Skip to main content

The AQP Structure and Functional Implications

  • Chapter
Aquaporins

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 190))

  • 4848 Accesses

  • 97 Citations

Progress in the structure determination of AQPs has led to a deep understanding of water and solute permeation by these small integral membrane proteins. The atomic structures now available have allowed the water permeation and exclusion of protons to be monitored by molecular dynamics simulations, and have provided a framework for assessing the water and solute permeation in great detail by site-directed mutations. In spite of this, further structural and molecular dynamics analyses are required to elucidate the basis for regulation as well as for gas permeation, processes that are still to be deciphered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Beitz E, Pavlovic-Djuranovic S, Yasui M, Agre P, Schultz JE (2004) Molecular dissection of water and glycerol permeability of the aquaglyceroporin from Plasmodium falciparum by mutational analysis. Proc Natl Acad Sci USA 101:1153–1158

    Article  PubMed  CAS  Google Scholar 

  • Beitz E, Wu B, Holm LM, Schultz JE, Zeuthen T (2006) Point mutations in the aromatic/arginine region in aquaporin 1 allow passage of urea, glycerol, ammonia, and protons. Proc Natl Acad Sci USA 103:269–274

    Article  PubMed  CAS  Google Scholar 

  • Biela A, Grote K, Otto B, Hoth S, Hedrich R, Kaldenhoff R (1999) The Nicotiana tabacum plasma membrane aquaporin NtAQP1 is mercury-insensitive and permeable for glycerol. Plant J 18:565–570

    Article  PubMed  CAS  Google Scholar 

  • Blank ME, Ehmke H (2003) Aquaporin-1 and HCO3(−)−Cl transporter-mediated transport of CO2 across the human erythrocyte membrane. J Physiol 550:419–429

    Article  PubMed  CAS  Google Scholar 

  • Buzhynskyy N, Hite RK, Walz T, Scheuring S (2007) The supramolecular architecture of junctional microdomains in native lens membranes. EMBO Rep 8:51–55

    Article  PubMed  CAS  Google Scholar 

  • Chaumont F, Barrieu F, Wojcik E, Chrispeels MJ, Jung R (2001) Aquaporins constitute a large and highly divergent protein family in maize. Plant Physiol 125:1206–1215

    Article  PubMed  CAS  Google Scholar 

  • Cheng A, van Hoek AN, Yeager M, Verkman AS, Mitra AK (1997) Three-dimensional organization of a human water channel. Nature 387:627–630

    Article  PubMed  CAS  Google Scholar 

  • Christensen BM, Zelenina M, Aperia A, Nielsen S (2000) Localization and regulation of PKA-phosphorylated AQP2 in response to V(2)-receptor agonist/antagonist treatment. Am J Physiol Renal Physiol 278:F29–F42

    PubMed  CAS  Google Scholar 

  • Costello MJ, McIntosh TJ, Robertson JD (1989) Distribution of gap junctions and square array junctions in the mammalian lens. Invest Ophthalmol Vis Sci 30:975–989

    PubMed  CAS  Google Scholar 

  • Daniels MJ, Yeager M (2005) Phosphorylation of aquaporin PvTIP3;1 defined by mass spectrom-etry and molecular modeling. Biochemistry 44:14443–14454

    Article  PubMed  CAS  Google Scholar 

  • Dean RM, Rivers RL, Zeidel ML, Roberts DM (1999) Purification and functional reconstitution of soybean nodulin 26. An aquaporin with water and glycerol transport properties. Biochemistry 38:347–353

    Article  PubMed  CAS  Google Scholar 

  • de Groot BL, Grubmuller H (2005) The dynamics and energetics of water permeation and proton exclusion in aquaporins. Curr Opin Struct Biol 15:176–183

    Article  PubMed  CAS  Google Scholar 

  • de Groot BL, Heymann JB, Engel A, Mitsuoka K, Fujiyoshi Y, Grubmüller H (2000) The fold of human aquaporin 1. J Mol Biol 300:987–994

