Skip to main content

Anatomy of the Poliovirus Internal Ribosome Entry Site

  • Chapter
Cap-Independent Translation

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 203))

  • 127 Accesses

  • 31 Citations

Abstract

The positive strand genomic RNAs of picornaviruses present several unique structural features to the metabolic machinery of a eukaryotic cell. Such features include the absence of a 5’ terminal m7G cap group that is usually required for efficient translation, the presence of a small protein (VPg) covalently attached to the 5’ end of the viral RNA, an unusually long (600-1200 nts) stretch of 5’ noncoding region (5’ NCR) sequences upstream of the initiator AUG, the arrangement of these 5’ NCR sequences into extensive and complex secondary and tertiary structures, and the presence of multiple AUG codons upstream of the initiator AUG that may place limitations on the ability of cytoplasmic ribosomes to “scan” these sequences prior to selecting the correct initiation codon used for protein synthesis. Compelling evidence for internal entry of ribosomes and RNA- protein interactions at internal sites within the 5’ NCR of picornavirus RNAs came from in vitro and cell culture translation studies using dicistronic mRNAs for poliovirus (Pelletier and Sonenberg 1988, 1989), encephalomyocarditis virus (EMCV; Jang et al. 1988, 1989; Molla et al. 1992), foot and mouth disease virus (FMDV; Belsham and Brangwyn 1990) and hepatitis A virus (HAV; Glass et al. 1993; Brown et al. 1994).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

') var buybox = document.querySelector("[data-id=id_"+ timestamp +"]").parentNode var buyingOptions = buybox.querySelectorAll(".buying-option") ;[].slice.call(buyingOptions).forEach(initCollapsibles) var buyboxMaxSingleColumnWidth = 480 function initCollapsibles(subscription, index) { var toggle = subscription.querySelector(".buying-option-price") subscription.classList.remove("expanded") var form = subscription.querySelector(".buying-option-form") var priceInfo = subscription.querySelector(".price-info") var buyingOption = toggle.parentElement if (toggle && form && priceInfo) { toggle.setAttribute("role", "button") toggle.setAttribute("tabindex", "0") toggle.addEventListener("click", function (event) { var expandedBuyingOptions = buybox.querySelectorAll(".buying-option.expanded") var buyboxWidth = buybox.offsetWidth ;[].slice.call(expandedBuyingOptions).forEach(function(option) { if (buyboxWidth <= buyboxMaxSingleColumnWidth && option != buyingOption) { hideBuyingOption(option) } }) var expanded = toggle.getAttribute("aria-expanded") === "true" || false toggle.setAttribute("aria-expanded", !expanded) form.hidden = expanded if (!expanded) { buyingOption.classList.add("expanded") } else { buyingOption.classList.remove("expanded") } priceInfo.hidden = expanded }, false) } } function hideBuyingOption(buyingOption) { var toggle = buyingOption.querySelector(".buying-option-price") var form = buyingOption.querySelector(".buying-option-form") var priceInfo = buyingOption.querySelector(".price-info") toggle.setAttribute("aria-expanded", false) form.hidden = true buyingOption.classList.remove("expanded") priceInfo.hidden = true } function initKeyControls() { document.addEventListener("keydown", function (event) { if (document.activeElement.classList.contains("buying-option-price") && (event.code === "Space" || event.code === "Enter")) { if (document.activeElement) { event.preventDefault() document.activeElement.click() } } }, false) } function initialStateOpen() { var buyboxWidth = buybox.offsetWidth ;[].slice.call(buybox.querySelectorAll(".buying-option")).forEach(function (option, index) { var toggle = option.querySelector(".buying-option-price") var form = option.querySelector(".buying-option-form") var priceInfo = option.querySelector(".price-info") if (buyboxWidth > buyboxMaxSingleColumnWidth) { toggle.click() } else { if (index === 0) { toggle.click() } else { toggle.setAttribute("aria-expanded", "false") form.hidden = "hidden" priceInfo.hidden = "hidden" } } }) } initialStateOpen() if (window.buyboxInitialised) return window.buyboxInitialised = true initKeyControls() })()

