Skip to main content

Advertisement

Springer Nature Link
Log in
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Diabetologia
  3. Article

Immunoneutralization of endogenous glucagon with monoclonal glucagon antibody normalizes hyperglycaemia in moderately streptozotocin-diabetic rats

  • Originals
  • Published: October 1994
  • Volume 37, pages 985–993, (1994)
  • Cite this article
Download PDF
Diabetologia Aims and scope Submit manuscript
Immunoneutralization of endogenous glucagon with monoclonal glucagon antibody normalizes hyperglycaemia in moderately streptozotocin-diabetic rats
Download PDF
  • C. L. Brand1,
  • B. Rolin1,
  • P. N. JØrgensen2,
  • I. Svendsen3,
  • J. S. Kristensen4 &
  • …
  • J. J. Holst5 
  • 858 Accesses

  • 126 Citations

  • 15 Altmetric

  • Explore all metrics

Summary

See More

The role of glucagon in diabetic hyperglycaemia has been a matter of controversy because of difficulties in the production of selective glucagon deficiency. We developed a high-capacity (40 nmol/ ml), high-affinity (0.6·1011 l/mol) monoclonal glucagon antibody (Glu-mAb) and gave i.v. injections (4 ml/kg) to rats in order to study the effect of selective glucagon deficiency on blood glucose. Controls received a mAb against trinitrophenyl. Glu-mAb completely abolished the hyperglycaemic effect of 2.86 nmol/kg glucagon in normal rats (p<0.05, n=6). In moderately hyperglycaemic rats injected with streptozotocin as neonates (N-STZ), Glu-mAb abolished a postprandial increase in blood glucose (from 11.2±0.7 mmol/l to 17.3±1.8 mmol/l in controls vs 10.5±0.9 mmol/l to 9.3±1.0 mmol/l; cross-over: n=6, p<0.05). No significant effect of Glu-mAb treatment was observed in more hyperglycaemic N-STZ rats (cross-over, n=4) and in severely hyperglycaemic rats injected with STZ as adults (n=6), but after insulin treatment of the latter, at doses partially restoring blood glucose levels (12.7±4.3 mmol/l), Glu-mAb administration almost normalized blood glucose (maximal difference: 6.0±3.8 mmol/l; cross-over: n=5, p<0.05). In conclusion, our results provide strong additional evidence for the hypothesis that glucagon is involved in the pathogenesis of diabetes. The hormone plays an important role in the development of STZ-diabetic hyperglycaemia, but glucagon neutralization only leads to normoglycaemia in the presence of insulin.

Article PDF

Download to read the full article text

Similar content being viewed by others

Investigation of the Effects of Trehalose on Glycemic Indices in Streptozotocin-Induced Diabetic Rats

Chapter © 2021

Glucagon is the key factor in the development of diabetes

Article 26 April 2016

Synthesis and Investigation of Antidiabetic Response of New Coumarin Derivatives Against Streptozotocin Induced Diabetes in Experimental Rats

Article 10 March 2020

Explore related subjects

Discover the latest articles, books and news in related subjects, suggested using machine learning.
  • Antibodies
  • Diabetes
  • Endocrine System
  • Glycomics
  • Type 2 diabetes
  • Type 1 Diabetes
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Abbreviations

A-STZ rats:

Adult streptozotocin injected rats

AUC:

area under the curve

BW:

body weight

Con-mAb:

monoclonal control antibody

Glu-mAb:

monoclonal anti-glucagon antibody

Ka :

constant of association

NIDDM:

non-insulin-dependent diabetes mellitus

N-STZ rats:

neonatal streptozotocin-injected rats

OGTT:

oral glucose tolerance test

STZ:

streptozotocin

References

  1. DeFronzo RA, Bonadonna RC, Ferrannini E (1992) Pathogenesis of NIDDM. A balanced overview. Diabetes Care 15: 318–368

    Google Scholar 

  2. Unger RH, Orci L (1975) The essential role of glucagon in the pathogenesis of diabetes mellitus. Lancet I: 14–16

    Google Scholar 

  3. Dobbs RE, Sakurai H, Sasaki H et al. (1975) Glucagon: role in the hyperglycemia of diabetes mellitus. Science 187: 544–547

