Skip to main content
Log in

Educational Review Cellular and Biological Therapies of Gastrointestinal Tumors: Overview of Clinical Trials

  • Educational Review
  • Published:
Annals of Surgical Oncology Aims and scope Submit manuscript

Abstract

Because of the high relapse rate of resected gastrointestinal malignancies and the modest responses of metastatic disease to currently available therapies, biologic agents that harness host-tumor immunologic interactions have received increased attention. Based on promising preclinical data, current clinical trials in cellular and biologic therapies are evaluating the safety and efficacy of passive immunotherapy with tumor-reactive lymphocytes activated ex vivo and active immunotherapy with peptide, viral vector, and cellular vaccines. This review will describe the background, rationale, and experimental approach of these clinical trials. Although equally promising, antibodies, gene therapies, and antiangiogenic strategies will not be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Norazmi MN, Hohmann AW, Skinner JM, Jarvis LR, Bradley J. Density and phenotype of tumour-associated mononuclear cells in colonic carcinomas determined by computer-assisted video image analysis. Immunology 1990;69:282–6.

    PubMed  CAS  Google Scholar 

  2. Bouwens L, Wise E. Hepatic pit cells have natural cytotoxic (NC) activity against solid tumor derived target cells. In: Wisse E, Knook DL, Decker K, eds. The Netherlands cells of the hepatic sinusoid. Rijswijk: Kupffer Cell Foundation, 1989:215–20.

    Google Scholar 

  3. Takagi S, Chen K, Schwarz R, Iwatsuki S, Herberman RB, Whiteside TL. Functional and phenotypic analysis of tumor infiltrating lymphocytes isolated from human primary and metastatic liver tumors and cultured in recombinant interleukin-2. Cancer 1989;63:102–111.

    PubMed  CAS  Google Scholar 

  4. Bayon LG, Izquierdo MA, Sirovich I, van Rooijen N, Beelen RHJ, Meijer S. Role of Kupffer cells in arresting circulating tumor cells and controlling metastatic growth in the liver. Hepatology 1996;23:1224–31.

    PubMed  CAS  Google Scholar 

  5. Kurokohchi K, Carrington M, Mann DL, et al. Expression of HLA Class I molecules and the transporter associated with antigen processing in hepatocellular carcinoma. Hepatology 1996;23:1181–1188.

    PubMed  CAS  Google Scholar 

  6. Garrido F, Gabrera T, Lopez-Nevok MA, Ruiz-Cabello F. HLA class I antigens in human tumors. Adv Cancer Res 1995;67:155–95.

    Article  CAS  PubMed  Google Scholar 

  7. Momberg F, Koch S. Selective loss of b2-microglobulin mRNA in human colon carcinoma. J Exp Med 1989;169:309–14.

    Google Scholar 

  8. Galle PR, Hofmann WJ, Walczak H, et al. Involvement of CD95 (APO-1/Fas) receptor and ligand in liver damage. J Exp Med 1995;182:1223–30.

    PubMed  CAS  Google Scholar 

  9. Strand S, Hofmann WJ, Hug H, et al. Lymphocyte apoptosis induced by CD95 (APO-1/Fas) ligand-expressing tumor cells—a mechanism of immune evasion? Nat Med 1996;2:1361–66.

    PubMed  CAS  Google Scholar 

  10. Griffith TS, Brunner T, Fletcher SM, Green DR, Ferguson TA. Fas-ligand induced apoptosis as a mechanism of immune privilege. Science 1995;17:1189–92.

    Google Scholar 

  11. Van Pel A, Boon T. Protection against a nonimmunogenic mouse leukemia by an immunogenic variant obtained by mutagenesis. Proc Natl Acad Sci USA 1982;79:4718–22.

    PubMed  CAS  Google Scholar 

  12. Coley WB. The treatment of malignant tumors by repeated inoculations of erysipelas with a report of 10 original cases. Am J Med Sci 1893;105:487.

    Google Scholar 

  13. Order SE, Stillwagon GB, Klein JL, et al. Iodine 131 antiferritin, a new treatment modality in hepatoma: A Radiation Therapy Oncology Group study. J Clin Oncol 1985;3:1573–82.

