Skip to main content
Log in

Dissecting the interaction between transglutaminase 2 and fibronectin

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

In the extracellular environment, the enzyme transglutaminase 2 (TG2) is involved in cell–matrix interactions through association with the extracellular matrix protein, fibronectin (FN). The 45 kDa gelatin-binding domain of FN (45FN) is responsible for the binding to TG2. Previous studies have demonstrated that the FN-binding site of TG2 is located in the N-terminal domain of the enzyme although with conflicting results regarding the specific residues involved. Here we have mapped the FN interaction site of human TG2 by use of hydrogen/deuterium exchange coupled with mass spectrometry, and we confirm that the FN-binding site is located in the N-terminal domain of TG2. Furthermore, by combination of site-directed mutagenesis and surface plasmon resonance analysis we have identified the TG2 residues K30, R116 and H134 as crucial to maintain the high affinity interaction with FN. Mutation of all three residues simultaneously reduced binding to 45FN by more than 2000-fold. We also identified residues in the catalytic core domain of TG2 that contributed to FN binding, hence extending the binding interface between TG2 and FN. This study provides new insights into the high affinity interaction between TG2 and FN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

TG2:

Transglutaminase 2

FN:

Fibronectin

45FN:

45 kDa proteolytic fibronectin fragment (gelatin-binding domain)

ECM:

Extracellular matrix

HDX-MS:

Hydrogen/deuterium exchange coupled with mass spectrometry

SPR:

Surface plasmon resonance

WT:

Wild-type

RH:

TG2 mutant R116A/H134A

KRH:

TG2 mutant K30E/R116A/H134A

mAb:

Monoclonal antibody

References

  • Achyuthan KE, Rowland TC, Birckbichler PJ et al (1996) Hierarchies in the binding of human factor XIII, factor XIIIa, and endothelial cell transglutaminase to human plasma fibrinogen, fibrin, and fibronectin. Mol Cell Biochem 162:43–49

    Article  CAS  PubMed  Google Scholar 

  • Adamczyk M, Griffiths R, Dewitt S et al (2015) P2X7 receptor activation regulates rapid unconventional export of transglutaminase-2. J Cell Sci Sci 128:4615–4628

    Article  CAS  Google Scholar 

  • Akimov SS, Belkin AM (2001) Cell surface tissue transglutaminase is involved in adhesion and migration of monocytic cells on fibronectin. Blood 98:1567–1576

    Article  CAS  PubMed  Google Scholar 

  • Akimov SS, Krylov D, Fleischman LF, Belkin AM (2000) Tissue transglutaminase is an integrin-binding adhesion coreceptor for fibronectin. J Cell Biol 148:825–838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bergamini CM, Signorini M, Poltronieri L (1987) Inhibition of erythrocyte transglutaminase by GTP. Biochim Biophys Acta 916:149–151

    Article  CAS  PubMed  Google Scholar 

  • Cao L, Petrusca DN, Satpathy M et al (2008) Tissue transglutaminase protects epithelial ovarian cancer cells from cisplatin-induced apoptosis by promoting cell survival signaling. Carcinogenesis 29:1893–1900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao L, Shao M, Schilder J et al (2012) Tissue transglutaminase links TGF-β, epithelial to mesenchymal transition and a stem cell phenotype in ovarian cancer. Oncogene 31:2521–2534

    Article  CAS  PubMed  Google Scholar 

  • Cardoso I, Stamnaes J, Andersen JT et al (2015) Transglutaminase 2 interactions with extracellular matrix proteins as probed with celiac disease autoantibodies. FEBS J 282:2063–2075

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Hnida K, Graewert MA et al (2015) Structural basis for antigen recognition by transglutaminase 2-specific autoantibodies in celiac disease. J Biol Chem 290:21365–21375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clarke DD, Mycek MJ, Neidle A, Waelsch H (1959) The incorporation of amines into protein. Arch Biochem Biophys 79:338–354

    Article  CAS  Google Scholar 

  • Di Niro R, Sulic A-M, Mignone F et al (2010) Rapid interactome profiling by massive sequencing. Nucleic Acids Res 38:e110

    Article  PubMed  PubMed Central  Google Scholar 

  • Eckert RL, Fisher ML, Grun D et al (2015) Transglutaminase is a tumor cell and cancer stem cell survival factor. Mol Carcinog 54:947–958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Engvall E, Ruoslahti E, Miller EJ (1978) Affinity of fibronectin to collagens of different genetic types and to fibrinogen. J Exp Med 147:1584–1595