    Google Scholar 

  4. Gerich JE, Lorenzi M, Bier DM et al. (1975) Prevention of human diabetic ketoacidosis by somatostatin. Evidence for an essential role of glucagon. N Engl J Med 292: 985–989

    Google Scholar 

  5. Schusdziarra V, Rivier R, Dobbs RE, Brown M, Vale W, Unger RH (1978) Somatostatin analogs as glucagon suppressants in diabetes. Horm Metab Res 10: 563–565

    Google Scholar 

  6. Santeusanio F, Massi-Benedetti M, Angeletti G, Calabrese G, Bueti A, Brunetti P (1981) Glucagon and carbohydrate disorder in totally pancreatectomized man (A study with the aid of an artificial endocrine pancreas). J Endocrinol Invest 4: 93–96

    Google Scholar 

  7. Flatt PR, Swanston-Flatt SK, Bailey CJ (1979) Glucagon antiserum: a tool to investigate the role of circulating glucagon in obese-hyperglycaemic (ob/ob) mice. Biochem Soc Trans 7: 911–913 (Abstract)

    Google Scholar 

  8. Unson CG, Gurzenda EM, Merrifield RB (1989) Biological activities of des-His1[Glu9] glucagon amide, a glucagon antagonist. Peptides 10: 1171–1177

    Google Scholar 

  9. Almdal TP, Holst JJ, Heindorff H, Vilstrup H (1992) Glucagon immunoneutralization in diabetic rats normalizes urea synthesis and decreases nitrogen wasting. Diabetes 41: 12–16

    Google Scholar 

  10. Unger RH (1978) Role of glucagon in the pathogenesis of diabetes: the status of the controversy. Metabolism 27: 1691–1709

    Google Scholar 

  11. Sherwin RS, Felig P (1978) Hyperglucagonemia in diabetes. N Engl J Med 299: 1366–1368 (Letter)

    Google Scholar 

  12. Müller WA (1978) Diabetes mellitus, eine bihormonale Krankheit? Dtsch Med Wschr 103: 1219–1221

    Google Scholar 

  13. Buchanan KD (1977) Glucagon. In: Bajaj JS (ed) Insulin and metabolism. Excerpta Medica, London, pp 233–270

    Google Scholar 

  14. Barnes AJ, Bloom SR, Alberti KGMM, Smythe P, Alford FP, Chisholm DJ (1977) Ketoacidosis in pancreatectomized man. N Engl J Med 296: 1250–1253

    Google Scholar 

  15. Barnes AJ, Kohner EM, Bloom SR, Johnston DG, Alberti KGMM, Smythe P (1978) Importance of pituitary hormones in aetiology of diabetic ketoacidosis. Lancet I: 1171–1174

    Google Scholar 

  16. Consoli A, Nurjhan N, Reilly JJ, Bier DM, Gerich JE (1990) Mechanism of increased gluconeogenesis in noninsulin-dependent diabetes mellitus. J Clin Invest 86: 2038–2045

    Google Scholar 

  17. Reaven GM, Chen Y-DI, Golay A, Swislocki ALM, Jaspan JB (1987) Documentation of hyperglucagonemia throughout the day in nonobese and obese patients with noninsulin-dependent diabetes mellitus. J Clin Endocrinol Metab 64: 106–110

    Google Scholar 

  18. Consoli A, Nurjhan N, Capani F, Gerich JE (1989) Predominant role of gluconeogenesis in increased hepatic glucose production in NIDDM. Diabetes 38: 550–557

