Skip to main content
Log in

Construction and use of broad host range mercury and arsenite sensor plasmids in the soil bacterium Pseudomonas fluorescens OS8

  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

We have generated new sensors for the specific detection and studies of bioavailability of metals by engineering Pseudomonas fluorescens with reporter gene systems. One broad host range mercury (pTPT11) and two arsenite (pTPT21 and pTPT31) sensor plasmids that express metal presence by luminescence phenotype were constructed and transferred into Escherichia coli DH5α and Pseudomonas fluorescens OS8. The maximal induction was reached after 2 h of incubation in metal solutions at room temperature (22°C). In optimized conditions the half maximal velocity of reaction was achieved at acidic pH using a d-luciferin substrate concentration that was nearly sixfold lower for P. fluorescens OS8 than for E. coli DH5α. When using a luciferin concentration (150 μM) that was optimal for E. coli the luminescence declined rapidly in the case of Pseudomonas, for which the substrate level 25 μM gave a stable reading between about 20 min and 3 h. The ability of the strain OS8 to quantitatively detect specific heavy metals in spiked soil and soil extracts is as good, or even better in being a real-time reporter system, than that of a traditional chemical analysis. The Pseudomonas strain used is an isolate from pine rhizosphere in oil and heavy metal contaminated soil. It is also a good humus soil colonizer and is therefore a good candidate for measuring soil heavy metal bioavailability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alloway BJ, Thornton I, Smart GA, Sherlock JC, Quinn MJ (1988) Metal availability. Sci Total Environ 75:41–69

    Article  PubMed  CAS  Google Scholar 

  2. Beckman Instruments (1982) Beckman Microtox Operating Manual. Microbics, Carlsbad, CA, pp

    Google Scholar 

  3. Figurski DH, Helsinski DR (1979) Replication of an origincontaining derivate of plasmid RK2 dependent on plasmid function in trans. Proc Natl Acad Sci USA 76:1648–1652

    Article  PubMed  CAS  Google Scholar 

  4. Ford SR, Chenault KH, Bunton LS, Hampton GJ, McCarthy J, Hall MS, Pangburn SJ, Leach FR (1996) Use of firefly luciferase for ATP measurement: other nucleotides enhance turnover. J Biolumin Chemilumin 11:149–167

    Article  PubMed  CAS  Google Scholar 

  5. Haapalainen M, Karp M, Metzler MC (1996) Isolation of strong promoters from Clavibacter xyli subsp. cynodontis using a promoter probe plasmid. Biochim Biophys Acta 1305:130–134

    PubMed  Google Scholar 

  6. Inácio MM, Pereira V, Pinto MS (1998) Mercury contamination in sandy soils surrounding an industrial emission source (Estarreja, Portugal). Geoderma 85:325–339

    Article  Google Scholar 

  7. Jain A, Raven KP, Loeppert RH (1999) Arsenite and arsenate adsorption on ferrihydrite: surface charge reduction and net OH release stoichiometry. Environ Sci Technol 33:1179–1184

    Article  CAS  Google Scholar 

  8. Ji G, Silver S (1992) Regulation and expression of the arsenic resistance operon from Staphylococcus aureus plasmid pI258. J Bacteriol 174:3684–3694

    PubMed  CAS  Google Scholar 

  9. Keen NT, Tamaki S, Kobayashi D, Trollinger D (1988) Improved broad-host-range plasmids for DNA cloning in Gramnegative bacteria. Gene 70:191–197

    Article  PubMed  CAS  Google Scholar 

  10. King EO, Ward MK, Raney DE (1954) Two simple media for the demostration of pyocyanin and fluorescin. J Lab Clin Med 44:301–307

    PubMed  CAS  Google Scholar 

  11. Lampinen J, Koivisto L, Wahlsten M, Mäntsälä P, Karp M (1992) Expression of luciferase genes from different origins in Bacillus subtilis. Mol Gen Genet 232:498–504

    Article  PubMed  CAS  Google Scholar 

  12. Lampinen J, Virta M, Karp M (1995) Comparisation of gram positive and gram negative bacterial strains cloned with luciferase genes in bioluminescence cytotoxicity tests. Environ Toxic Water 10:157–166

    Article  CAS  Google Scholar 

  13. Le Grice S, Beuck V, Mous J (1987) Expression of biologically active human T-cell lymphotropic virus type III reverse transcriptase in Bacillus subtilis. Gene 55:95–103

    Article  PubMed  Google Scholar 

  14. Loimaranta V, Tenovuo J, Koivisto JL, Karp M (1998) Generation of bioluminescent Streptococcus mutans and its usage in rapid analysis of efficacy of antimicrobial compounds. Antimicrob Agents Chemother 42:1906–1910

    PubMed  CAS  Google Scholar 

  15. Ma YB, Uren NC (1998) Transformations of heavy metals added to soil—application of a new sequantial extraction procedure. Geoderma 84:157–168

    Article  CAS  Google Scholar 

  16. McGrath SP, Knight B, Killham K, Preston S, Paton GI (1999) Assessment of the toxicity of metals in soils amended with sewage sludge using a chemical specification technique and a lux-based biosensor. Environ Toxicol Chem 18:659–663

    Article  CAS  Google Scholar 

  17. Misra TK, Brown NL, Fritzinger D, Pridmore R, Barnes W, Silver S (1984) Mercuric ion-resistance operons of plasmid R100 and transposon Tn501: The beginning of the operon including the regulatory region and the first two structural genes. Proc Natl Acad Sci USA 81:5975–5979