    Article  PubMed  CAS  Google Scholar 

  • de Groot BL, Engel A, Grubmüller H (2001) A refined structure of human aquaporin-1. FEBS Lett 504:206–211

    Article  PubMed  Google Scholar 

  • Dunia I, Manenti S, Rousselet A, Benedetti EL (1987) Electron microscopic observations of reconstituted proteoliposomes with the purified major intrinsic membrane protein of eye lens fibers. J Cell Biol 105:1679–1689

    Article  PubMed  CAS  Google Scholar 

  • Engel A, Fujiyoshi Y, Gonen T, Walz T (2008) Junction-forming aquaporins. Curr Opin Struct Biol 18:229–235

    PubMed  CAS  Google Scholar 

  • Fotiadis D, Hasler L, Muller DJ, Stahlberg H, Kistler J, Engel A (2000) Surface tongue-and-groove contours on lens MIP facilitate cell-to-cell adherence. J Mol Biol 300:779–789

    Article  PubMed  CAS  Google Scholar 

  • Fotiadis D, Jeno P, Mini T, Wirtz S, Müller SA et al (2001) Structural characterization of two aquaporins isolated from native spinach leaf plasma membranes. J Biol Chem 276:1707–1714

    Article  PubMed  CAS  Google Scholar 

  • Fotiadis D, Suda K, Tittmann P, Jeno P, Philippsen A et al (2002) Identification and structure of a putative Ca2+-binding domain at the C terminus of AQP1. J Mol Biol 318:1381–1394

    Article  PubMed  CAS  Google Scholar 

  • Fu D, Libson A, Miercke LJ, Weitzman C, Nollert P et al (2000) Structure of a glycerol-conducting channel and the basis for its selectivity. Science 290:481–486

    Article  PubMed  CAS  Google Scholar 

  • Fu D, Libson A, Stroud R (2002) The structure of GlpF, a glycerol conducting channel. Novartis Found Symp 245:51–61; discussion 61–55, 165–168

    Article  PubMed  CAS  Google Scholar 

  • Gerbeau P, Guclu J, Ripoche P, Maurel C (1999) Aquaporin Nt-TIPa can account for the high permeability of tobacco cell vacuolar membrane to small neutral solutes. Plant J 18:577–587

    Article  PubMed  CAS  Google Scholar 

  • Gerbeau P, Amodeo G, Henzler T, Santoni V, Ripoche P, Maurel C (2002) The water permeability of Arabidopsis plasma membrane is regulated by divalent cations and pH. Plant J 30:71–81

    Article  PubMed  CAS  Google Scholar 

  • Gonen T, Walz T (2006) The structure of aquaporins. Q Rev Biophys 39:361–396

    Article  PubMed  CAS  Google Scholar 

  • Gonen T, Cheng Y, Kistler J, Walz T (2004a) Aquaporin-0 membrane junctions form upon prote-olytic cleavage. J Mol Biol 342:1337–1345

    Article  CAS  Google Scholar 

  • Gonen T, Sliz P, Kistler J, Cheng Y, Walz T (2004b) Aquaporin-0 membrane junctions reveal the structure of a closed water pore. Nature 429:193–197

    Article  CAS  Google Scholar 

  • Gonen T, Cheng Y, Sliz P, Hiroaki Y, Fujiyoshi Y et al (2005) Lipid-protein interactions in double-layered two-dimensional AQP0 crystals. Nature 438:633–638

    Article  PubMed  CAS  Google Scholar 

  • Gorelick DA, Praetorius J, Tsunenari T, Nielsen S, Agre P (2006) Aquaporin-11: a channel protein lacking apparent transport function expressed in brain. BMC Biochem 7:14

    Article  PubMed  CAS  Google Scholar 

  • Gorin MB, Yancey SB, Cline J, Revel JP, Horwitz J (1984) The major intrinsic protein (MIP) of the bovine lens fiber membrane: characterization and structure based on cDNA cloning. Cell 39:49–59

    Article  PubMed  CAS  Google Scholar 

  • Harries WE, Akhavan D, Miercke LJ, Khademi S, Stroud RM (2004) The channel architecture of aquaporin 0 at a 2.2-Å resolution. Proc Natl Acad Sci USA 101:14045–14050

    Article  PubMed  CAS  Google Scholar 

  • Hasler L, Walz T, Tittmann P, Gross H, Kistler J, Engel A (1998) Purified lens major intrinsic protein (MIP) forms highly ordered tetragonal two-dimensional arrays by reconstitution. J Mol Biol 279:855–864

    Article  PubMed  CAS  Google Scholar 

  • Heymann JB, Engel A (2000) Structural clues in the sequences of the aquaporins. J Mol Biol 295:1039–1053.