    PubMed  CAS  Google Scholar 

  14. Nayersina R, Fowler P, Guilhot S, et al. HLA-A2 restricted cytotoxic T lymphocyte responses to multiple hepatitis B surface antigen epitopes during hepatitis B infection. J Immunol 1993;150:4659–71.

    PubMed  CAS  Google Scholar 

  15. Galun E, Shouval D, Adler R, et al. The effect of anti-a-fetoprotein- adriamycin conjugate on a human hepatoma. Hepatology 1990;11:578–84.

    PubMed  CAS  Google Scholar 

  16. Welt S, Scott AM, Divgi CR, et al. Phase I/II study of iodine-125- labeled monoclonal antibody A33 in patients with advanced colon cancer. J Clin Oncol 1996;14:1573–62.

    Google Scholar 

  17. Bos JL. Ras Oncogenes in human cancer: a review. Cancer Res 1989;49:4682.

    CAS  PubMed  Google Scholar 

  18. Barnd DL, Lan MS, Metzgar RS, Finn OJ. Specific MHC-unrestricted recognition of tumor associated mucins by human cytotoxic cells. Proc Natl Acad Sci USA 1989;86:7159–63.

    PubMed  CAS  Google Scholar 

  19. Tomlinson I, Ilyas M, Novelli M. Molecular genetics of colon cancer. Cancer Metastasis Rev 1997;16:67–79.

    PubMed  CAS  Google Scholar 

  20. Thompson JA, Grunert F, Zimmermann W. Carcinoembryonic antigen gene family: molecular biology and clinical prospectives. J Clin Lab Anal 1991;5:344–66.

    CAS  PubMed  Google Scholar 

  21. Lehner PJ, Cresswell P. Processing and delivery of peptides presented by MHC class I molecules. Curr Opin Immunol 1996;8:59–7.

    PubMed  CAS  Google Scholar 

  22. Riethmuller G, Schneider-Gadicke E, Schlimok G, et al. Randomised trial of monoclonal antibody for adjuvant therapy of resected Dukes’ C colorectal carcinoma: German Cancer Aid 17-1A Study Group. Lancet 1994;343:1177–83.

    Article  CAS  PubMed  Google Scholar 

  23. Andreesen R, Scheibenbogen C, Brugger W, et al. Adoptive transfer of tumor cytotoxic macrophages generated in vitro from circulating blood monocytes: a new approach to cancer immunotherapy. Cancer Res 1990;50:7450–56.

    PubMed  CAS  Google Scholar 

  24. Stevenson HC, Foon KA, Sugarbaker PH. Ex vivo activated monocytes and adoptive immunotherapy trials in colon cancer patients. Prog Clin Biol Res 1986;211:75–82.

    PubMed  CAS  Google Scholar 

  25. Eymard JC, Lopez M, Cattan A, Bouche O, Adjizian JC, Bernard J. Phase I/II trial of autologous activated macrophages in advanced colorectal cancer. Eur J Cancer 1996;32A:1905–11.

    PubMed  CAS  Google Scholar 

  26. Rosenberg SA, Lotze MT, Muul M, et al. A progress report on the treatment of 157 patients with advanced cancer using lymphokine activated killer cells and interleukin-2 or high dose interleukin-2 alone. N Engl J Med 1987;316:889–905.

    Article  CAS  PubMed  Google Scholar 

  27. Rosenberg SA, Lotze MT, Yang YC, et al. Experience with the use of high-dose interleukin-2 in the treatment of 652 patients with cancer. Ann Surg 1989;210:474–85.

    PubMed  CAS  Google Scholar 

  28. Hawkins MJ, Atkins MB, Dutcher JP, et al. A phase II clinical trial of interleukin-2 and lymphokine-activated killer cells in advanced colorectal carcinoma. J Immunother 1990;15:74.