    Google Scholar 

  19. Baron AD, Schaeffer L, Shragg P, Kolterman OG (1987) Role of hyperglucagonemia in maintenance of increased rates of hepatic glucose output in type II diabetes. Diabetes 36: 274–283

    Google Scholar 

  20. DeFronzo RA, Ferrannini E, Simonson DC (1989) Fasting hyperglycemia in non-insulin-dependent diabetes mellitus: contributions of excessive hepatic glucose production and impaired tissue glucose-uptake. Metabolism 4: 387–395

    Google Scholar 

  21. Campbell DG, Mandarino LJ, Gerich JE (1988) Quantification of the relative impairment in actions of insulin on hepatic glucose production and peripheral glucose uptake in noninsulin-dependent diabetes mellitus. Metabolism 37: 15–22

    Google Scholar 

  22. Alberti KGMM, Christensen NJ, Iversen J, Ørskov H (1975) Role of glucagon and other hormones in the development of diabetic ketoacidosis. Lancet I: 1307–1311

    Google Scholar 

  23. Barnes AJ, Crowley MF, Bloom A et al. (1975) Is glucagon important in stable insulin-dependent diabetes. Lancet II: 734–737

    Google Scholar 

  24. Gerich JE (1981) Somatostatin: In: Brownlee M (ed) Handbook of diabetes mellitus. Vol. 1. Garland STPM Press, New York, pp 297–354

    Google Scholar 

  25. Goldberg DJ, Walesky M, Sherwin RS (1979) Effects of somatostatin on the plasma amino acid response to ingested protein in man. Metabolism 28: 866–872

    Google Scholar 

  26. Meneilly GS, Minaker KL, Elahi D, Rowe JW (1988) Somatostatin infusion enhances hepatic glucose production during hyperglucagonemia. Metabolism 37: 252–256

    Google Scholar 

  27. Valverde I, Alarcon C, Ruiz-Grande C, Rovira A (1988) Plasma glucagon and glucagon-like immunoreactivity in totally pancreatectomized humans. In: Tiengo A, Alberti KGMM, Del Prato S, Vranic M (eds) Diabetes secondary to pancreatopathy. Excerpta Medica, Amsterdam New York Oxford, pp 51–62

    Google Scholar 

  28. Holst JJ, Galbo H, Richter EA (1978) Neutralization of glucagon by antiserum as a tool in glucagon physiology. J Clin Invest 62: 182–190

    Google Scholar 

  29. Thim L, Moody AL (1981) The primary structure of porcine glicentin (proglucagon). Regul Pept 2: 139–151

    Google Scholar 

  30. Köhler G, Milstein C (1976) Derivation of specific antibody-producing tissue culture and tumor cell lines by cell fusion. Eur J Immunol 6: 511–519

    Google Scholar 

  31. Holst JJ, Aasted B (1974) Production and evaluation of glucagon antibodies for radioimmunoassay. Acta Endocrinol 77: 715–726

    Google Scholar 

  32. Rasch R (1979) Control of blood glucose levels in the streptozotocin diabetic rat using a long-acting heat-treated insulin. Diabetologia 16: 185–190

    Google Scholar 

  33. Lisato G, Cusin I, Tiengo A, Del Prato S, Jeanrenaud B (1992) The contribution of hyperglycaemia and hypoinsulinaemia to insulin resistance of streptozotocin-diabetic rats. Diabetologia 35: 310–315

    Google Scholar 

  34. Rodbell M, Krans HMJ, Pohl SL, Birnbaumer L (1971) The glucagon-sensitive adenyl cyclase system in plasma membranes of rat liver. J Biol Chem 246: 1861–1871

    Google Scholar 

  35. Jelinek LJ, Lok S, Rosenberg GB et al. (1993) Expression cloning and signaling properties of the rat glucagon receptor. Science 259: 1614–1616

    Google Scholar 

  36. Barling P, Beloff-Chain A (1973) Studies on the administration of glucagon and insulin antibodies to rats. Horm Metab Res 5: 154–159