    Article  PubMed  CAS  Google Scholar 

  • Hiroaki Y, Tani K, Kamegawa A, Gyobu N, Nishikawa K et al (2006) Implications of the aquaporin-4 structure on array formation and cell adhesion. J Mol Biol 355:628–639

    Article  PubMed  CAS  Google Scholar 

  • Hoffert JD, Pisitkun T, Wang G, Shen RF, Knepper MA (2006) Quantitative phosphoproteomics of vasopressin-sensitive renal cells: regulation of aquaporin-2 phosphorylation at two sites. Proc Natl Acad Sci USA 103:7159–7164

    Article  PubMed  CAS  Google Scholar 

  • Hoffert JD, Wang G, Pisitkun T, Shen RF, Knepper MA (2007) An automated platform for analysis of phosphoproteomic datasets: application to kidney collecting duct phosphoproteins. J Pro-teome Res 6:3501–3508

    CAS  Google Scholar 

  • Holm LM, Jahn TP, Moller AL, Schjoerring JK, Ferri D et al (2005) NH3 and NH4+ permeability in aquaporin-expressing Xenopus oocytes. Pflugers Arch 450:415–428

    Article  PubMed  CAS  Google Scholar 

  • Hub JS, de Groot BL (2006) Does CO2 permeate through aquaporin-1? Biophys J 91:842–848

    Article  PubMed  CAS  Google Scholar 

  • Hub JS, de Groot BL (2008) Mechanism of selectivity in aquaporins and aquaglyceroporins. Proc Natl Acad Sci USA 105:1198–1203

    Article  PubMed  CAS  Google Scholar 

  • Ikeda M, Beitz E, Kozono D, Guggino WB, Agre P, Yasui M (2002) Characterization of aquaporin-6 as a nitrate channel in mammalian cells. Requirement of pore-lining residue threonine 63. J Biol Chem 277:39873–39879

    Article  PubMed  CAS  Google Scholar 

  • Ishibashi K (2006) Aquaporin subfamily with unusual NPA boxes. Biochim Biophys Acta 1758:989–993

    Article  PubMed  CAS  Google Scholar 

  • Ishikawa F, Suga S, Uemura T, Sato MH, Maeshima M (2005) Novel type aquaporin SIPs are mainly localized to the ER membrane and show cell-specific expression in Arabidopsis thaliana. FEBS Lett 579:5814–5820

    PubMed  CAS  Google Scholar 

  • Itoh T, Rai T, Kuwahara M, Ko SB, Uchida S et al (2005) Identification of a novel aquaporin, AQP12, expressed in pancreatic acinar cells. Biochem Biophys Res Commun 330:832–838

    Article  PubMed  CAS  Google Scholar 

  • Jahn TP, Moller AL, Zeuthen T, Holm LM, Klaerke DA et al (2004) Aquaporin homologues in plants and mammals transport ammonia. FEBS Lett 574:31–36

    Article  PubMed  CAS  Google Scholar 

  • Johanson U, Gustavsson S (2002) A new subfamily of major intrinsic proteins in plants. Mol Biol Evol 19:456–461

    PubMed  CAS  Google Scholar 

  • Johanson U, Karlsson M, Johansson I, Gustavsson S, Sjovall S et al (2001) The complete set of genes encoding major intrinsic proteins in Arabidopsis provides a framework for a new nomenclature for major intrinsic proteins in plants. Plant Physiol 126:1358–1369