    Article  CAS  PubMed  Google Scholar 

  • Erat MC, Slatter DA, Lowe ED et al (2009) Identification and structural analysis of type I collagen sites in complex with fibronectin fragments. Proc Natl Acad Sci USA 106:4195–4200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foss S, Watkinson RE, Grevys A et al (2016) TRIM21 immune signaling is more sensitive to antibody affinity than its neutralization activity. J Immunol 196:3452–3459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fuller GM, Doolittle RF (1966) The formation of crosslinked fibrins: evidence for the involvement of lysine epsilon-amino groups. Biochem Biophys Res Commun 25:694–700

    Article  CAS  Google Scholar 

  • Furie M, Rifkin D (1980) Proteolytically derived fragments of human plasma fibronectin and their localization within the intact molecule. J Biol Chem 255:3134–3140

    CAS  PubMed  Google Scholar 

  • Hang J, Zemskov EA, Lorand L, Belkin AM (2005) Identification of a novel recognition sequence for fibronectin within the NH2-terminal β-sandwich domain of tissue transglutaminase. J Biol Chem 280:23675–23683

    Article  CAS  PubMed  Google Scholar 

  • He W, Sun Z, Liu Z (2015) Silencing of TGM2 reverses epithelial to mesenchymal transition and modulates the chemosensitivity of breast cancer to docetaxel. Exp Ther Med 10:1413–1418

    CAS  PubMed  PubMed Central  Google Scholar 

  • Iversen R, Di Niro R, Stamnaes J et al (2013) Transglutaminase 2-specific autoantibodies in celiac disease target clustered, N-terminal epitopes not displayed on the surface of cells. J Immunol 190:5981–5991. doi:10.4049/jimmunol.1300183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iversen R, Mysling S, Hnida K et al (2014) Activity-regulating structural changes and autoantibody epitopes in transglutaminase 2 assessed by hydrogen/deuterium exchange. Proc Natl Acad Sci USA 111:17146–17151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jang TH, Lee DS, Choi K et al (2014) Crystal structure of transglutaminase 2 with GTP complex and amino acid sequence evidence of evolution of GTP binding site. PLoS One 9:1–8

    CAS  Google Scholar 

  • Jeong JM, Murthy S, Radek JT, Lorand L (1995) The fibronectin-binding domain of transglutaminase. J Biol Chem 270:5654–5658

    Article  CAS  PubMed  Google Scholar 

  • LeMosy EK, Erickson HP, Beyer WF et al (1992) Visualization of purified fibronectin-transglutaminase complexes. J Biol Chem 267:7880–7885

    CAS  PubMed  Google Scholar 

  • Liu S, Cerione RA, Clardy J (2002) Structural basis for the guanine nucleotide-binding activity of tissue transglutaminase and its regulation of transamidation activity. Proc Natl Acad Sci USA 99:2743–2747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lorand L, Graham RM (2003) Transglutaminases: crosslinking enzymes with pleiotropic functions. Nat Rev Mol Cell Biol 4:140–156

    Article  CAS  PubMed  Google Scholar 

  • Lortat-Jacob H, Burhan I, Scarpellini A et al (2012) Transglutaminase-2 interaction with heparin: identification of a heparin binding site that regulates cell adhesion to fibronectin-transglutaminase-2 matrix. J Biol Chem 287:18005–18017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Molberg O, Mcadam SN, Körner R et al (1998) Tissue transglutaminase selectively modifies gliadin peptides that are recognized by gut-derived T cells in celiac disease. Nat Med 4:713–717

    Article  CAS  PubMed  Google Scholar 

  • Mosesson MW, Chen AB, Huseby RM (1975) The cold-insoluble globulin of human plasma: studies of its essential structural features. Biochim Biophys Acta 386:509–524

    Article  CAS  PubMed  Google Scholar 

  • Mycek MJ, Clarke DD, Neidle A, Waelsch H (1959) Amine incorporation into insulin as catalyzed by transglutaminase. Arch Biochem Biophys 84:528–540

    Article  CAS  PubMed  Google Scholar 

  • Pankov R (2002) Fibronectin at a glance. J Cell Sci 115:3861–3863

    Article  CAS  PubMed  Google Scholar 

  • Piacentini M, D’Eletto M, Farrace MG et al (2014) Characterization of distinct sub-cellular location of transglutaminase type II: changes in intracellular distribution in physiological and pathological states. Cell Tissue Res 358:793–805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pinkas DM, Strop P, Brunger AT, Khosla C (2007) Transglutaminase 2 undergoes a large conformational change upon activation. PLoS Biol 5:e327

