Skip to main content
Log in

Notch signaling in malignant gliomas: supporting tumor growth and the vascular environment

  • Non-Thematic Review
  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Glioblastoma is the most malignant form of glioma, which is the most commonly occurring tumor of the central nervous system. Notch signaling in glioblastoma is considered to be a marker of an undifferentiated tumor cell state, associated with tumor stem cells. Notch is also known for facilitating tumor dormancy escape, recurrence and progression after treatment. Studies in vitro suggest that reducing, removing or blocking the expression of this gene triggers tumor cell differentiation, which shifts the phenotype away from stemness status and consequently facilitates treatment. In contrast, in the vasculature, Notch appears to also function as an important receptor that defines mature non-leaking vessels, and increasing its expression promotes tumor normalization in models of cancer in vivo. Failures in clinical trials with Notch inhibitors are potentially related to their opposing effects on the tumor versus the tumor vasculature, which points to the need for a greater understanding of this signaling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Siebel, C., & Lendahl, U. (2017). Notch signaling in development, tissue homeostasis, and disease. Physiological Reviews, 97(4), 1235–1294. https://doi.org/10.1152/physrev.00005.2017

    Article  CAS  PubMed  Google Scholar 

  2. Radtke, F., MacDonald, H. R., & Tacchini-Cottier, F. (2013). Regulation of innate and adaptive immunity by Notch. Nature Reviews Immunology, 13(6), 427–437. https://doi.org/10.1038/nri3445

    Article  CAS  PubMed  Google Scholar 

  3. Demitrack, E. S., & Samuelson, L. C. (2016). Notch regulation of gastrointestinal stem cells. The Journal of Physiology, 594(17), 4791–4803. https://doi.org/10.1113/JP271667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Edwards, A., & Brennan, K. (2021). Notch signalling in breast development and cancer. Frontiers in Cell and Developmental Biology, 9, 1709. https://doi.org/10.3389/fcell.2021.692173

    Article  Google Scholar 

  5. Iso, T., Hamamori, Y., & Kedes, L. (2003). Notch signaling in vascular development. Arteriosclerosis, Thrombosis, and Vascular Biology, 23(4), 543–553. https://doi.org/10.1161/01.ATV.0000060892.81529.8F

    Article  CAS  PubMed  Google Scholar 

  6. Oishi, K., Kamakura, S., Isazawa, Y., Yoshimatsu, T., Kuida, K., Nakafuku, M., … Gotoh, Y. (2004). Notch promotes survival of neural precursor cells via mechanisms distinct from those regulating neurogenesis. Developmental Biology, 276(1), 172–184. https://doi.org/10.1016/j.ydbio.2004.08.039

  7. Takebe, N., Nguyen, D., & Yang, S. X. (2014). Targeting Notch signaling pathway in cancer: Clinical development advances and challenges. Pharmacology & Therapeutics, 141(2), 140–149. https://doi.org/10.1016/j.pharmthera.2013.09.005

    Article  CAS  Google Scholar 

  8. Espinoza, I., & Miele, L. (2013). Notch inhibitors for cancer treatment. Pharmacology & Therapeutics, 139(2), 95–110. https://doi.org/10.1016/j.pharmthera.2013.02.003

    Article  CAS  Google Scholar 

  9. Lino, M. M., Merlo, A., & Boulay, J.-L. (2010). Notch signaling in glioblastoma: A developmental drug target? BMC Medicine, 8(1). https://doi.org/10.1186/1741-7015-8-72

  10. Handford, P. A., Korona, B., Suckling, R., Redfield, C., & Lea, S. M. (2018). Structural insights into Notch receptor-ligand interactions. In T. Borggrefe & B. D. Giaimo (Eds.), Molecular mechanisms of Notch signaling (Vol. 1066, pp. 33–46). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-89512-3_2

  11. Rebay, I., Fleming, R. J., Fehon, R. G., Cherbas, L., Cherbas, P., & Artavanis-Tsakonas, S. (1991). Specific EGF repeats of Notch mediate interactions with delta and serrate: Implications for notch as a multifunctional receptor. Cell, 67(4), 687–699. https://doi.org/10.1016/0092-8674(91)90064-6

    Article  CAS  PubMed  Google Scholar 

  12. Sjöqvist, M., & Andersson, E. R. (2019). Do as I say, Not(ch) as I do: Lateral control of cell fate. Developmental Biology, 447(1), 58–70. https://doi.org/10.1016/j.ydbio.2017.09.032

    Article  CAS  PubMed  Google Scholar 

  13. Fiúza, U.-M., & Arias, A. M. (2007). Cell and molecular biology of Notch. Journal of Endocrinology, 194(3), 459–474. https://doi.org/10.1677/JOE-07-0242

    Article  CAS  PubMed  Google Scholar 

  14. Grochowski, C. M., Loomes, K. M., & Spinner, N. B. (2016). Jagged1 (JAG1): Structure, expression, and disease associations. Gene, 576(1 0 3), 381–384. https://doi.org/10.1016/j.gene.2015.10.065

    Article  CAS  PubMed  Google Scholar 

  15. Dufraine, J., Funahashi, Y., & Kitajewski, J. (2008). Notch signaling regulates tumor angiogenesis by diverse mechanisms. Oncogene, 27(38), 5132–5137. https://doi.org/10.1038/onc.2008.227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Andersen, P., Uosaki, H., Shenje, L. T., & Kwon, C. (2012). Non-canonical Notch signaling: Emerging role and mechanism. Trends in Cell Biology, 22(5), 257–265. https://doi.org/10.1016/j.tcb.2012.02.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ayaz, F., & Osborne, B. A. (2014). Non-canonical Notch signaling in cancer and immunity. Frontiers in Oncology, 4,. https://doi.org/10.3389/fonc.2014.00345