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Agol VI, Drozdov SG, Ivannikova TA, Kolesnikova MS, Korolev MB, Tolskaya EA (1989) Restricted growth of attenuated poliovirus strains in cultured cells of a human neuroblastoma. J Virol 63: 4034–4038

    PubMed  CAS  Google Scholar 

  • Alexander L, Lu HH, Wimmer E (1994) Polioviruses containing picornavirus type 1 and/or type 2 internal ribosomal entry site elements: genetic hybrids and the expression of a foreign gene. Proc Natl Acad Sci 91: 1406–1410

    Article  PubMed  CAS  Google Scholar 

  • Andino R, Rieckhof GE, Baltimore D (1990) A functional ribonucleoprotein complex forms around the 5’ end of poliovirus RNA. Cell 63: 369–380

    Article  PubMed  CAS  Google Scholar 

  • Andino R, Rieckhof GE, Achacoso PL, Baltimore D (1993) Poliovirus RNA synthesis utilizes an RNP complex formed around the 5’-end of viral RNA. EMBO J 12: 3587–3598

    PubMed  CAS  Google Scholar 

  • Belsham GJ, Brangwyn JK (1990) A region of the 5’ noncoding region of foot-and-mouth disease virus RNA directs efficient internal initiation of protein synthesis within cells: Involvement with the role of L protease in translational control. J Virol 64: 5389–5395

    Google Scholar 

  • Bienkowska-Szewczyk K, Ehrenfeld E (1988) An internal 5’-noncoding region required for translation of poliovirus RNA in vitro. J Virol 62: 3068–3072

    PubMed  CAS  Google Scholar 

  • Borovjagin AV, Evstafieva AG, Ugarova TY, Shatsky IN (1990) A factor that specifically binds to the 5’- untranslated region of encephalomyocarditis virus RNA. FEBS Lett 261: 237–240

    Article  PubMed  CAS  Google Scholar 

  • Brown BA, Ehrenfeld E (1979) Translation of poliovirus RNA in vitro: changes in cleavage pattern and initiation sites by ribosomal salt wash. Virology 97: 396–405

    Article  PubMed  CAS  Google Scholar 

  • Brown EA, Zajac AJ, Lemon SM (1994) In vitro characterization of an internal ribosomal entry site (IRES) present within the 5’ nontranslated region of hepatitis A virus RNA: comparison with the IRES of encephalomyocarditis virus. J Virol 68: 1066–1074

    PubMed  CAS  Google Scholar 

  • Callahan PL, Mizutani S, Colonno RJ (1985) Molecular cloning and complete sequence determination of the RNA genome of human rhinovirus type 14. Proc Natl Acad Sci USA 82: 732–736

    CAS  Google Scholar 

  • del Angel RM, Papavassiliou AG, Fernandez-Thomas C, Silverstein SJ, Racaniello VR (1989) Cell proteins bind to multiple sites within the 5’-untranslated region of poliovirus RNA. Proc Natl Acad Sci USA 86: 8299–8303

    Article  PubMed  Google Scholar 

  • Dildine SL, Semler BL (1989) The deletion of 41 proximal nucleotides reverts a poliovirus mutant containing a temperature-sensitive lesion in the 5’ noncoding region of genomic RNA. J Virol 63: 847–862

    PubMed  CAS  Google Scholar 

  • Dildine SL, Semler BL (1992) Conservation of RNA-protein interactions among picornaviruses. J Virol 66: 4364–4376

    PubMed  CAS  Google Scholar 

  • Dildine SL, Stark KR, Haller AA, Semler BL (1991) Poliovirus translation initiation: differential effects of directed and selected mutations in the 5’ noncoding region of viral mRNAs. Virology 182: 742–752