    Article  Google Scholar 

  29. Rosenberg SA. Cell transfer therapy: clinical applications. In: De Vita V Jr, Hellman S, Rosenberg SA, eds. Biologic therapy of cancer. Philadelphia: J.B. Lippincott, 1991, 487–506.

    Google Scholar 

  30. Haruta I, Yamauchi K, Aruga A, et al. Analytical study of the clinical response to two distinct adoptive immunotherapies for advanced hepatocellular carcinoma: comparison between LAK cell and CTL therapy. J Immunother 1996;19:218–23.

    CAS  Google Scholar 

  31. Chang AE, Sondak VK, Bishop DK, Nickoloff BJ, Mulligan AC, Mule JJ. Adoptive immunotherapy of cancer with activated lymph node cells primed in vivo with autologous tumor cells transduced with GM-CSF gene. Hum Gene Ther 1996;7:773–92.

    PubMed  CAS  Google Scholar 

  32. Yoshizawa H, Sakai K, Chang AE, Shu S. Activation by anti-CD3 of tumor draining lymph node cells for specific adoptive immunotherapy. Cell Immunol 1991;134:473–9.

    PubMed  CAS  Google Scholar 

  33. Yoshizawa H, Chang AS, Shu S. Cellular interactions in effector cell generation and tumor regression mediated by anti-CD3/interleukin- 2 activated tumor-draining lymph node cells. Cancer Res 1992;52:1129–36.

    PubMed  CAS  Google Scholar 

  34. Chang AE, Aruga A, Cameron MJ, et al. Adoptive immunotherapy with vaccine-primed lymph node cells secondarily activated with anti-CD3 and interleukin-2. J Clin Oncol 1997;15:796–807.

    PubMed  CAS  Google Scholar 

  35. Kagamu H, Touhalisky JE, Plautz GE, Krauss JC, Shu S. Isolation based on L-selectin expression of immune effector T cells derived from tumor-draining lymph nodes. Cancer Res 1996;56:4339–42.

    Google Scholar 

  36. Arnold MW, Schneebaum S, Berens A, et al. Intraoperative detection of colorectal cancer with radioimmunoguided surgery and CC49, a second generation monoclonal antibody. Ann Surg 1992;216:11–16.

    Google Scholar 

  37. Martin EW, Thurston MO. The use of monoclonal antibodies (MAbs) and the development of an intraoperative hand-held probe for cancer detection. Cancer Invest 1996;14:560–71.

    PubMed  Google Scholar 

  38. Triozzi PL, Kim JA, Aldrich W, Young DC, Sampsel JW, Martin EW Jr. Localization of tumor-reactive lymph node lymphocytes in vivo using radiolabeled monoclonal antibody. Cancer 1994;73:580–9.

    PubMed  CAS  Google Scholar 

  39. Kim JA, Martin EW, Morgan CJ, Aldrich W, Triozzi PL. Expan—sion of mucin-reactive T-helper lymphocytes from patients with colorectal cancer. Cancer Biother 1995;10:115–23.

    PubMed  CAS  Google Scholar 

  40. Triozzi PL, Kim JA, Martin EW Jr. Adoptive immunotherapy using lymph node lymphocytes localized in vivo by radiolabeled monoclonal antibody. J Natl Cancer Inst 1995;87:1180–81.

    PubMed  CAS  Google Scholar 

  41. Kawakami Y, Eliyahu S, Jennings C, et al. Recognition of multiple epitopes in human melanoma antigen gp 100 by tumor-infiltrating T lymphocytes associated with in vivo tumor regression. J Immunol 1995;154:3961–8.

    CAS  PubMed  Google Scholar 

  42. Rivoltini L, Kawakami Y, Sakaguchi K, et al. Induction of tumorreactive CTL from peripheral blood and tumor infiltrating lymphocytes of melanoma patients by in vitro stimulation with an immunodominant peptide of the human melanoma antigen MART-1. J Immunol 1995;154:2257–65.

    PubMed  CAS  Google Scholar 

  43. Prager MD, Gordon WC, Baechtel FS. Immunogenicity of modified tumor cells in syngeneic hosts. Ann N Y Acad Sci 1976;276:61–74.