  18. D’Souza, B., Meloty-Kapella, L., & Weinmaster, G. (2010). Canonical and non-canonical Notch ligands. In Current topics in developmental biology (Vol. 92, pp. 73–129). Elsevier. https://doi.org/10.1016/S0070-2153(10)92003-6

  19. Kopan, R., & Ilagan Ma, X. G. (2009). The canonical Notch signaling pathway: Unfolding the activation mechanism. Cell, 137(2), 216–233. https://doi.org/10.1016/j.cell.2009.03.045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Phng, L.-K., & Gerhardt, H. (2009). Angiogenesis: A team effort coordinated by Notch. Developmental Cell, 16(2), 196–208. https://doi.org/10.1016/j.devcel.2009.01.015

    Article  CAS  PubMed  Google Scholar 

  21. Bayin, N. S., Frenster, J. D., Sen, R., Si, S., Modrek, A. S., Galifianakis, N., … Placantonakis, D. G. (2017). Notch signaling regulates metabolic heterogeneity in glioblastoma stem cells. Oncotarget, 8(39). https://doi.org/10.18632/oncotarget.18117

  22. Dontu, G., Jackson, K. W., McNicholas, E., Kawamura, M. J., Abdallah, W. M., & Wicha, M. S. (2004). Role of Notch signaling in cell-fate determination of human mammary stem/progenitor cells. Breast Cancer Research, 6(6), R605. https://doi.org/10.1186/bcr920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Swaminathan, B., Youn, S.-W., Naiche, L. A., Du, J., Villa, S. R., Metz, J. B., … Kitajewski, J. K. (2022). Endothelial Notch signaling directly regulates the small GTPase RND1 to facilitate Notch suppression of endothelial migration. Scientific Reports, 12(1), 1655. https://doi.org/10.1038/s41598-022-05666-1

  24. Urbanek, K., Lesiak, M., Krakowian, D., Koryciak-Komarska, H., Likus, W., Czekaj, P., … Sieroń, A. L. (2017). Notch signaling pathway and gene expression profiles during early in vitro differentiation of liver-derived mesenchymal stromal cells to osteoblasts. Laboratory Investigation, 97(10), 1225–1234. https://doi.org/10.1038/labinvest.2017.60

  25. Hatakeyama, J., Sakamoto, S., & Kageyama, R. (2006). Hes1 and Hes5 regulate the development of the cranial and spinal nerve systems. Developmental Neuroscience, 28(1–2), 92–101. https://doi.org/10.1159/000090756

    Article  CAS  PubMed  Google Scholar 

  26. Kageyama, R., Ohtsuka, T., Hatakeyama, J., & Ohsawa, R. (2005). Roles of bHLH genes in neural stem cell differentiation. Experimental Cell Research, 306(2), 343–348. https://doi.org/10.1016/j.yexcr.2005.03.015

    Article  CAS  PubMed  Google Scholar 

  27. Teodorczyk, M., & Schmidt, M. H. H. (2015). Notching on cancer’s door: Notch signaling in brain tumors. Frontiers in Oncology, 4,. https://doi.org/10.3389/fonc.2014.00341

  28. Cuevas, I. C., Slocum, A. L., Jun, P., Costello, J. F., Bollen, A. W., Riggins, G. J., … Lal, A. (2005). Meningioma transcript profiles reveal deregulated Notch signaling pathway. Cancer Research, 65(12), 5070–5075. https://doi.org/10.1158/0008-5472.CAN-05-0240

  29. Papaioannou, M.-D., Djuric, U., Kao, J., Karimi, S., Zadeh, G., Aldape, K., & Diamandis, P. (2019). Proteomic analysis of meningiomas reveals clinically distinct molecular patterns. Neuro-Oncology, 21(8), 1028–1038. https://doi.org/10.1093/neuonc/noz084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yokota, N., Mainprize, T. G., Taylor, M. D., Kohata, T., Loreto, M., Ueda, S., … Rutka, J. T. (2004). Identification of differentially expressed and developmentally regulated genes in medulloblastoma using suppression subtraction hybridization. Oncogene, 23(19), 3444–3453. https://doi.org/10.1038/sj.onc.1207475

  31. Pan, W., Song, X.-Y., Hu, Q.-B., Zhang, M., & Xu, X.-H. (2019). TSP2 acts as a suppresser of cell invasion, migration and angiogenesis in medulloblastoma by inhibiting the Notch signaling pathway. Brain Research, 1718, 223–230. https://doi.org/10.1016/j.brainres.2019.05.004

    Article  CAS  PubMed  Google Scholar 

  32. Parmigiani, E., Taylor, V., & Giachino, C. (2020). Oncogenic and tumor-suppressive functions of NOTCH signaling in glioma. Cells, 9(10), 2304. https://doi.org/10.3390/cells9102304