    Article  PubMed  CAS  Google Scholar 

  • Dorner AJ, Semler BL, Jackson RJ, Hanecak R, Duprey E, Wimmer E (1984) In vitro translation of poliovirus RNA: utilization of internal initiation sites in reticulocyte lysate. J Virol 50: 507–514

    PubMed  CAS  Google Scholar 

  • Earle JAP, Skuce RA, Fleming CS, Hoey EM, Martin SJ (1988) The complete nucleotide sequence of a bovine enterovirus. J Gen Virol 69: 253–263

    Article  PubMed  CAS  Google Scholar 

  • Evans DMA, Dunn G, Minor PD, Schild GC, Cann AJ, Stanway G, Almond JW, Currey K, Maizel JV (1985) Increased neurovirulence associated with a single nucleotide change in a noncoding region of the Sabin type 3 poliovaccine genome. Nature 314: 548–550

    Article  PubMed  CAS  Google Scholar 

  • Gebhard JR, Ehrenfeld E (1992) Specific interactions of HeLa cell proteins with proposed translation domains of the poliovirus 5’ noncoding region. J Virol 66: 3101–3109

    PubMed  CAS  Google Scholar 

  • Glass MJ, Jia XY, Summers DF (1993) Identification of the hepatitis A virus internal ribosome entry site: in vivo and in vitro analysis of bicistronic RNAs containing the HAV 5’ noncoding region. Virology 193: 842–852

    Article  PubMed  CAS  Google Scholar 

  • Haller AA, Semler BL (1992) Linker scanning mutagenesis of the internal ribosome entry site of poliovirus RNA. J Virol 66: 5075–5086

    PubMed  CAS  Google Scholar 

  • Haller AA, Semler BL (1995) Stem-loop structure synergy in binding cellular proteins to the 5’ noncoding region of poliovirus RNA. Virology 206: 923–934

    Article  PubMed  CAS  Google Scholar 

  • Haller AA, Nguyen JHC, Semler BL (1993) Minimum internal ribosome entry site required for poliovirus infectivity. J Virol 67: 7461–7471

    PubMed  CAS  Google Scholar 

  • Hambidge SJ, Sarnow P (1992) Translational enhancement of the poliovirus 5’ noncoding region mediated by virus-encoded polypeptide 2A. Proc Natl Acad Sci USA 89: 10272–10276

    Article  PubMed  CAS  Google Scholar 

  • Harber J, Wimmer E (1993) Aspects of the molecular biology of poliovirus replication. In: Carrasco L, Sonenberg N, Wimmer E (eds) Regulation of gene expression in animal viruses. Plenum, New York, pp 189–224

    Chapter  Google Scholar 

  • Hellen CUT, Witherell GW, Schmid M, Shin SH, Pestova TV, Gil A, Wimmer E (1993) A cytoplasmic 57 kDa protein (p57) that is required for translation of picornavirus RNA by internal ribosomal entry is identical to the nuclear polypyrimidine tract-binding protein. Proc Natl Acad Sci USA 90: 7642–7646

    Article  PubMed  CAS  Google Scholar 

  • Hellen CUT, Pestova TV, Litterst M, Wimmer E (1994) The cellular polypeptide p57 (pyrimidine tract- binding protein) binds to multiple sites in the poliovirus 5‘nontranslated region. J Virol 68: 941–950

    PubMed  CAS  Google Scholar 

  • Iizuka N, Kohara A, Hagino-Yamagishi K, Abe S, Komatsu T, Tago K, Arita M, Nomoto A (1989) Construction of less neurovirulent polioviruses by introducing deletions into the 5’ noncoding sequence of the genome. J Virol 63: 5354–5363

    PubMed  CAS  Google Scholar 

  • Jackson RJ, Howell MT, Kaminski A (1990) The novel mechanism of initiation of picornavirus RNA translation. TIBS 15: 477–483

    PubMed  Google Scholar 

  • Jang SK, Wimmer E (1990) Cap-independent translation of encephalomyocarditis RNA: structural elements of the internal ribosomal entry site and involvement of a cellular 57 kD RNA-binding protein. Genes Dev 4: 1560–1572

