Skip to main content
Log in

Modulators of the Nrf2 Signaling Pathway Enhance the Cytotoxic Effect of Standard Chemotherapeutic Drugs on Organoids of Metastatic Colorectal Cancer

  • Published:
Bulletin of Experimental Biology and Medicine Aims and scope

The activity of known modulators of the Nrf2 signaling pathway (bardoxolone and brusatol) was studied on cultures of tumor organoids of metastatic colorectal cancer previously obtained from three patients. The effect of modulators was studied both as monotherapy and in combination with standard chemotherapy drugs used to treat colorectal cancer. The Nrf2 inhibitor brusatol and the Nrf2 activator bardoxolone have antitumor activity. Moreover, bardoxolone and brusatol also significantly enhance the effect of the chemotherapy drugs 5-fluorouracil, oxaliplatin, and irinotecan metabolite SN-38. Thus, bardoxolone and brusatol can be considered promising candidates for further preclinical and clinical studies in the treatment of colorectal cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chhikara BS, Parang K. Global Cancer Statistics 2022: the trends projection analysis. Chem. Biol. Letters. 2023;10(1):451. URL: https://pubs.thesciencein.org/journal/index.php/cbl/article/view/451

  2. He X, Jiang Y, Zhang L, Li Y, Hu X, Hua G, Cai S, Mo S, Peng J. Patient-derived organoids as a platform for drug screening in metastatic colorectal cancer. Front. Bioeng. Biotechnol. 2023;11:1190637. doi: https://doi.org/10.3389/fbioe.2023.1190637

    Article  PubMed  PubMed Central  Google Scholar 

  3. Ji DB, Wu AW. Organoid in colorectal cancer: progress and challenges. Chin. Med. J. (Engl). 2020;133(16):1971-1977. doi: https://doi.org/10.1097/CM9.0000000000000882

    Article  CAS  PubMed  Google Scholar 

  4. Sasaki N, Clevers H. Studying cellular heterogeneity and drug sensitivity in colorectal cancer using organoid technology. Curr. Opin. Genet. Dev. 2018;52:117-122. doi: https://doi.org/10.1016/j.gde.2018.09.001

    Article  CAS  PubMed  Google Scholar 

  5. Pattabiraman DR, Weinberg RA. Tackling the cancer stem cells — what challenges do they pose? Nat. Rev. Drug Discov. 2014;13(7):497-512. doi: https://doi.org/10.1038/nrd4253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Roerink SF, Sasaki N, Lee-Six H, Young MD, Alexandrov LB, Behjati S, Mitchell TJ, Grossmann S, Lightfoot H, Egan DA, Pronk A, Smakman N, van Gorp J, Anderson E, Gamble SJ, Alder C, van de Wetering M, Campbell PJ, Stratton MR, Clevers H. Intra-tumour diversification in colorectal cancer at the single-cell level. Nature. 2018;556:457-462. doi: https://doi.org/10.1038/s41586-018-0024-3

    Article  CAS  PubMed  Google Scholar 

  7. Punt CJ, Koopman M, Vermeulen L. From tumour heterogeneity to advances in precision treatment of colorectal cancer. Nat. Rev. Clin. Oncol. 2017;14(4):235-246. doi: https://doi.org/10.1038/nrclinonc.2016.171

    Article  CAS  PubMed  Google Scholar 

  8. Barbáchano A, Fernández-Barral A, Bustamante-Madrid P, Prieto I, Rodríguez-Salas N, Larriba MJ, Muñoz A. Organoids and colorectal cancer. Cancers (Basel). 2021;13(11):2657. doi: https://doi.org/10.3390/cancers13112657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ooft SN, Weeber F, Schipper L, Dijkstra KK, McLean CM, Kaing S, van de Haar J, Prevoo W, van Werkhoven E, Snaebjornsson P, Hoes LR, Chalabi M, van der Velden D, van Leerdam M, Boot H, Grootscholten C, Huitema ADR, Bloemendal HJ, Cuppen E, Voest EE. Prospective experimental treatment of colorectal cancer patients based on organoid drug responses. ESMO Open. 2021;6(3):100103. doi: https://doi.org/10.1016/j.esmoop.2021.100103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Luo L, Ma Y, Zheng Y, Su J, Huang G. Application progress of organoids in colorectal cancer. Front. Cell Dev. Biol. 2022;10:815067. doi: https://doi.org/10.3389/fcell.2022.815067

    Article  PubMed  PubMed Central  Google Scholar 

  11. Sadeghi MR, Jeddi F, Soozangar N, Somi MH, Samadi N. The role of Nrf2-Keap1 axis in colorectal cancer, progression, and chemoresistance. Tumour Biol. 2017; 39(6):1010428317705510. doi: https://doi.org/10.1177/1010428317705510