    Article  CAS  PubMed Central  Google Scholar 

  33. Ludwig, K., & Kornblum, H. I. (2017). Molecular markers in glioma. Journal of neuro-oncology, 134(3), 505–512. https://doi.org/10.1007/s11060-017-2379-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wen, P. Y., Weller, M., Lee, E. Q., Alexander, B. M., Barnholtz-Sloan, J. S., Barthel, F. P., … van den Bent, M. J. (2020). Glioblastoma in adults: A Society for Neuro-Oncology (SNO) and European Society of Neuro-Oncology (EANO) consensus review on current management and future directions. Neuro-Oncology, 22(8), 1073–1113. https://doi.org/10.1093/neuonc/noaa106

  35. Zhang, X.-P., Zheng, G., Zou, L., Liu, H.-L., Hou, L.-H., Zhou, P., … Chen, J.-Y. (2008). Notch activation promotes cell proliferation and the formation of neural stem cell-like colonies in human glioma cells. Molecular and Cellular Biochemistry, 307(1–2), 101–108. https://doi.org/10.1007/s11010-007-9589-0

  36. Phillips, H. S., Kharbanda, S., Chen, R., Forrest, W. F., Soriano, R. H., Wu, T. D., … Aldape, K. (2006). Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer Cell, 9(3), 157–173. https://doi.org/10.1016/j.ccr.2006.02.019

  37. Kanamori, M., Kawaguchi, T., Nigro, J. M., Feuerstein, B. G., Berger, M. S., Miele, L., & Pieper, R. O. (2007). Contribution of Notch signaling activation to human glioblastoma multiforme. Journal of Neurosurgery, 106(3), 417–427. https://doi.org/10.3171/jns.2007.106.3.417

    Article  PubMed  Google Scholar 

  38. Li, J., Cui, Y., Gao, G., Zhao, Z., Zhang, H., & Wang, X. (2011). Notch1 is an independent prognostic factor for patients with glioma. Journal of Surgical Oncology, 103(8), 813–817. https://doi.org/10.1002/jso.21851

    Article  CAS  PubMed  Google Scholar 

  39. Purow, B. W., Haque, R. M., Noel, M. W., Su, Q., Burdick, M. J., Lee, J., … Fine, H. A. (2005). Expression of Notch-1 and its ligands, delta-like-1 and jagged-1, is critical for glioma cell survival and proliferation. Cancer Research, 65(6), 2353–2363. https://doi.org/10.1158/0008-5472.CAN-04-1890

  40. Suvà, M. L., & Tirosh, I. (2020). The glioma stem cell model in the era of single-cell genomics. Cancer Cell, 37(5), 630–636. https://doi.org/10.1016/j.ccell.2020.04.001

    Article  CAS  PubMed  Google Scholar 

  41. Calabrese, C., Poppleton, H., Kocak, M., Hogg, T. L., Fuller, C., Hamner, B., … Gilbertson, R. J. (2007). A perivascular niche for brain tumor stem cells. Cancer Cell, 11(1), 69–82. https://doi.org/10.1016/j.ccr.2006.11.020

  42. Zhu, T. S., Costello, M. A., Talsma, C. E., Flack, C. G., Crowley, J. G., Hamm, L. L., … Fan, X. (2011). Endothelial cells create a stem cell niche in glioblastoma by providing NOTCH ligands that nurture self-renewal of cancer stem-like cells. Cancer Research, 71(18), 6061–6072. https://doi.org/10.1158/0008-5472.CAN-10-4269

  43. Fan, X., Khaki, L., Zhu, T. S., Soules, M. E., Talsma, C. E., Gul, N., … Eberhart, C. G. (2010). NOTCH pathway blockade depletes CD133-positive glioblastoma cells and inhibits growth of tumor neurospheres and xenografts. STEM CELLS, 28(1), 5–16. https://doi.org/10.1002/stem.254

  44. Qiang, L., Wu, T., Zhang, H.-W., Lu, N., Hu, R., Wang, Y.-J., … Guo, Q.-L. (2012). HIF-1α is critical for hypoxia-mediated maintenance of glioblastoma stem cells by activating Notch signaling pathway. Cell Death and Differentiation, 19(2), 284–294. https://doi.org/10.1038/cdd.2011.95

  45. Man, J., Yu, X., Huang, H., Zhou, W., Xiang, C., Huang, H., … Yu, J. S. (2018). Hypoxic induction of vasorin regulates Notch1 turnover to maintain glioma stem-like cells. Cell Stem Cell, 22(1), 104-118.e6. https://doi.org/10.1016/j.stem.2017.10.005

  46. Cenciarelli, C., Marei, H. E., Zonfrillo, M., Casalbore, P., Felsani, A., Giannetti, S., … Mangiola, A. (2017). The interference of Notch1 target Hes1 affects cell growth, differentiation and invasiveness of glioblastoma stem cells through modulation of multiple oncogenic targets. Oncotarget, 8(11), 17873–17886. https://doi.org/10.18632/oncotarget.15013

  47. Hai, L., Zhang, C., Li, T., Zhou, X., Liu, B., Li, S., … Yang, X. (2018). Notch1 is a prognostic factor that is distinctly activated in the classical and proneural subtype of glioblastoma and that promotes glioma cell survival via the NF-κB(p65) pathway. Cell Death & Disease, 9(2), 158. https://doi.org/10.1038/s41419-017-0119-z

  48. Han, N., Hu, G., Shi, L., Long, G., Yang, L., Xi, Q., … Zhang, M. (2017). Notch1 ablation radiosensitizes glioblastoma cells. Oncotarget, 8(50), 88059–88068. https://doi.org/10.18632/oncotarget.21409