    Article  PubMed  CAS  Google Scholar 

  • Jang SK, Krausslich HG, Nicklin MJH, Duke GM, Palmenberg AC, Wimmer E (1988) A segment of the 5’ nontranslated region of encephalomyocarditis virus RNA directs internal entry of ribosomes during in vitro translation. J Virol 62: 2636–2643

    PubMed  CAS  Google Scholar 

  • Jang SK, Davies MV, Kaufman RJ, Wimmer E (1989) Initiation of protein synthesis by internal entry or ribosomes into the 5’ nontranslated region of encephalomyocarditis virus RNA in vivo. J Virol 63: 1651–1660

    PubMed  CAS  Google Scholar 

  • Jang SK, Pestova TV, Hellen CUT, Witherell GW, Wimmer E (1990) Cap-independent translation of picornavirus RNAs: structure and function of the internal ribosomal entry site. Enzyme 44: 292–309

    PubMed  CAS  Google Scholar 

  • Johnson VH, Semler BL (1988) Defined recombinants of poliovirus and coxsackievirus: sequence specific deletions and functional substitutions in the 5’-noncoding regions of viral RNAs. Virology 162:47–57

    Article  PubMed  CAS  Google Scholar 

  • Kawamura N, Kohara M, Abe S, Komatsu T, Tago K, Arita M, Nomoto A (1989) Determinants in the 5’ noncoding region of poliovirus Sabin 1 RNA that influence the attenuation phenotype. J Virol 63: 1302–1309

    PubMed  CAS  Google Scholar 

  • Konarska MM, Sharp PA (1986) Electrophoretic separation of complexes involved in the splicing of precursors to mRNAs. Cell 46: 845–855

    Article  PubMed  CAS  Google Scholar 

  • Kozak M (1989) The scanning model for translation: an update. J Cell Biol 108: 229–241

    Article  PubMed  CAS  Google Scholar 

  • Kuge S, Nomoto A (1987) Construction of viable deletion and insertion mutants of the Sabin strain type poliovirus: function of the 5’ noncoding sequence in viral replication. J Virol 61: 1478–1487

    PubMed  CAS  Google Scholar 

  • Kuge S, Kawamura N, Nomoto A (1989) Genetic variation occurring on the genome of an in vitro insertion mutant of poliovirus type 1. J Virol 63: 1069–1075

    PubMed  CAS  Google Scholar 

  • La Monica N, Almond JW, Racaniello VR (1987) A mouse model for poliovirus neurovirulence identifies mutations that attenuate the virus for humans. J Virol 61: 2917–2920

    PubMed  Google Scholar 

  • La Monica N, Racaniello VR (1989) Differences in replication of attenuated and neurovirulent poliovirus in human neuroblastoma cell line SH-SY5Y. J Virol 63: 2357–2360

    PubMed  Google Scholar 

  • Le SY, Zuker M (1990) Common structures of the 5’-noncoding RNA in enteroviruses and rhinoviruses. J Mol Biol 216: 726–741

    Article  Google Scholar 

  • Le SY, Chen JH, Sonenberg N, Maizel JV (1992) Conserved tertiary structure elements in the 5’ untranslated region of human enteroviruses and rhinoviruses. Virology 191: 858–866

    Article  PubMed  CAS  Google Scholar 

  • Luz N, Beck E (1990) A cellular 57 kDa protein binds to two regions of the internal translation initiation site of foot-and-mouth disease virus. FEBS Lett 269: 311–314

    Article  PubMed  CAS  Google Scholar 

  • Macadam AJ, Pollard SR, Ferguson G, Dunn G, Skuce R, Almond JW, Minor PD (1991) The 5’ noncoding region of the type 2 poliovirus vaccine strain contains determinants of attenuation and temperature sensitivity. Virology 181: 451–458