    Article  CAS  PubMed  Google Scholar 

  12. Hayes JD, McMahon M. NRF2 and KEAP1 mutations: permanent activation of an adaptive response in cancer. Trends Biochem. Sci. 2009;34(4):176-188. doi: https://doi.org/10.1016/j.tibs.2008.12.008

    Article  CAS  PubMed  Google Scholar 

  13. Torrente L, Maan G, Oumkaltoum Rezig A, Quinn J, Jackson A, Grilli A, Casares L, Zhang Y, Kulesskiy E, Saarela J, Bicciato S, Edwards J, Dinkova-Kostova AT, de la Vega L. High NRF2 levels correlate with poor prognosis in colorectal cancer patients and with sensitivity to the kinase inhibitor AT9283 in vitro. Biomolecules. 2020;10(10):1365. doi: https://doi.org/10.3390/biom10101365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Copple IM. The Keap1-Nrf2 cell defense pathway — a promising therapeutic target? Adv. Pharmacol. 2012;63:43-79. doi: https://doi.org/10.1016/B978-0-12-398339-8.00002-1

    Article  CAS  PubMed  Google Scholar 

  15. Lee DY, Song MY, Kim EH. Role of oxidative stress and Nrf2/KEAP1 signaling in colorectal cancer: mechanisms and therapeutic perspectives with phytochemicals. Antioxidants (Basel). 2021;10(5):743. doi: https://doi.org/10.3390/antiox10050743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ren D, Villeneuve NF, Jiang T, Wu T, Lau A, Toppin HA, Zhang DD. Brusatol enhances the efficacy of chemotherapy by inhibiting the Nrf2-mediated defense mechanism. Proc. Natl Acad. Sci. USA. 2011;108(4):1433-1438. doi: https://doi.org/10.1073/pnas.1014275108

    Article  PubMed  PubMed Central  Google Scholar 

  17. To C, Ringelberg CS, Royce DB, Williams CR, Risingsong R, Sporn MB, Liby KT. Dimethyl fumarate and the oleanane triterpenoids, CDDO-imidazolide and CDDO-methyl ester, both activate the Nrf2 pathway but have opposite effects in the A/J model of lung carcinogenesis. Carcinogenesis. 2015;36(7):769-781. doi: https://doi.org/10.1093/carcin/bgv061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Moerland JA, Leal AS, Lockwood B, Demireva EY, Xie H, Krieger-Burke T, Liby KT. The triterpenoid CDDO-methyl ester redirects macrophage polarization and reduces lung tumor burden in a Nrf2-dependent manner. Antioxidants (Basel). 2023;12(1):116. doi: https://doi.org/10.3390/antiox12010116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Poloznikov A, Nikulin S, Bolotina L, Kachmazov A, Raigorodskaya M, Kudryavtseva A, Bakhtogarimov I, Rodin S, Gaisina I, Topchiy M, Asachenko A, Novosad V, Tonevitsky A, Alekseev B. 9-ING-41, a small molecule inhibitor of GSK-3β, potentiates the effects of chemotherapy on colorectal cancer cells. Front. Pharmacol. 2021;12:777114. doi: https://doi.org/10.3389/fphar.2021.777114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Nikulin SV, Alekseev BY, Sergeeva NS, Karalkin PA, Nezhurina EK, Kirsanova VA, Sviridova IK, Akhmedova SA, Volchenko NN, Bolotina LV, Osipyants AI, Hushpulian DM, Topchiy MA, Asachenko AF, Koval AP, Shcherbo DS, Kiselev VI, Mikhaylenko DS, Schumacher U, Poloznikov AA. Breast cancer organoid model allowed to reveal potentially beneficial combinations of 3,3’-diindolylmethane and chemotherapy drugs. Biochimie. 2020;179:217-227. doi: https://doi.org/10.1016/j.biochi.2020.10.007

    Article  CAS  PubMed  Google Scholar 

  21. Liston DR, Davis M. Clinically relevant concentrations of anticancer drugs: a guide for nonclinical studies. Clin. Cancer Res. 2017;23(14):3489-3498. doi: https://doi.org/10.1158/1078-0432.CCR-16-3083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hafner M, Niepel M, Chung M, Sorger PK. Growth rate inhibition metrics correct for confounders in measuring sensitivity to cancer drugs. Nat. Methods. 2016;13(6):521-527. doi: https://doi.org/10.1038/nmeth.3853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhou B, Liu J, Kang R, Klionsky DJ, Kroemer G, Tang D. Ferroptosis is a type of autophagy-dependent cell death. Semin. Cancer Biol. 2020;66:89-100. doi: https://doi.org/10.1016/j.semcancer.2019.03.002