    PubMed  CAS  Google Scholar 

  44. Rosato FE, Brown AS, Miller EE, et al. Neuraminidase immunotherapy of tumors in man. Surg Gynecol Obstet 1974;139:675–82.

    PubMed  CAS  Google Scholar 

  45. Schlag P, Manasterski M, Gerneth T, et al. Active specific immunotherapy with Newcastle-disease-virus-modified autologoud tumor cells following resection of liver metastases in colorectal cancer. Cancer Immunol Immunother 1992;35:325–30.

    CAS  PubMed  Google Scholar 

  46. Hoover HC Jr, Brandhorst JS, Peters LC, et al. Adjuvant active specific immunotherapy for human colorectal cancer: 6.5 year median follow-up of a phase III prospectively randomized trial. J Clin Oncol 1993;11:390–9.

    PubMed  Google Scholar 

  47. Mitchell MS, Kan-Mitchell J, Kempf RA, Harel W, Shau HY, Lind S. Active specific immunotherapy for melanoma: Phase I trial of allogeneic lysates and a novel adjuvant. Cancer Res 1988;48:5883–93.

    PubMed  CAS  Google Scholar 

  48. Rubin J, Galanis E, Pitot HC, et al. Phase I study of immunotherapy of hepatic metastases of colorectal carcinoma by direct gene transfer of an allogeneic histocompatibility antigen, HLA-B7. Gene Ther 1997;4:419–25.

    PubMed  CAS  Google Scholar 

  49. Freeman SM, Wartenby KA, Freeman JL, Abboud CN, Marogi AJ. In situ use of suicide genes for cancer therapy. Semin Oncol 1996;23:31–45.

    PubMed  CAS  Google Scholar 

  50. Gagandeep S, Brew R, Christmas SE, Klatzmann D, Poston GJ, Kinsella AR. Prodrug activated gene therapy: involvement of an immunological component in the “bystander effect.” Cancer Gene Ther 1993;3:83–8.

    Google Scholar 

  51. Vile RG, Nelson JA, Castledon S, Chong H, Hart IR. Systemic gene therapy of murine melanoma using tissue specific expression of the HSVtk gene involves an immune component. Cancer Res 1994;54:6228–34.

    PubMed  CAS  Google Scholar 

  52. Conry RM, LoBuglio AF, Curiel DT. Polynucleotide-mediated immunization therapy of cancer. Semin Oncol 1996;23:135–47.

    PubMed  CAS  Google Scholar 

  53. Hamilton JM, Chen AP, Nguyen B, et al. Phase I study of recombinant vaccinia virus (rV) that expresses human carcinoembryonic antigen (CEA) in adult patients with adenocarcinomas. Proc Am Soc Clin Oncol 1994. Abstract 961.

  54. McAneny D, Ryan C, Beazley RM, Kaufman HL. Results of a phase I trial of a recombinant vaccinia virus that expresses carcinoembryonic antigen in patients with advanced colorectal cancer. Ann Surg Oncol 1996;3:495–500.

    CAS  PubMed  Google Scholar 

  55. Tsang KY, Zaremba S, Nieroda CA, Zhu MZ, Hamilton JM, Schlom J. Generation of human cytotoxic T cells specific for human carcinoembryonic antigen epitopes from patients immunized with recombinant vaccinia-CEA vaccine. J Natl Cancer Inst 1995;87:982–90.

    CAS  PubMed  Google Scholar 

  56. Rosenberg SA, Yang JC, Schwartzentruber DJ, et al. Immunologic and therapeutic evaluation of a synthetic peptide vaccine for the treatment of patients with metastatic melanoma. Nat Med 1998;4:321–7.

    CAS  PubMed  Google Scholar 

  57. Adluri S, Helling F, Ogata S, et al. Immunogenicity of synthetic TF-KLH (keyhole limpet hemocyanin) and sTn-KLH conjugates in colorectal carcinoma patients. Cancer Immunol Immunother 1995;41:185–92.

