084014. Clinical Cancer Research, 21(1), 60–67. https://doi.org/10.1158/1078-0432.CCR-14-0607
Milano, J., McKay, J., Dagenais, C., Foster-Brown, L., Pognan, F., Gadient, R., … Ciaccio, P. J. (2004). Modulation of Notch processing by γ-secretase inhibitors causes intestinal goblet cell metaplasia and induction of genes known to specify gut secretory lineage differentiation. Toxicological Sciences, 82(1), 341–358. https://doi.org/10.1093/toxsci/kfh254
Kummar, S., O’Sullivan Coyne, G., Do, K. T., Turkbey, B., Meltzer, P. S., Polley, E., … Chen, A. P. (2017). Clinical activity of the γ-secretase inhibitor PF-03084014 in adults with desmoid tumors (aggressive fibromatosis). Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology, 35(14), 1561–1569. https://doi.org/10.1200/JCO.2016.71.1994
Villalobos, V. M., Hall, F., Jimeno, A., Gore, L., Kern, K., Cesari, R., … Messersmith, W. (2018). Long-term follow-up of desmoid fibromatosis treated with PF-03084014, an oral gamma secretase inhibitor. Annals of Surgical Oncology, 25(3), 768–775. https://doi.org/10.1245/s10434-017-6082-1
SpringWorks Therapeutics, Inc. (2021). A randomized, double-blind, placebo-controlled, phase 3 trial of nirogacestat versus placebo in adult patients with progressing desmoid tumors/aggressive fibromatosis (DT/AF) (clinical trial registration no. NCT03785964). clinicaltrials.gov. Retrieved from https://clinicaltrials.gov/ct2/show/NCT03785964
Ferrarotto, R., Ho, A. L., Wirth, L. J., Dekel, E., Walker, R. W., & Vergara-Silva, A. L. (2019). ACCURACY: Phase (P) 2 trial of AL101, a pan-Notch inhibitor, in patients (pts) with recurrent/metastatic (R/M) adenoid cystic carcinoma (ACC) with Notch activating mutations (Notchact mut). Journal of Clinical Oncology, 37(15_suppl), TPS6098. https://doi.org/10.1200/JCO.2019.37.15_suppl.TPS6098
Fleisher, A. S., Raman, R., Siemers, E. R., Becerra, L., Clark, C. M., Dean, R. A., … Thal, L. J. (2008). Phase II safety trial targeting amyloid beta production with a gamma-secretase inhibitor in Alzheimer’s disease. Archives of neurology, 65(8), 1031–1038. https://doi.org/10.1001/archneur.65.8.1031
Siemers, E., Skinner, M., Dean, R. A., Gonzales, C., Satterwhite, J., Farlow, M., … May, P. C. (2005). Safety, tolerability, and changes in amyloid β concentrations after administration of a γ-secretase inhibitor in volunteers. Clinical Neuropharmacology, 28(3), 126–132. https://doi.org/10.1097/01.wnf.0000167360.27670.29
Strosberg, J. R., Yeatman, T., Weber, J., Coppola, D., Schell, M. J., Han, G., … Sullivan, D. (2012). A phase II study of RO4929097 in metastatic colorectal cancer. European Journal of Cancer, 48(7), 997–1003. https://doi.org/10.1016/j.ejca.2012.02.056
Tolcher, A. W., Messersmith, W. A., Mikulski, S. M., Papadopoulos, K. P., Kwak, E. L., Gibbon, D. G., … Wheler, J. J. (2012). Phase I study of RO4929097, a gamma secretase inhibitor of Notch signaling, in patients with refractory metastatic or locally advanced solid tumors. Journal of Clinical Oncology, 30(19), 2348–2353. https://doi.org/10.1200/JCO.2011.36.8282
Doody, R. S., Raman, R., Farlow, M., Iwatsubo, T., Vellas, B., Joffe, S., … Mohs, R. (2013). A phase 3 trial of semagacestat for treatment of Alzheimer’s disease. New England Journal of Medicine, 369(4), 341–350. https://doi.org/10.1056/NEJMoa1210951
El-Khoueiry, A. B., Desai, J., Iyer, S. P., Gadgeel, S. M., Ramalingam, S. S., Horn, L., … Bedard, P. L. (2018). A phase I study of AL101, a pan-NOTCH inhibitor, in patients (pts) with locally advanced or metastatic solid tumors. Journal of Clinical Oncology, 36(15_suppl), 2515–2515. https://doi.org/10.1200/JCO.2018.36.15_suppl.2515
Massard, C., Azaro, A., Soria, J.-C., Lassen, U., Le Tourneau, C., Sarker, D., … Rodon, J. (2018). First-in-human study of LY3039478, an oral Notch signaling inhibitor in advanced or metastatic cancer. Annals of Oncology, 29(9), 1911–1917. https://doi.org/10.1093/annonc/mdy244