    Article  PubMed  CAS  Google Scholar 

  • Macadam AJ, Ferguson G, Fleming T, Stone DM, Almond JW, Minor PD (1994) Role for poliovirus protease 2A in cap independent translation. EMBO J 13: 924–927

    PubMed  CAS  Google Scholar 

  • Meerovitch K, Pelletier J, Sonenberg N (1989) A cellular protein that binds to the 5’ noncoding region of poliovirus RNA: implications for internal translation initiation. Genes Dev 3: 1026–1034

    Article  PubMed  CAS  Google Scholar 

  • Meerovitch K, Nicholson R, Sonenberg N (1991) In vitro mutational analysis of cis-acting RNA translational elements within the poliovirus type 2 5’ untranslated region. J Virol 65: 5895–5901

    PubMed  CAS  Google Scholar 

  • Meerovitch K, Lee HS, Svitkin Y, Kenan DJ, Chan EKL, Agol, VI, Keene JD, Sonenberg N (1993) La autoantigen enhances and corrects translation of poliovirus RNA in reticulocyte lysate. J Virol 67: 3798–3807

    PubMed  CAS  Google Scholar 

  • Minor PD, Dunn G (1988) The effect of sequences in the 5’ non-coding region on the replication of polioviruses in the human gut. J Gen Virol 69: 1091–1096

    Article  PubMed  CAS  Google Scholar 

  • Mizutani S, Colonno RJ (1985) In vitro synthesis of an infectious RNA from cDNA clones of human rhinovirus type 14. J Virol 56: 628–632

    PubMed  CAS  Google Scholar 

  • Molla A, Jang SK, Paul AV, Reuer Q, Wimmer E (1992) Cardioviral internal ribosomal entry site is functional in a genetically engineered dicistronic poliovirus. Nature 356: 255–257

    Article  PubMed  CAS  Google Scholar 

  • Moss EG, O’Neill RE, Racaniello VR (1989) Mapping of attenuating sequences of an avirulent poliovirus type 2 strain. J Virol 63: 1884–1890

    PubMed  CAS  Google Scholar 

  • Najita L, Sarnow P (1990) Oxidation-reduction sensitive interaction of a cellular 50-kDa protein with an RNA hairpin in the 5’-noncoding region of the poliovirus genome. Proc Natl Acad Sci USA 87: 5846–5850

    Article  PubMed  CAS  Google Scholar 

  • Nicholson R, Pelletier J, Le SY, Sonenberg N (1991) Structural and functional analysis of the ribosome landing pad of poliovirus type 2: in vivo translation studies. J Virol 65: 5886–5894

    PubMed  CAS  Google Scholar 

  • Nicklin MJH, Krausslich HG, Toyoda H, Dunn JJ, Wimmer E (1987) Poliovirus polypeptide precursors: expression in vitro and processing by exogenous 3C and 2A proteinases. Proc Natl Acad Sci USA 84: 4002–4006

    Article  PubMed  CAS  Google Scholar 

  • Nomoto A, Kohara M, Kuge S, Kawamura N, Arita M, Komatsu T, Abe S, Semler BL, Wimmer E, Itoh H (1987) Study on virulence of poliovirus type 1 using in vitro modified viruses. In: Brinton MA, Rueckert RR (eds) Positive strand RNA viruses. Liss, New York, pp 437–452

    Google Scholar 

  • Omata T, Kohara M, Kuge S, Komatsu T, Abe S, Semler BL, Kameda A, Itoh H, Arita M, Wimmer E, Nomoto A (1986) Genetic analysis of the attenuation phenotype of poliovirus type 1. J Virol 58: 348–358

    PubMed  CAS  Google Scholar 

  • Pelletier J, Sonenberg N (1988) Internal initiation of translation of eukaryotic mRNA directed by a sequence derived from poliovirus RNA. Nature 334: 320–325

    Article  PubMed  CAS  Google Scholar 

  • Pelletier J, Sonenberg N (1989) Internal binding of eukaryotic ribosomes on poliovirus RNA: translation in Hela cell extracts. J Virol 63: 441–444