    PubMed  CAS  Google Scholar 

  58. Goydos JS, Elder E, Whiteside TL, Finn OJ, Lotze MT. A phase I trial of a synthetic mucin peptide vaccine: induction of specific immune reactivity in patients with adenocarcinoma. J Surg Res 1996;63:298–304.

    Article  CAS  PubMed  Google Scholar 

  59. Agrawal B, Krantz MJ, Reddish MJ, Longenecker BM. Cancerassociated MUC1 mucin inhibits human T-cell proliferation, which is reversible by IL-2. Nat Med 1998;4:43–9.

    Article  PubMed  CAS  Google Scholar 

  60. Pervin S, Chakraborty M, Bhattacharya-Chatterjee M, Zeytin H, Foon KA, Chatterjee SK. Induction of antitumor immunity by an anti-idiotype antibody mimicking carcinoembryonic antigen. Cancer Res 1997;57:728–34.

    PubMed  CAS  Google Scholar 

  61. Foon KA, Chakraborty M, John WJ, Sherratt A, Kohler H, Bhattacharya- Chatterjee M. Immune response to the carcinoembryonic antigen in patients treated with an anti-idiotype antibody vaccine. J Clin Invest 1995;96:334–42.

    Article  PubMed  CAS  Google Scholar 

  62. Herlyn D, Wettendorff M, Schmoll E, et al. Anti-idiotype immunization of cancer patients: modulation of the immune response. Proc Natl Acad Sci USA 1987;84:8055–59.

    PubMed  CAS  Google Scholar 

  63. Herlyn D, Brenden A, Kane M, et al. Anti-idiotype cancer vaccine: preclinical and clinical studies. In Vivo 1991;5:615.

    Google Scholar 

  64. Schuler G, Steinman RM. Dendritic cells as adjuvants for immunemediated resistance to tumors. J Exp Med 1997;1183–87.

  65. Morse MA, Lyerly HK. Immunotherapy of cancer using dendritic cells. Cytokines Cell Mol Ther 1998;4:35–44.

    PubMed  CAS  Google Scholar 

  66. Romani N, Reider D, Heuer M, et al. Generation of mature dendritic cells from human blood: an improved method with special regard to clinical applicability. J Immunol Methods 1996;196:137–51.

    Article  CAS  PubMed  Google Scholar 

  67. Morse MA, Zhou L-J, Tedder TF, Lyerly HK, Smith C. Generation of dendritic cells in vitro from peripheral blood mononuclear cells with GM-CSF, IL-4, and TNF-afor use in cancer immunotherapy. Ann Surg 1997;226:6–16.

    Article  CAS  PubMed  Google Scholar 

  68. Hsu FJ, Benike C, Fagnoni F, et al. Vaccination of patients with B-cell lymphoma using autologous antigen-pulsed dendritic cells. Nat Med 1996;2:52–8.

    Article  CAS  PubMed  Google Scholar 

  69. Murphy G, Tjoa B, Ragde H, Kenney G, Boynton A. Phase I clinical trial: T-cell therapy for Prostate cancer using autologous dendritic cells pulsed with HLA-A0201-specific peptides from Prostate-specific membrane antigen. Prostate 1996;29:371–80.

    Article  CAS  PubMed  Google Scholar 

  70. Wong C, Morse M, Nair SK. Induction of primary, human antigenspecific cytotoxic T lymphocytes in vitro using dendritic cells pulsed with peptides. J Immunother 1998;21:32–40.

    PubMed  CAS  Google Scholar 

  71. Boczkowski D, Nair S, Snyder D, Gilboa E. Dendritic cells pulsed with RNA are potent antigen presenting cells in vitro and in vivo. J Exp Med 1996;184:465–72.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael A. Morse MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morse, M.A., Lyerly, H.K. Educational Review Cellular and Biological Therapies of Gastrointestinal Tumors: Overview of Clinical Trials. Ann Surg Oncol 6, 218–223 (1999). https://doi.org/10.1007/s10434-999-0218-x

Download citation

  • Received:

  • Accepted:

  • Issue date:

  • DOI: https://doi.org/10.1007/s10434-999-0218-x

Key Words