De Jesus-Acosta, A., Laheru, D., Maitra, A., Arcaroli, J., Rudek, M. A., Dasari, A., … Messersmith, W. (2014). A phase II study of the gamma secretase inhibitor RO4929097 in patients with previously treated metastatic pancreatic adenocarcinoma. Investigational New Drugs, 32(4), 739–745. https://doi.org/10.1007/s10637-014-0083-8
Diaz-Padilla, I., Wilson, M. K., Clarke, B. A., Hirte, H. W., Welch, S. A., Mackay, H. J., … Oza, A. M. (2015). A phase II study of single-agent RO4929097, a gamma-secretase inhibitor of Notch signaling, in patients with recurrent platinum-resistant epithelial ovarian cancer: A study of the Princess Margaret, Chicago and California phase II consortia. Gynecologic Oncology, 137(2), 216–222. https://doi.org/10.1016/j.ygyno.2015.03.005
Lee, S. M., Moon, J., Redman, B. G., Chidiac, T., Flaherty, L. E., Zha, Y., … Margolin, K. A. (2015). A phase II study of RO4929097 gamma-secretase inhibitor in metastatic melanoma: SWOG 0933. Cancer, 121(3), 432–440. https://doi.org/10.1002/cncr.29055
Peereboom, D. M., Ye, X., Mikkelsen, T., Lesser, G. J., Lieberman, F. S., Robins, H. I., … Grossman, S. A. (2021). A phase II and pharmacodynamic trial of RO4929097 for patients with recurrent/progressive glioblastoma. Neurosurgery, 88(2), 246–251. https://doi.org/10.1093/neuros/nyaa412
Wong, G. T., Manfra, D., Poulet, F. M., Zhang, Q., Josien, H., Bara, T., … Parker, E. M. (2004). Chronic treatment with the γ-secretase inhibitor LY-411,575 inhibits β-amyloid peptide production and alters lymphopoiesis and intestinal cell differentiation *. Journal of Biological Chemistry, 279(13), 12876–12882. https://doi.org/10.1074/jbc.M311652200
Saito, N., Fu, J., Zheng, S., Yao, J., Wang, S., Liu, D. D., … Koul, D. (2014). A high Notch pathway activation predicts response to γ secretase inhibitors in proneural subtype of glioma tumor-initiating cells. STEM CELLS, 32(1), 301–312. https://doi.org/10.1002/stem.1528
Pan, E., Supko, J. G., Kaley, T. J., Butowski, N. A., Cloughesy, T., Jung, J., … Park, D. M. (2016). Phase I study of RO4929097 with bevacizumab in patients with recurrent malignant glioma. Journal of Neuro-Oncology, 130(3), 571–579. https://doi.org/10.1007/s11060-016-2263-1
Xu, R., Shimizu, F., Hovinga, K., Beal, K., Karimi, S., Droms, L., … Omuro, A. (2016). Molecular and clinical effects of Notch inhibition in glioma patients: A phase 0/I trial. Clinical Cancer Research, 22(19), 4786–4796. https://doi.org/10.1158/1078-0432.CCR-16-0048
Acknowledgements
We would like to dedicate this review to the memory of CJ Buckley.
Funding
The authors are supported by the Credit Unions Kids at Heart Team (to DP) and the C.J. Buckley Pediatric Brain Tumor Fund (DP).
Author information
Authors and Affiliations
Contributions
The paper was conceptualized by F.C.K. Writing, reviewing, and editing of the paper were conducted by F.C.K., M.W.K., A.T., and D.P. All authors have read and agreed to the published version of the manuscript.
Corresponding author
Ethics declarations
Conflict of interest
The authors declare no competing interests.
Additional information
Publisher's note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Simple summary
The role of Notch in the regulation of stemness is well defined, both in embryonic and adult organs. In many normal and tumoral tissues, Notch1 maintains cells in an undifferentiated highly proliferative state and its downregulation is required for the acquisition of the differentiated state. In the endothelium, Notch1 expression is critical to maintain cells in the stalk phenotype, as its downregulation leads to a transition to tip cells, consequently causing the sprouting of new vessels. Weighing the role of Notch on cancer stem cells and in the endothelium of vessels is an important component of managing treatment in the context of tumor normalization.
Rights and permissions
About this article
Cite this article
Kipper, F.C., Kieran, M.W., Thomas, A. et al. Notch signaling in malignant gliomas: supporting tumor growth and the vascular environment. Cancer Metastasis Rev 41, 737–747 (2022). https://doi.org/10.1007/s10555-022-10041-7
Received:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1007/s10555-022-10041-7