  49. Wang, J., Wakeman, T. P., Lathia, J. D., Hjelmeland, A. B., Wang, X.-F., White, R. R., … Sullenger, B. A. (2009). Notch promotes radioresistance of glioma stem cells. Stem Cells, N/A-N/A.https://doi.org/10.1002/stem.261

  50. Yi, L., Zhou, X., Li, T., Liu, P., Hai, L., Tong, L., … Yang, X. (2019). Notch1 signaling pathway promotes invasion, self-renewal and growth of glioma initiating cells via modulating chemokine system CXCL12/CXCR4. Journal of Experimental & Clinical Cancer Research : CR, 38, 339. https://doi.org/10.1186/s13046-019-1319-4

  51. Gagliardi, F., Narayanan, A., Reni, M., Franzin, A., Mazza, E., Boari, N., … Mortini, P. (2014). The role of CXCR4 in highly malignant human gliomas biology: Current knowledge and future directions. Glia, 62(7), 1015–1023. https://doi.org/10.1002/glia.22669

  52. Folkman, J. (2007). Angiogenesis: An organizing principle for drug discovery? Nature Reviews. Drug Discovery, 6(4), 273–286. https://doi.org/10.1038/nrd2115

    Article  CAS  PubMed  Google Scholar 

  53. Carmeliet, P. (2005). Angiogenesis in life, disease and medicine. Nature, 438(7070), 932–936. https://doi.org/10.1038/nature04478

    Article  CAS  PubMed  Google Scholar 

  54. Carmeliet, P., & Jain, R. K. (2011). Molecular mechanisms and clinical applications of angiogenesis. Nature, 473(7347), 298–307. https://doi.org/10.1038/nature10144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Fonseca, C. G., Barbacena, P., & Franco, C. A. (2020). Endothelial cells on the move: Dynamics in vascular morphogenesis and disease. Vascular Biology, 2(1), H29–H43. https://doi.org/10.1530/VB-20-0007

    Article  PubMed  PubMed Central  Google Scholar 

  56. Yetkin-Arik, B., Vogels, I. M. C., Neyazi, N., van Duinen, V., Houtkooper, R. H., van Noorden, C. J. F., … Schlingemann, R. O. (2019). Endothelial tip cells in vitro are less glycolytic and have a more flexible response to metabolic stress than non-tip cells. Scientific Reports, 9(1), 10414. https://doi.org/10.1038/s41598-019-46503-2

  57. Hellström, M., Phng, L.-K., Hofmann, J. J., Wallgard, E., Coultas, L., Lindblom, P., … Betsholtz, C. (2007). Dll4 signalling through Notch1 regulates formation of tip cells during angiogenesis. Nature, 445(7129), 776–780. https://doi.org/10.1038/nature05571

  58. Blanco, R., & Gerhardt, H. (2013). VEGF and Notch in tip and stalk cell selection. Cold Spring Harbor Perspectives in Medicine, 3(1), a006569. https://doi.org/10.1101/cshperspect.a006569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Suchting, S., Freitas, C., le Noble, F., Benedito, R., Breant, C., Duarte, A., & Eichmann, A. (2007). The Notch ligand delta-like 4 negatively regulates endothelial tip cell formation and vessel branching. Proceedings of the National Academy of Sciences, 104(9), 3225–3230. https://doi.org/10.1073/pnas.0611177104

    Article  CAS  Google Scholar 

  60. Patel, N. S., Li, J.-L., Generali, D., Poulsom, R., Cranston, D. W., & Harris, A. L. (2005). Up-regulation of delta-like 4 ligand in human tumor vasculature and the role of basal expression in endothelial cell function. Cancer Research, 65(19), 8690–8697. https://doi.org/10.1158/0008-5472.CAN-05-1208

    Article  CAS  PubMed  Google Scholar 

  61. Thurston, G., Noguera-Troise, I., & Yancopoulos, G. D. (2007). The delta paradox: DLL4 blockade leads to more tumour vessels but less tumour growth. Nature Reviews Cancer, 7(5), 327–331. https://doi.org/10.1038/nrc2130

    Article  CAS  PubMed  Google Scholar 

  62. Rehman, A. O., & Wang, C.-Y. (2006). Notch signaling in the regulation of tumor angiogenesis. Trends in Cell Biology, 16(6), 293–300. https://doi.org/10.1016/j.tcb.2006.04.003

    Article  CAS  PubMed  Google Scholar 

  63. Jakobsson, L., Franco, C. A., Bentley, K., Collins, R. T., Ponsioen, B., Aspalter, I. M., … Gerhardt, H. (2010). Endothelial cells dynamically compete for the tip cell position during angiogenic sprouting. Nature Cell Biology, 12(10), 943–953. https://doi.org/10.1038/ncb2103

  64. Mühleder, S., Fernández-Chacón, M., Garcia-Gonzalez, I., & Benedito, R. (2021). Endothelial sprouting, proliferation, or senescence: Tipping the balance from physiology to pathology. Cellular and Molecular Life Sciences: CMLS, 78(4), 1329–1354. https://doi.org/10.1007/s00018-020-03664-y

    Article  CAS  PubMed  Google Scholar 

  65. Siekmann, A. F., & Lawson, N. D. (2007). Notch signalling and the regulation of angiogenesis. Cell Adhesion & Migration, 1(2), 104–105. https://doi.org/10.4161/cam.1.2.4488