    PubMed  CAS  Google Scholar 

  • Pelletier J, Kaplan G, Racaniello VR, Sonenberg N (1988a) Cap-independent translation of poliovirus mRNA is conferred by sequence elements within the 5’ noncoding region. Mol Cell Biol 8: 1103–1112

    PubMed  CAS  Google Scholar 

  • Pelletier J, Kaplan G, Racaniello VR, Sonenberg N (1988b) Translational efficiency of poliovirus mRNA: mapping inhibitory cis-acting elements within the 5’ noncoding region. J Virol 62: 2219–2227

    PubMed  CAS  Google Scholar 

  • Pelletier J, Flynn ME, Kaplan G, Racaniello V, Sonenberg N (1988c) Mutational analysis of upstream AUG codons of poliovirus RNA. J Virol 62: 4486–4492

    PubMed  CAS  Google Scholar 

  • Percy N, Belsham GJ, Brangwyn JK, Sullivan M, Stone DM, Almond JW (1992) Intracellular modifications induced by poliovirus reduce the requirement for structural motifs in the 5’ noncoding region of the genome involved in internal initiation of protein synthesis. J Virol 66: 1695–1701

    PubMed  CAS  Google Scholar 

  • Pestova TV, Maslova SV, Potapov VK, Agol VI (1989) Distinct modes of poliovirus polyprotein initiation in vitro. Virus Res 14: 107–118

    Article  PubMed  CAS  Google Scholar 

  • Pestova TV, Hellen CUT, Wimmer E (1991) Translation of poliovirus RNA: the essential roles of a cis- acting oligopyrimidine element within the 5’-nontranslated region and a trans-acting 57 kDa protein. J Virol 65: 6194–6204

    PubMed  CAS  Google Scholar 

  • Pestova TV, Hellen CUT, Wimmer E (1994) A conserved AUG triplet in the 5’ nontranslated region of poliovirus can function as an initiation codon in vitro and in vivo. Virology 204: 729–737

    Article  PubMed  CAS  Google Scholar 

  • Phillips BA, Emmert A (1986) Modulation of expression of poliovirus proteins in reticulocyte lysates. Virology 148: 255–267

    Article  PubMed  CAS  Google Scholar 

  • Pilipenko EV, Blinov VM, Romanova LI, Sinyakov AN, Maslova SV, Agol VI (1989) Conserved structural domains in the 5-untranslated region of picornaviral genomes: an analysis of the segment controlling translation and neurovirulence. Virology 168: 201–209

    Article  PubMed  CAS  Google Scholar 

  • Pilipenko EV, Gmyl AP, Maslova SV, Svitkin YV, Sinyakov AN, Agol VI (1992a) Prokaryotic like cis elements in the cap-independent internal initiation of translation on picornavirus RNA. Cell 68: 119–131

    Article  PubMed  CAS  Google Scholar 

  • Pilipenko EV, Maslova SV, Sinyakov AN, Agol VI (1992b) Towards identification of cis-acting elements involved in the replication of enterovirus and rhinovirus RNAs: a proposal for the existence of tRNA like terminal structures. Nucleic Acids Res 20: 1739–1745

    Article  PubMed  CAS  Google Scholar 

  • Poyry T, Kinnunen L, Hovi T (1992) Genetic variation in vivo and proposed functional domains of the 5’ noncoding region of poliovirus RNA. J Virol 66: 5313–5319

    PubMed  CAS  Google Scholar 

  • Racaniello VR, Baltimore D (1981) Cloned poliovirus complementary DNA is infectious in mammalian cells. Science 214: 916–919

    Article  PubMed  CAS  Google Scholar 

  • Rivera VM, Welsh JD, Maizel JV (1988) Comparative sequence analysis of the 5’ noncoding region of the enteroviruses and rhinoviruses. Virology 165: 42–50