    Article  PubMed  CAS  Google Scholar 

  • Johansson I, Larsson C, Ek B, Kjellbom P (1996) The major integral proteins of spinach leaf plasma membranes are putative aquaporins and are phosphorylated in response to Ca2+; and apoplastic water potential. Plant Cell 8:1181–1191

    Article  PubMed  CAS  Google Scholar 

  • Johansson I, Karlsson M, Shukla VK, Chrispeels MJ, Larsson C, Kjellbom P (1998) Water transport activity of the plasma membrane aquaporin PM28A is regulated by phosphorylation. Plant Cell 10:451–459

    Article  PubMed  CAS  Google Scholar 

  • Jung J, Preston G, Smith B, Guggino W, Agre P (1994) Molecular structure of the water channel through aquaporin CHIP. The hourglass model. J Biol Chem 269:14648–14654

    PubMed  CAS  Google Scholar 

  • Kaldenhoff R, Carbo MR, Sans JF, Lovisolo C, Heckwolf M, Uehlein N (2008) Aquaporins and plant water balance. Plant Cell Environ 31:658–666

    Article  PubMed  CAS  Google Scholar 

  • Kamsteeg EJ, Heijnen I, van Os CH, Deen PM (2000) The subcellular localization of an aquaporin-2 tetramer depends on the stoichiometry of phosphorylated and nonphosphorylated monomers. J Cell Biol 151:919–930

    Article  PubMed  CAS  Google Scholar 

  • Kistler J, Bullivant S (1980) Lens gap junctions and orthogonal arrays are unrelated. FEBS Lett 111:73–78

    Article  PubMed  CAS  Google Scholar 

  • Kukulski W, Schenk AD, Johanson U, Braun T, de Groot BL et al (2005) The 5 Å tructure of heterologously expressed plant aquaporin SoPIP2;1. J Mol Biol 350:611–616

    Article  PubMed  CAS  Google Scholar 

  • Lagree V, Pellerin I, Hubert JF, Tacnet F, Le Caherec F et al (1998) A yeast recombinant aquaporin mutant that is not expressed or mistargeted in Xenopus oocyte can be functionally analyzed in reconstituted proteoliposomes. J Biol Chem 273:12422–12426

    Article  PubMed  CAS  Google Scholar 

  • Lee JK, Kozono D, Remis J, Kitagawa Y, Agre P, Stroud RM (2005) Structural basis for conductance by the archaeal aquaporin AqpM at 1.68 Å. Proc Natl Acad Sci USA 102:18932–18937

    Article  PubMed  CAS  Google Scholar 

  • Liu Z, Shen J, Carbrey JM, Mukhopadhyay R, Agre P, Rosen BP (2002) Arsenite transport by mammalian aquaglyceroporins AQP7 and AQP9. Proc Natl Acad Sci USA 99:6053–6058

    Article  PubMed  CAS  Google Scholar 

  • Loque D, Ludewig U, Yuan L, von Wiren N (2005) Tonoplast intrinsic proteins AtTIP2;1 and AtTIP2;3 facilitate NH3 transport into the vacuole. Plant Physiol 137:671–680

    Article  PubMed  CAS  Google Scholar 

  • Ma JF, Tamai K, Yamaji N, Mitani N, Konishi S et al (2006) A silicon transporter in rice. Nature 440:688–691

    Article  PubMed  CAS  Google Scholar 

  • Magni F, Sarto C, Ticozzi D, Soldi M, Bosso N et al (2006) Proteomic knowledge of human aquaporins. Proteomics 6:5637–5649

    Article  PubMed  CAS  Google Scholar 

  • Maurel C (2007) Plant aquaporins: novel functions and regulation properties. FEBS Lett 581: 2227–2236

    Article  PubMed  CAS  Google Scholar 

  • Maurel C, Kado RT, Guern J, Chrispeels MJ (1995) Phosphorylation regulates the water channel activity of the seed-specific aquaporin α-TIP. EMBO J 14:3028–3035

    PubMed  CAS  Google Scholar 

  • Mitsuoka K, Murata K, Walz T, Hirai T, Agre P et al (1999) The structure of aquaporin-1 at 4.5-A resolution reveals short α-helices in the center of the monomer. J Struct Biol 128:34–43