    Article  Google Scholar 

  66. Xiu, M., Liu, Y., & Kuang, B. (2020). The oncogenic role of Jagged1/Notch signaling in cancer. Biomedicine & Pharmacotherapy, 129, 110416. https://doi.org/10.1016/j.biopha.2020.110416

    Article  CAS  Google Scholar 

  67. Benedito, R., Roca, C., Sörensen, I., Adams, S., Gossler, A., Fruttiger, M., & Adams, R. H. (2009). The Notch ligands Dll4 and Jagged1 have opposing effects on angiogenesis. Cell, 137(6), 1124–1135. https://doi.org/10.1016/j.cell.2009.03.025

    Article  CAS  PubMed  Google Scholar 

  68. Kofler, N. M., Shawber, C. J., Kangsamaksin, T., Reed, H. O., Galatioto, J., & Kitajewski, J. (2011). Notch signaling in developmental and tumor angiogenesis. Genes & Cancer, 2(12), 1106–1116. https://doi.org/10.1177/1947601911423030

    Article  CAS  Google Scholar 

  69. Simons, M., Gordon, E., & Claesson-Welsh, L. (2016). Mechanisms and regulation of endothelial VEGF receptor signalling. Nature Reviews Molecular Cell Biology, 17(10), 611–625. https://doi.org/10.1038/nrm.2016.87

    Article  CAS  PubMed  Google Scholar 

  70. Hasan, S. S., Tsaryk, R., Lange, M., Wisniewski, L., Moore, J. C., Lawson, N. D., … Siekmann, A. F. (2017). Endothelial Notch signalling limits angiogenesis via control of artery formation. Nature Cell Biology, 19(8), 928–940. https://doi.org/10.1038/ncb3574

  71. Pitulescu, M. E., Schmidt, I., Giaimo, B. D., Antoine, T., Berkenfeld, F., Ferrante, F., … Adams, R. H. (2017). Dll4 and Notch signalling couples sprouting angiogenesis and artery formation. Nature Cell Biology, 19(8), 915–927. https://doi.org/10.1038/ncb3555

  72. Hovinga, K. E., Shimizu, F., Wang, R., Panagiotakos, G., Van Der Heijden, M., Moayedpardazi, H., … Tabar, V. (2010). Inhibition of Notch signaling in glioblastoma targets cancer stem cells via an endothelial cell intermediate. STEM CELLS, 28(6), 1019–1029. https://doi.org/10.1002/stem.429

  73. Borovski, T., Verhoeff, J. J. C., ten Cate, R., Cameron, K., de Vries, N. A., van Tellingen, O., … Sprick, M. R. (2009). Tumor microvasculature supports proliferation and expansion of glioma-propagating cells. International Journal of Cancer, 125(5), 1222–1230. https://doi.org/10.1002/ijc.24408

  74. Fessler, E., Borovski, T., & Medema, J. P. (2015). Endothelial cells induce cancer stem cell features in differentiated glioblastoma cells via bFGF. Molecular Cancer, 14(1), 157. https://doi.org/10.1186/s12943-015-0420-3

    Article  PubMed  PubMed Central  Google Scholar 

  75. Nandhu, M. S., Hu, B., Cole, S. E., Erdreich-Epstein, A., Rodriguez-Gil, D. J., & Viapiano, M. S. (2014). Novel paracrine modulation of Notch–DLL4 signaling by fibulin-3 promotes angiogenesis in high-grade gliomas. Cancer Research, 74(19), 5435–5448. https://doi.org/10.1158/0008-5472.CAN-14-0685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Hai, L., Liu, P., Yu, S., Yi, L., Tao, Z., Zhang, C., … Yang, X. (2018). Jagged1 is clinically prognostic and promotes invasion of glioma-initiating cells by activating NF-κB(p65) signaling. Cellular Physiology and Biochemistry, 51(6), 2925–2937. https://doi.org/10.1159/000496044

  77. Qiu, X., Wang, C., You, N., Chen, B., Wang, X., Chen, Y., & Lin, Z. (2014). High Jagged1 expression is associated with poor outcome in primary glioblastoma. Medical Oncology, 32(1), 341. https://doi.org/10.1007/s12032-014-0341-9

    Article  CAS  PubMed  Google Scholar 

  78. Jubb, A. M., Browning, L., Campo, L., Turley, H., Steers, G., Thurston, G., … Ansorge, O. (2012). Expression of vascular Notch ligands delta-like 4 and jagged-1 in glioblastoma. Histopathology, 60(5), 740–747. https://doi.org/10.1111/j.1365-2559.2011.04138.x

  79. Qiu, X., Chen, L., Wang, C., Lin, Z., Chen, B., You, N., … Wang, X. (2016). The vascular Notch Ligands delta-like ligand 4 (DLL4) and Jagged1 (JAG1) have opposing correlations with microvascularization but a uniform prognostic effect in primary glioblastoma: A preliminary study. World Neurosurgery, 88, 447–458. https://doi.org/10.1016/j.wneu.2015.10.058

  80. Kimberly, W. T., LaVoie, M. J., Ostaszewski, B. L., Ye, W., Wolfe, M. S., & Selkoe, D. J. (2003). γ-Secretase is a membrane protein complex comprised of presenilin, nicastrin, aph-1, and pen-2. Proceedings of the National Academy of Sciences, 100(11), 6382–6387. https://doi.org/10.1073/pnas.1037392100