    Article  PubMed  PubMed Central  Google Scholar 

  • Radek JT, Jeong JM, Murth S et al (1993) Affinity of human erythrocyte transglutaminase for a 42-kDa gelatin-binding fragment of human plasma fibronectin. Proc Natl Acad Sci USA 90:3152–3156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruoslahti E, Hayman EG, Engvall E et al (1981) Alignment of biologically active domains in the fibronectin molecule. J Biol Chem 256:7277–7281

    CAS  PubMed  Google Scholar 

  • Satpathy M, Cao L, Pincheira R et al (2007) Enhanced peritoneal ovarian tumor dissemination by tissue transglutaminase. Cancer Res 67:7194–7202

    Article  CAS  PubMed  Google Scholar 

  • Scarpellini A, Germack R, Lortat-Jacob H et al (2009) Heparan sulfate proteoglycans are receptors for the cell-surface trafficking and biological activity of transglutaminase-2. J Biol Chem 284:18411–18423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sollid LM, Molberg O, McAdam S, Lundin KEA (1997) Autoantibodies in coeliac disease: tissue transglutaminase–guilt by association? Gut 41:851–852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stamnaes J, Fleckenstein B, Sollid LM (2008) The propensity for deamidation and transamidation of peptides by transglutaminase 2 is dependent on substrate affinity and reaction conditions. Biochim Biophys Acta Proteins Proteomics 1784:1804–1811

    Article  CAS  Google Scholar 

  • Stamnaes J, Pinkas DM, Fleckenstein B et al (2010) Redox regulation of transglutaminase 2 activity. J Biol Chem 285:25402–25409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stephens P, Grenard P, Aeschlimann P et al (2004) Crosslinking and G-protein functions of transglutaminase 2 contribute differentially to fibroblast wound healing responses. J Cell Sci 117:3389–3403

    Article  CAS  PubMed  Google Scholar 

  • Turner P, Lorand L (1989) Complexation of fibronectin with tissue transglutaminase. Biochemistry 28:628–635

    Article  CAS  PubMed  Google Scholar 

  • Verderio EAM, Telci D, Okoye A et al (2003) A novel RGD-independent cel adhesion pathway mediated by fibronectin-bound tissue transglutaminase rescues cells from anoikis. J Biol Chem 278:42604–42614

    Article  CAS  PubMed  Google Scholar 

  • Yakubov B, Chelladurai B, Schmitt J et al (2013) Extracellular tissue transglutaminase activates noncanonical NF-κB signaling and promotes metastasis in ovarian cancer. Neoplasia 15:609–619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yakubov B, Chen L, Belkin AM et al (2014) Small molecule inhibitors target the tissue transglutaminase and fibronectin interaction. PLoS One 9:e89285

    Article  PubMed  PubMed Central  Google Scholar 

  • Zemskov EA, Janiak A, Hang J et al (2006) The role of tissue transglutaminase in cell-matrix interactions. Front Biosci 11:1057–1076

    Article  CAS  PubMed  Google Scholar 

  • Zemskov EA, Mikhailenko I, Hsia R-C et al (2011) Unconventional secretion of tissue transglutaminase involves phospholipid-dependent delivery into recycling endosomes. PLoS One 6:e19414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the European Commission grants MRTN-CT-2006-036032 and ERC-2010-Ad-268541 and Grants from the Research Council of Norway and the South-Eastern Norway Regional Health Authority. The authors thank Chaitan Khosla (Stanford University, CA; USA) for providing the TG3 plasmid.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Inês Cardoso.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Human and animal rights statement

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Handling Editors: S. Beninati, M. Piacentini, C.M. Bergamini.

Electronic supplementary material

Below is the link to the electronic supplementary material.

726_2016_2296_MOESM1_ESM.tif

Supplementary material 1 Supplementary Fig. 1 Deuterium uptake plots for all identified TG2 peptides which showed no difference in D-uptake when comparing the 45FN-bound state (red curves) and the unbound state (blue curves). Error bars represent SD based on labeling triplicates (TIFF 2358 kb)

Supplementary material 2 (TIFF 4258 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cardoso, I., Østerlund, E.C., Stamnaes, J. et al. Dissecting the interaction between transglutaminase 2 and fibronectin. Amino Acids 49, 489–500 (2017). https://doi.org/10.1007/s00726-016-2296-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1007/s00726-016-2296-y

Keywords