    Article  PubMed  CAS  Google Scholar 

  • Mizutani M, Watanabe S, Nakagawa T, Maeshima M (2006) Aquaporin NIP2;1 is mainly localized to the ER membrane and shows root-specific accumulation in Arabidopsis thaliana. Plant Cell Physiol 47:1420–1426

    Article  PubMed  CAS  Google Scholar 

  • Morillon R, Lienard D, Chrispeels MJ, Lassalles JP (2001) Rapid movements of plants organs require solute-water cotransporters or contractile proteins. Plant Physiol 127:720–723

    Article  PubMed  CAS  Google Scholar 

  • Morishita Y, Matsuzaki T, Hara-chikuma M, Andoo A, Shimono M et al (2005) Disruption of aquaporin-11 produces polycystic kidneys following vacuolization of the proximal tubule. Mol Cell Biol 25:7770–7779

    Article  PubMed  CAS  Google Scholar 

  • Moshelion M, Moran N, Chaumont F (2004) Dynamic changes in the osmotic water permeability of protoplast plasma membrane. Plant Physiol 135:2301–2317

    Article  PubMed  CAS  Google Scholar 

  • Mulders SM, Preston GM, Deen PM, Guggino WB, van Os CH, Agre P (1995) Water channel properties of major intrinsic protein of lens. J Biol Chem 270:9010–9016

    Article  PubMed  CAS  Google Scholar 

  • Murata K, Mitsuoka K, Hirai T, Walz T, Agre P et al (2000) Structural determinants of water permeation through aquaporin-1. Nature 407:599–605.

    Article  PubMed  CAS  Google Scholar 

  • Nakhoul NL, Davis BA, Romero MF, Boron WF (1998) Effect of expressing the water channel aquaporin-1 on the CO2 permeability of Xenopus oocytes. Am J Physiol 274:C543–C548

    PubMed  CAS  Google Scholar 

  • Nemeth-Cahalan KL, Hall JE (2000) pH and calcium regulate the water permeability of aquaporin 0. J Biol Chem 275:6777–6782

    Article  PubMed  CAS  Google Scholar 

  • Nielsen S, Kwon TH, Frokiaer J, Knepper MA (2000) Key roles of renal aquaporins in water balance and water-balance disorders. News Physiol Sci 15:136–143

    PubMed  CAS  Google Scholar 

  • Nielsen S, Kwon TH, Frokiaer J, Agre P (2007) Regulation and dysregulation of aquaporins in water balance disorders. J Intern Med 261:53–64

    Article  PubMed  CAS  Google Scholar 

  • Niemietz CM, Tyerman SD (2000) Channel-mediated permeation of ammonia gas through the peribacteroid membrane of soybean nodules. FEBS Lett 465:110–114

    Article  PubMed  CAS  Google Scholar 

  • Pohl P, Saparov SM, Borgnia MJ, Agre P (2001) Highly selective water channel activity measured by voltage clamp: analysis of planar lipid bilayers reconstituted with purified AqpZ. Proc Natl Acad Sci USA 98:9624–9629

    Article  PubMed  CAS  Google Scholar 

  • Prak S, Hem S, Boudet J, Viennois G, Sommerer N et al (2008) Multiple phosphorylations in the C-terminal tail of plant plasma membrane aquaporins. Role in sub-cellular trafficking of AtPIP2;1 in response to salt stress. Mol Cell Proteomics 7:1019–1030

    Article  PubMed  CAS  Google Scholar 

  • Prasad GV, Coury LA, Finn F, Zeidel ML (1998) Reconstituted aquaporin 1 water channels transport CO2 across membranes. J Biol Chem 273:33123–33126

    Article  PubMed  CAS  Google Scholar 

  • Preston GM, Agre P (1991) Isolation of the cDNA for erythrocyte integral membrane protein of 28 kilodaltons: member of an ancient channel family. Proc Natl Acad Sci USA 88:11110–11114