    Article  CAS  Google Scholar 

  81. Francis, R., McGrath, G., Zhang, J., Ruddy, D. A., Sym, M., Apfeld, J., … Curtis, D. (2002). aph-1 and pen-2 are required for Notch pathway signaling, gamma-secretase cleavage of betaAPP, and presenilin protein accumulation. Developmental Cell, 3(1), 85–97. https://doi.org/10.1016/s1534-5807(02)00189-2

  82. Wolfe, M. S., Xia, W., Ostaszewski, B. L., Diehl, T. S., Kimberly, W. T., & Selkoe, D. J. (1999). Two transmembrane aspartates in presenilin-1 required for presenilin endoproteolysis and gamma-secretase activity. Nature, 398(6727), 513–517. https://doi.org/10.1038/19077

    Article  CAS  PubMed  Google Scholar 

  83. Crystal, A. S., Morais, V. A., Pierson, T. C., Pijak, D. S., Carlin, D., Lee, V.M.-Y., & Doms, R. W. (2003). Membrane topology of γ-secretase component PEN-2. Journal of Biological Chemistry, 278(22), 20117–20123. https://doi.org/10.1074/jbc.M213107200

    Article  CAS  PubMed  Google Scholar 

  84. De Strooper, B. (2003). Aph-1, Pen-2, and nicastrin with presenilin generate an active gamma-secretase complex. Neuron, 38(1), 9–12. https://doi.org/10.1016/s0896-6273(03)00205-8

    Article  PubMed  Google Scholar 

  85. Li, T., Li, Y.-M., Ahn, K., Price, D. L., Sisodia, S. S., & Wong, P. C. (2011). Increased expression of PS1 is sufficient to elevate the level and activity of γ-secretase in vivo. PLoS ONE, 6(11), e28179. https://doi.org/10.1371/journal.pone.0028179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Xia, W. (2019). γ-Secretase and its modulators: Twenty years and beyond. Neuroscience letters, 701, 162–169. https://doi.org/10.1016/j.neulet.2019.02.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Tong, G., Wang, J.-S., Sverdlov, O., Huang, S.-P., Slemmon, R., Croop, R., … Dockens, R. C. (2012). Multicenter, randomized, double-blind, placebo-controlled, single-ascending dose study of the oral γ-secretase inhibitor BMS-708163 (Avagacestat): Tolerability profile, pharmacokinetic parameters, and pharmacodynamic markers. Clinical Therapeutics, 34(3), 654–667. https://doi.org/10.1016/j.clinthera.2012.01.022

  88. Chan, D., Kaplan, J., Gordon, G., & Desai, J. (2021). Activity of the gamma secretase inhibitor AL101 in desmoid tumors: A case report of 2 adult cases. Current Oncology, 28(5), 3659–3667. https://doi.org/10.3390/curroncol28050312

    Article  PubMed  PubMed Central  Google Scholar 

  89. Azaro, A., Baldini, C., Rodon, J., Soria, J.-C., Yuen, E., Lithio, A., … Massard, C. (2021). Phase 1 study of 2 high dose intensity schedules of the pan-Notch inhibitor crenigacestat (LY3039478) in combination with prednisone in patients with advanced or metastatic cancer. Investigational New Drugs, 39(1), 193–201. https://doi.org/10.1007/s10637-020-00944-z

  90. Habets, R. A., de Bock, C. E., Serneels, L., Lodewijckx, I., Verbeke, D., Nittner, D., … de Strooper, B. (2019). Safe targeting of T cell acute lymphoblastic leukemia by pathology-specific NOTCH inhibition. Science Translational Medicine. https://doi.org/10.1126/scitranslmed.aau6246

  91. Wu, G., Sankaranarayanan, S., Wong, J., Tugusheva, K., Michener, M. S., Shi, X., … Savage, M. J. (2012). Characterization of plasma β-secretase (BACE1) activity and soluble amyloid precursor proteins as potential biomarkers for Alzheimer’s disease. Journal of Neuroscience Research, 90(12), 2247–2258. https://doi.org/10.1002/jnr.23122

  92. Wei, P., Walls, M., Qiu, M., Ding, R., Denlinger, R. H., Wong, A., … Smeal, T. (2010). Evaluation of selective γ-secretase inhibitor PF-03084014 for its antitumor efficacy and gastrointestinal safety to guide optimal clinical trial design. Molecular Cancer Therapeutics, 9(6), 1618–1628. https://doi.org/10.1158/1535-7163.MCT-10-0034

  93. Feng, J., Wang, J., Liu, Q., Li, J., Zhang, Q., Zhuang, Z., … Gao, H. (2019). DAPT, a γ-secretase inhibitor, suppresses tumorigenesis, and progression of growth hormone-producing adenomas by targeting Notch signaling. Frontiers in Oncology, 9, 809. https://doi.org/10.3389/fonc.2019.00809

  94. Aktas, C. C., Zeybek, N. D., & Piskin, A. K. (2015). In vitro effects of phenytoin and DAPT on MDA-MB-231 breast cancer cells. Acta Biochimica Et Biophysica Sinica, 47(9), 680–686. https://doi.org/10.1093/abbs/gmv066