    Article  PubMed  CAS  Google Scholar 

  • Semler BL, Dorner AJ, Wimmer E (1984) Production of infectious poliovirus from cloned cDNA is dramatically increased by SV 40 transcription and replication signals. Nucleic Acids Res 12: 5123–5141

    Article  PubMed  CAS  Google Scholar 

  • Semler BL, Johnson VH, Tracy S (1986) A chimeric plasmid from cDNA clones of poliovirus and coxsackievirus produces a recombinant virus that is temperature-sensitive. Proc Natl Acad Sci USA 83:1777–1781

    Article  PubMed  CAS  Google Scholar 

  • Semler BL, Kuhn RJ, Wimmer E (1988) Replication of the poliovirus genome. In: Domingo E, Holland J, Ahlquist P (eds) RNA genetics, vol I. CRC Press, Boca Raton, pp 23–48

    Google Scholar 

  • Simoes EA, Sarnow P (1991) An RNA hairpin at the extreme 5’ end of the poliovirus RNA genome modulates viral translation in human cells. J Virol 65: 913–921

    PubMed  CAS  Google Scholar 

  • Skinner MA, Racaniello VR, Dunn G, Cooper J, Minor PD, Almond JW (1989) New model for the secondary structure of the 5’ non-coding RNA of poliovirus is supported by biochemical and genetic data that also shows that RNA secondary structure is important in neurovirulence. J Mol Biol 207: 379–392

    Article  PubMed  CAS  Google Scholar 

  • Stanway G, Hughes P, Mountford RC, Minor PD, Almond JW (1984) The complete nucleotide sequence of a common cold virus: human rhinovirus 14. Nucleic Acids Res 12: 7859–7875

    Article  PubMed  CAS  Google Scholar 

  • Stone DM, Almond JW, Brangwyn JK, Belsham GJ (1993) Trans complementation of cap-independent translation directed by poliovirus 5’ noncoding region deletion mutants: evidence for RNA-RNA interactions. J Virol 67: 6215–6223

    PubMed  CAS  Google Scholar 

  • Svitkin YV, Maslova SV, Agol VI (1985) The genomes of attenuated and virulent poliovirus strains differ in their in vitro translation efficiencies. Virology 147: 243–252

    Article  PubMed  CAS  Google Scholar 

  • Svitkin YV, Cammack N, Minor PD, Almond JW (1990) Translation deficiency of the Sabin type 3 poliovirus genome: association with an attenuating mutation C472→U. Virology 175: 103–109

    Article  PubMed  CAS  Google Scholar 

  • Toyoda H, Kohara M, Kataoka Y, Suganuma T, Omato T, Imura N, Nomoto A (1984) Complete nucleotide sequences of all three poliovirus serotype genomes. J Mol Biol 174: 561–585

    Article  PubMed  CAS  Google Scholar 

  • Trono D, Pelletier J, Sonenberg N, Baltimore D (1988a) Translation in mammalian cells of a gene linked to the poliovirus 5’ noncoding region. Science 241: 445–448

    Article  PubMed  CAS  Google Scholar 

  • Trono D, Andino R, Baltimore D (1988b) An RNA sequence of hundreds of nucleotides at the 5’ end of poliovirus RNA is involved in allowing viral protein synthesis. J Virol 62: 2291–2299

    PubMed  CAS  Google Scholar 

  • van der Werf S, Bradley J, Wimmer E, Studier FW, Dunn JJ (1986) Synthesis of infectious poliovirus RNA by purified T7 RNA polymerase. Proc Natl Acad Sci USA 83: 2330–2334.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ehrenfeld, E., Semler, B.L. (1995). Anatomy of the Poliovirus Internal Ribosome Entry Site. In: Sarnow, P. (eds) Cap-Independent Translation. Current Topics in Microbiology and Immunology, vol 203. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79663-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79663-0_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-79665-4

  • Online ISBN: 978-3-642-79663-0

  • eBook Packages: Springer Book Archive

Keywords

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Publish with us

Policies and ethics