    Google Scholar 

  37. Heindorff H, Holst JJ, Almdal T, Vilstrup H (1993) Effect of glucagon immunoneutralization on the increase in urea synthesis after hysterectomy in rats. Eur J Clin Invest 23: 166–171

    Google Scholar 

  38. Luyckx AS (1974) Etude de la sécrétion de l'insulin et du glucagon. Faculté de Médicine, Université de Liege, Liege pp 122

    Google Scholar 

  39. Frohman LA, Reichlin M, Sokal JE (1970) Immunologic and biologic properties of antibodies to a glucagon-serum albumin polymer. Endocrinology 87: 1055–1061

    Google Scholar 

  40. Tan K, Tsiolakis D, Marks V (1985) Effect of glucagon antibodies on plasma glucose, insulin and somatostatin in the fasting and fed rat. Diabetologia 28: 435–440

    Google Scholar 

  41. Malaisse WJ, Giroix M-H, ZÄhner D, Marynissen G, Sener A, Portha B (1991) Neonatal streptozotocin injection: a model of glucotoxicity. Metabolism 40: 1101–1105

    Google Scholar 

  42. Lickley HLA, Kemmer FW, Doi K, Vranic M (1983) Glucagon suppression improves glucoregulation in moderate but not chronic severe diabetes. Am J Physiol 245: E424-E429

    Google Scholar 

  43. Doi K, Prentki M, Yip C, Müller WA, Jeanrenaud B, Vranic M (1979) Identical biological effects of pancreatic glucagon and a purified moiety of canine gastric immunoreactive glucagon. J Clin Invest 63: 525–531

    Google Scholar 

  44. McGarry JD, Foster DW (1983) Glucagon and ketogenesis. In: Lefèbvre PJ (ed) Handbook of experimental pharmacology, Glucagon 66/I. Springer, Berlin Heidelberg New York, pp 383–398

    Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Diabetes Pharmacology, Novo Nordisk, BagsvÆrd, Denmark

    C. L. Brand & B. Rolin

  2. Immunochemical Department, Novo Nordisk, BagsvÆrd, Denmark

    P. N. JØrgensen

  3. Hybridoma Laboratory, Novo Nordisk, BagsvÆrd, Denmark

    I. Svendsen

  4. Medical Affairs, Novo Nordisk, BagsvÆrd, Denmark

    J. S. Kristensen

  5. Department of Medical Physiology, The Panum Institute, University of Copenhagen, 3C Blegdamsvej, DK-2200, Copenhagen N, Denmark

    J. J. Holst

Authors
  1. C. L. Brand
    View author publications

    Search author on:PubMed Google Scholar

  2. B. Rolin
    View author publications

    Search author on:PubMed Google Scholar

  3. P. N. JØrgensen
    View author publications

    Search author on:PubMed Google Scholar

  4. I. Svendsen
    View author publications

    Search author on:PubMed Google Scholar

  5. J. S. Kristensen
    View author publications

    Search author on:PubMed Google Scholar

  6. J. J. Holst
    View author publications

    Search author on:PubMed Google Scholar

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brand, C.L., Rolin, B., JØrgensen, P.N. et al. Immunoneutralization of endogenous glucagon with monoclonal glucagon antibody normalizes hyperglycaemia in moderately streptozotocin-diabetic rats. Diabetologia 37, 985–993 (1994). https://doi.org/10.1007/BF00400461

Download citation

  • Received: 18 February 1994

  • Revised: 05 May 1994

  • Issue date: October 1994

  • DOI: https://doi.org/10.1007/BF00400461

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Key words

  • Immunoneutralization
  • monoclonal antibody
  • glucagon
  • insulin
  • streptozotocin
  • rat
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Language editing
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our brands

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Discover
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Legal notice
  • Cancel contracts here

104.245.107.215

Not affiliated

Springer Nature

© 2025 Springer Nature