    Article  PubMed  CAS  Google Scholar 

  18. Möller A, Jansson JK (1998) Detection of firefly luciferase-tagged bacteria in environmental samples. In: LaRossa RA (ed) Bioluminescence Methods and Protocols. Methods in Molecular Biology 102. Humana Press, Totowa, NJ, pp 269–284

    Chapter  Google Scholar 

  19. Norrström AC, Jacks G (1998) Concentration and fraction-ation of heavy metals in roadside soils receiving de-icing salts. Sci Total Environ 218:161–174

    Article  Google Scholar 

  20. Pongratz R (1998) Arsenic specification in environmental samples of contaminated soil. Sci Total Environ 224:133–141

    Article  CAS  Google Scholar 

  21. Ramanathan S, Ensor M, Daunert S (1997) Bacterial biosensor for monitoring toxic metals. Trends Biotechnol 15:500–506

    Article  PubMed  CAS  Google Scholar 

  22. Raven KP, Jain A, Loeppert RH (1998) Arsenite and arsenate adsorption on ferrihydrite: kinetics, equilibrium, and adsorption envelopes. Environ Sci Technol 32:344–349

    Article  CAS  Google Scholar 

  23. Renzoni A, Zino F, Franchi E (1998) Mercury levels along the food chain and risk for exposed populations. Environ Res Section A 77:68–72

    CAS  Google Scholar 

  24. Rosenstein R, Peschel A, Wieland B, Götz F (1992) Expression and regulation of antimonite, arsenite, and arsenate resistance operon of Staphylococcus xylosus plasmid pSX267. J Bacteriol 174:3676–3683

    PubMed  CAS  Google Scholar 

  25. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular Cloning: A Laboratory manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp

    Google Scholar 

  26. SanFrancisco MJD, Hope CL, Owolabi JB, Tisa LS, Rosen BP (1990) Identification of the metalloregulatory element of plasmid—encoded arsenical resistance operon. Nucl Acid Res 18:619–624

    CAS  Google Scholar 

  27. Sarand I, Haario H, Jørgensen KS, Romantschuk M (2000) Effect of inoculation of a TOL plasmid containing mycorrhizophere bacterium on development of Scots pine seedlings, their mycorrhizophere and the microbial flora in m-toluateamended soil. FEMS Microbiol Ecol 31:127–141

    Article  PubMed  CAS  Google Scholar 

  28. Shi WJ, Wu JH, Rosen BP (1994) Identification of a putative metal binding site in a new family of metalloregulatory proteins. J Biol Chem 269:19826–19829

    PubMed  CAS  Google Scholar 

  29. Silver S, Ji G, Broer S, Dey SB, Dou X, Rosen BP (1993) Orphan enzyme or patriarch of a new tribe—the arsenic resistance ATPase of bacterial plasmids. Mol Microbiol 8:637–642

    Article  PubMed  CAS  Google Scholar 

  30. Steinberg SM, Poziomek EJ, Engelmann WH, Rogers KR (1995) A review of environmental applications of bioluminescense measurements. Chemosphere 30:2155–2197

    Article  CAS  Google Scholar 

  31. Steinnes E (1990) Mercury. In: Alloway BJ (ed) Heavy Metals in Soils. Blackie and Son Ltd, Glasgow and London, pp 222–236

    Google Scholar 

  32. Tauriainen S, Karp M, Chang MW, Virta M (1997) Recombinant luminescent bacteria for measuring bioavailable arsenite and antimonite. Appl Environ Microbiol 63:4456–4461

    PubMed  CAS  Google Scholar 

  33. Tauriainen S, Virta M, Chang W, Lampinen J, Karp M (1999) Measurement of firefly luciferase reporter gene activity from cells and lysates using Escherichia coli arsenite and mercury sensors. Anal Biochem 272:191–198

    Article  PubMed  CAS  Google Scholar 

  34. Tessier A, Campbell PGC, Bisson M (1979) Sequential extraction procedure for the speciation of particulate trace metals. Anal Chem 51:844–851

    Article  CAS  Google Scholar 

  35. Virta M, Lampinen J, Karp M (1995) A luminescence-based mercury biosensor. Anal Chem 67:667–669

    Article  CAS  Google Scholar 

  36. Virta M, Åkerman KEO, Saviranta P, Oker-Blom C, Karp MT (1995) Real-time measurement of cell permeabilization with low-molecular weight membranolytic agents. J Antimicrob Chemother 36:303–315

    PubMed  CAS  Google Scholar 

  37. Wood KV, DeLuca M (1987) Photographic detection of luminescence in Escherichia coli containg the gene for firefly luciferase. Anal Chem 161:501–507

    CAS  Google Scholar 

  38. Yanisch-Perron C, Viera J, Messing J (1985) Improved M13 phage cloning vectors and host strains: nucleotide sequences of M13mp18 and pUC19 vectors. Gene 33:103–119

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Petänen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petänen, T., Virta, M., Karp, M. et al. Construction and use of broad host range mercury and arsenite sensor plasmids in the soil bacterium Pseudomonas fluorescens OS8. Microb Ecol 41, 360–368 (2001). https://doi.org/10.1007/s002480000095

Download citation

  • Received:

  • Accepted:

  • Issue date:

  • DOI: https://doi.org/10.1007/s002480000095

Keywords