    Article  CAS  PubMed  Google Scholar 

  24. Schmitt A, Xu W, Bucher P, Grimm M, Konantz M, Horn H, Zapukhlyak M, Berning P, Brändle M, Jarboui MA, Schönfeld C, Boldt K, Rosenwald A, Ott G, Grau M, Klener P, Vockova P, Lengerke C, Lenz G, Schulze-Osthoff K, Hailfinger S. Dimethyl fumarate induces ferroptosis and impairs NF-κB/STAT3 signaling in DLBCL. Blood. 2021;138(10):871-884. doi: https://doi.org/10.1182/blood.2020009404

    Article  CAS  PubMed  Google Scholar 

  25. Ballout F, Lu H, Chen Z, Hu T, Chen L, Washington MK, El-Rifai W, Peng D. Targeting NRF2 sensitizes esophageal adenocarcinoma cells to cisplatin through induction of ferroptosis and apoptosis. Antioxidants (Basel). 2022;11(10):1859. doi: https://doi.org/10.3390/antiox11101859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wu Z, Geng Y, Lu X, Shi Y, Wu G, Zhang M, Shan B, Pan H, Yuan J. Chaperone-mediated autophagy is involved in the execution of ferroptosis. Proc. Natl Acad. Sci. USA. 2019;116(8):2996-3005. doi: https://doi.org/10.1073/pnas.1819728116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Li R, Zhang J, Zhou Y, Gao Q, Wang R, Fu Y, Zheng L, Yu H. Transcriptome investigation and in vitro verification of curcumin-induced HO-1 as a feature of ferroptosis in breast cancer cells. Oxid Med. Cell. Longev. 2020;2020:3469840. doi: https://doi.org/10.1155/2020/3469840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Liu HY, Tuckett AZ, Fennell M, Garippa R, Zakrzewski JL. Repurposing of the CDK inhibitor PHA-767491 as a NRF2 inhibitor drug candidate for cancer therapy via redox modulation. Invest. New Drugs. 2018;36(4):590-600. doi: https://doi.org/10.1007/s10637-017-0557-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Speranza G, Gutierrez ME, Kummar S, Strong JM, Parker RJ, Collins J, Yu Y, Cao L, Murgo AJ, Doroshow JH, Chen A. Phase I study of the synthetic triterpenoid, 2-cyano-3, 12-dioxoolean-1, 9-dien-28-oic acid (CDDO), in advanced solid tumors. Cancer Chemother. Pharmacol. 2012;69(2):431-438. doi: https://doi.org/10.1007/s00280-011-1712-y

    Article  CAS  PubMed  Google Scholar 

  30. Chang CH, Tsai HP, Kuo SH, Loh JK, Lin CJ, Lin CL, Kwan AL. Synthetic triterpenoid CDDO-Me inhibits proliferation, migration, and invasion in GBM8401 and GBM8901. Int. Surg. 2019;104(3-4):90-98. doi: https://doi.org/10.9738/INTSURG-D-20-00005.1

    Article  Google Scholar 

  31. Borella R, Forti L, Gibellini L, De Gaetano A, De Biasi S, Nasi M, Cossarizza A, Pinti M. Synthesis and anticancer activity of CDDO and CDDO-Me, two derivatives of natural triterpenoids. Molecules. 2019;24(22):4097. doi: https://doi.org/10.3390/molecules24224097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ardıl B, Alper M. Potential cancer treatment effects of brusatol or eriodictyol combined with 5-fluorouracil (5-FU) in colorectal cancer cell. Naunyn Schmiedebergs Arch. Pharmacol. 2022;395(9):1109-1123. doi: https://doi.org/10.1007/s00210-022-02270-y

    Article  CAS  PubMed  Google Scholar 

  33. Chen HM, Lai ZQ, Liao HJ, Xie JH, Xian YF, Chen YL, Ip SP, Lin ZX, Su ZR. Synergistic antitumor effect of brusatol combined with cisplatin on colorectal cancer cells. Int. J. Mol. Med. 2018;41(3):1447-1454. doi: https://doi.org/10.3892/ijmm.2018.3372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Nikulin.

Additional information

Translated from Kletochnye Tekhnologii v Biologii i Meditsine, No. 4, pp. 283-288, December, 2023

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Razumovskaya, A.V., Silkina, M.O., Nikulin, S.V. et al. Modulators of the Nrf2 Signaling Pathway Enhance the Cytotoxic Effect of Standard Chemotherapeutic Drugs on Organoids of Metastatic Colorectal Cancer. Bull Exp Biol Med 176, 703–708 (2024). https://doi.org/10.1007/s10517-024-06093-0

Download citation

  • Received:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1007/s10517-024-06093-0

Keywords