    Article  CAS  PubMed  Google Scholar 

  95. Luo, X., Tan, H., Zhou, Y., Xiao, T., Wang, C., & Li, Y. (2013). Notch1 signaling is involved in regulating Foxp3 expression in T-ALL. Cancer Cell International, 13(1), 34. https://doi.org/10.1186/1475-2867-13-34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Keyghobadi, F., Mehdipour, M., Nekoukar, V., Firouzi, J., Kheimeh, A., Nobakht Lahrood, F., … Ebrahimi, M. (2020). Long-term inhibition of Notch in A-375 melanoma cells enhances tumor growth through the enhancement of AXIN1, CSNK2A3, and CEBPA2 as intermediate genes in Wnt and Notch pathways. Frontiers in Oncology, 10, 531. https://doi.org/10.3389/fonc.2020.00531

  97. Gilbert, C. A., Daou, M.-C., Moser, R. P., & Ross, A. H. (2010). γ-Secretase inhibitors enhance temozolomide treatment of human gliomas by inhibiting neurosphere repopulation and xenograft recurrence. Cancer Research, 70(17), 6870–6879. https://doi.org/10.1158/0008-5472.CAN-10-1378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Grudzien, P., Lo, S., Albain, K. S., Robinson, P., Rajan, P., Strack, P. R., … Foreman, K. E. (2010). Inhibition of Notch signaling reduces the stem-like population of breast cancer cells and prevents mammosphere formation. Anticancer Research, 30(10), 3853–3867.

  99. Messersmith, W. A., Shapiro, G. I., Cleary, J. M., Jimeno, A., Dasari, A., Huang, B., … LoRusso, P. M. (2015). A phase I, dose-finding study in patients with advanced solid malignancies of the oral γ-secretase inhibitor PF-03084014. Clinical Cancer Research, 21(1), 60–67. https://doi.org/10.1158/1078-0432.CCR-14-0607

  100. Milano, J., McKay, J., Dagenais, C., Foster-Brown, L., Pognan, F., Gadient, R., … Ciaccio, P. J. (2004). Modulation of Notch processing by γ-secretase inhibitors causes intestinal goblet cell metaplasia and induction of genes known to specify gut secretory lineage differentiation. Toxicological Sciences, 82(1), 341–358. https://doi.org/10.1093/toxsci/kfh254

  101. Kummar, S., O’Sullivan Coyne, G., Do, K. T., Turkbey, B., Meltzer, P. S., Polley, E., … Chen, A. P. (2017). Clinical activity of the γ-secretase inhibitor PF-03084014 in adults with desmoid tumors (aggressive fibromatosis). Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology, 35(14), 1561–1569. https://doi.org/10.1200/JCO.2016.71.1994

  102. Villalobos, V. M., Hall, F., Jimeno, A., Gore, L., Kern, K., Cesari, R., … Messersmith, W. (2018). Long-term follow-up of desmoid fibromatosis treated with PF-03084014, an oral gamma secretase inhibitor. Annals of Surgical Oncology, 25(3), 768–775. https://doi.org/10.1245/s10434-017-6082-1

  103. SpringWorks Therapeutics, Inc. (2021). A randomized, double-blind, placebo-controlled, phase 3 trial of nirogacestat versus placebo in adult patients with progressing desmoid tumors/aggressive fibromatosis (DT/AF) (clinical trial registration no. NCT03785964). clinicaltrials.gov. Retrieved from https://clinicaltrials.gov/ct2/show/NCT03785964

  104. Ferrarotto, R., Ho, A. L., Wirth, L. J., Dekel, E., Walker, R. W., & Vergara-Silva, A. L. (2019). ACCURACY: Phase (P) 2 trial of AL101, a pan-Notch inhibitor, in patients (pts) with recurrent/metastatic (R/M) adenoid cystic carcinoma (ACC) with Notch activating mutations (Notchact mut). Journal of Clinical Oncology, 37(15_suppl), TPS6098. https://doi.org/10.1200/JCO.2019.37.15_suppl.TPS6098

    Article  Google Scholar 

  105. Fleisher, A. S., Raman, R., Siemers, E. R., Becerra, L., Clark, C. M., Dean, R. A., … Thal, L. J. (2008). Phase II safety trial targeting amyloid beta production with a gamma-secretase inhibitor in Alzheimer’s disease. Archives of neurology, 65(8), 1031–1038. https://doi.org/10.1001/archneur.65.8.1031

  106. Siemers, E., Skinner, M., Dean, R. A., Gonzales, C., Satterwhite, J., Farlow, M., … May, P. C. (2005). Safety, tolerability, and changes in amyloid β concentrations after administration of a γ-secretase inhibitor in volunteers. Clinical Neuropharmacology, 28(3), 126–132. https://doi.org/10.1097/01.wnf.0000167360.27670.29

  107. Strosberg, J. R., Yeatman, T., Weber, J., Coppola, D., Schell, M. J., Han, G., … Sullivan, D. (2012). A phase II study of RO4929097 in metastatic colorectal cancer. European Journal of Cancer, 48(7), 997–1003. https://doi.org/10.1016/j.ejca.2012.02.056

  108. Tolcher, A. W., Messersmith, W. A., Mikulski, S. M., Papadopoulos, K. P., Kwak, E. L., Gibbon, D. G., … Wheler, J. J. (2012). Phase I study of RO4929097, a gamma secretase inhibitor of Notch signaling, in patients with refractory metastatic or locally advanced solid tumors. Journal of Clinical Oncology, 30(19), 2348–2353. https://doi.org/10.1200/JCO.2011.36.8282

  109. Doody, R. S., Raman, R., Farlow, M., Iwatsubo, T., Vellas, B., Joffe, S., … Mohs, R. (2013). A phase 3 trial of semagacestat for treatment of Alzheimer’s disease. New England Journal of Medicine, 369(4), 341–350. https://doi.org/10.1056/NEJMoa1210951

  110. El-Khoueiry, A. B., Desai, J., Iyer, S. P., Gadgeel, S. M., Ramalingam, S. S., Horn, L., … Bedard, P. L. (2018). A phase I study of AL101, a pan-NOTCH inhibitor, in patients (pts) with locally advanced or metastatic solid tumors. Journal of Clinical Oncology, 36(15_suppl), 2515–2515. https://doi.org/10.1200/JCO.2018.36.15_suppl.2515

  111. Massard, C., Azaro, A., Soria, J.-C., Lassen, U., Le Tourneau, C., Sarker, D., … Rodon, J. (2018). First-in-human study of LY3039478, an oral Notch signaling inhibitor in advanced or metastatic cancer. Annals of Oncology, 29(9), 1911–1917. https://doi.org/10.1093/annonc/mdy244

  112. De Jesus-Acosta, A., Laheru, D., Maitra, A., Arcaroli, J., Rudek, M. A., Dasari, A., … Messersmith, W. (2014). A phase II study of the gamma secretase inhibitor RO4929097 in patients with previously treated metastatic pancreatic adenocarcinoma. Investigational New Drugs, 32(4), 739–745. https://doi.org/10.1007/s10637-014-0083-8

  113. Diaz-Padilla, I., Wilson, M. K., Clarke, B. A., Hirte, H. W., Welch, S. A., Mackay, H. J., … Oza, A. M. (2015). A phase II study of single-agent RO4929097, a gamma-secretase inhibitor of Notch signaling, in patients with recurrent platinum-resistant epithelial ovarian cancer: A study of the Princess Margaret, Chicago and California phase II consortia. Gynecologic Oncology, 137(2), 216–222. https://doi.org/10.1016/j.ygyno.2015.03.005

  114. Lee, S. M., Moon, J., Redman, B. G., Chidiac, T., Flaherty, L. E., Zha, Y., … Margolin, K. A. (2015). A phase II study of RO4929097 gamma-secretase inhibitor in metastatic melanoma: SWOG 0933. Cancer, 121(3), 432–440. https://doi.org/10.1002/cncr.29055

  115. Peereboom, D. M., Ye, X., Mikkelsen, T., Lesser, G. J., Lieberman, F. S., Robins, H. I., … Grossman, S. A. (2021). A phase II and pharmacodynamic trial of RO4929097 for patients with recurrent/progressive glioblastoma. Neurosurgery, 88(2), 246–251. https://doi.org/10.1093/neuros/nyaa412

  116. Wong, G. T., Manfra, D., Poulet, F. M., Zhang, Q., Josien, H., Bara, T., … Parker, E. M. (2004). Chronic treatment with the γ-secretase inhibitor LY-411,575 inhibits β-amyloid peptide production and alters lymphopoiesis and intestinal cell differentiation *. Journal of Biological Chemistry, 279(13), 12876–12882. https://doi.org/10.1074/jbc.M311652200

  117. Saito, N., Fu, J., Zheng, S., Yao, J., Wang, S., Liu, D. D., … Koul, D. (2014). A high Notch pathway activation predicts response to γ secretase inhibitors in proneural subtype of glioma tumor-initiating cells. STEM CELLS, 32(1), 301–312. https://doi.org/10.1002/stem.1528

  118. Pan, E., Supko, J. G., Kaley, T. J., Butowski, N. A., Cloughesy, T., Jung, J., … Park, D. M. (2016). Phase I study of RO4929097 with bevacizumab in patients with recurrent malignant glioma. Journal of Neuro-Oncology, 130(3), 571–579. https://doi.org/10.1007/s11060-016-2263-1

  119. Xu, R., Shimizu, F., Hovinga, K., Beal, K., Karimi, S., Droms, L., … Omuro, A. (2016). Molecular and clinical effects of Notch inhibition in glioma patients: A phase 0/I trial. Clinical Cancer Research, 22(19), 4786–4796. https://doi.org/10.1158/1078-0432.CCR-16-0048

Download references

Acknowledgements

We would like to dedicate this review to the memory of CJ Buckley.

Funding

The authors are supported by the Credit Unions Kids at Heart Team (to DP) and the C.J. Buckley Pediatric Brain Tumor Fund (DP).

Author information

Authors and Affiliations

Authors

Contributions

The paper was conceptualized by F.C.K. Writing, reviewing, and editing of the paper were conducted by F.C.K., M.W.K., A.T., and D.P. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Franciele C. Kipper.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Simple summary

The role of Notch in the regulation of stemness is well defined, both in embryonic and adult organs. In many normal and tumoral tissues, Notch1 maintains cells in an undifferentiated highly proliferative state and its downregulation is required for the acquisition of the differentiated state. In the endothelium, Notch1 expression is critical to maintain cells in the stalk phenotype, as its downregulation leads to a transition to tip cells, consequently causing the sprouting of new vessels. Weighing the role of Notch on cancer stem cells and in the endothelium of vessels is an important component of managing treatment in the context of tumor normalization.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kipper, F.C., Kieran, M.W., Thomas, A. et al. Notch signaling in malignant gliomas: supporting tumor growth and the vascular environment. Cancer Metastasis Rev 41, 737–747 (2022). https://doi.org/10.1007/s10555-022-10041-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1007/s10555-022-10041-7

Keywords