    Article  PubMed  CAS  Google Scholar 

  • Preston GM, Carroll TP, Guggino WB, Agre P (1992) Appearance of water channels in Xenopus oocytes expressing red cell CHIP28 protein. Science 256:385–387

    Article  PubMed  CAS  Google Scholar 

  • Preston GM, Jung JS, Guggino WB, Agre P (1993) The mercury-sensitive residue at cysteine 189 in the CHIP28 water channel. J Biol Chem 268:17–20

    PubMed  CAS  Google Scholar 

  • Quigley F, Rosenberg JM, Shachar-Hill Y, Bohnert HJ (2002) From genome to function: the Ara-bidopsis aquaporins. Genome Biol 3:RESEARCH0001

    PubMed  Google Scholar 

  • Ramahaleo T, Morillon R, Alexandre J, Lassalles JP (1999) Osmotic water permeability of isolated protoplasts. Modifications during development. Plant Physiol 119:885–896

    Article  PubMed  CAS  Google Scholar 

  • Ren G, Reddy VS, Cheng A, Melnyk P, Mitra AK (2001) Visualization of a water-selective pore by electron crystallography in vitreous ice. Proc Natl Acad Sci USA 98:1398–1403

    Article  PubMed  CAS  Google Scholar 

  • Robben JH, Knoers NV, Deen PM (2006) Cell biological aspects of the vasopressin type-2 receptor and aquaporin 2 water channel in nephrogenic diabetes insipidus. Am J Physiol Renal Physiol 291:F257–F270

    Article  PubMed  CAS  Google Scholar 

  • Robinson DG, Sieber H, Kammerloher W, Schaffner AR (1996) PIP1 Aquaporins are concentrated in plasmalemmasomes of Arabidopsis thaliana mesophyll. Plant Physiol 111:645–649

    PubMed  CAS  Google Scholar 

  • Sakurai J, Ishikawa F, Yamaguchi T, Uemura M, Maeshima M (2005) Identification of 33 rice aqua-porin genes and analysis of their expression and function. Plant Cell Physiol 46: 1568–1577

    Article  PubMed  CAS  Google Scholar 

  • Saparov SM, Liu K, Agre P, Pohl P (2007) Fast and selective ammonia transport by aquaporin-8. J Biol Chem 282:5296–5301

    Article  PubMed  CAS  Google Scholar 

  • Savage DF, Stroud RM (2007) Structural basis of aquaporin inhibition by mercury. J Mol Biol 368:607–617

    Article  PubMed  CAS  Google Scholar 

  • Savage DF, Egea PF, Robles-Colmenares Y, O'Connell JD III, Stroud RM (2003) Architecture and selectivity in aquaporins: 2.5 Å X-ray structure of aquaporin Z. PLoS Biol 1:E72

    Article  PubMed  Google Scholar 

  • Scheuring S, Müller DJ, Stahlberg H, Engel HA, Engel A (2002) Sampling the conformational space of membrane protein surfaces with the AFM. Eur Biophys J 31:172–178.

    Article  PubMed  CAS  Google Scholar 

  • Shiels A, Bassnett S, Varadaraj K, Mathias R, Al-Ghoul K et al (2001) Optical dysfunction of the crystalline lens in aquaporin-0-deficient mice. Physiol Genomics 7:179–186

    PubMed  CAS  Google Scholar 

  • Stroud RM, Miercke LJ, O'Connell J, Khademi S, Lee JK et al (2003) Glycerol facilitator GlpF and the associated aquaporin family of channels. Curr Opin Struct Biol 13:424–431

    Article  PubMed  CAS  Google Scholar 

  • Sui H, Han BG, Lee JK, Walian P, Jap BK (2001) Structural basis of water-specific transport through the AQP1 water channel. Nature 414:872–878

    Article  PubMed  CAS  Google Scholar 

  • Takano J, Wada M, Ludewig U, Schaaf G, von Wiren N, Fujiwara T (2006) The Arabidopsis major intrinsic protein NIP5;1 is essential for efficient boron uptake and plant development under boron limitation. Plant Cell 18:1498–1509

    Article  PubMed  Google Scholar 

  • Takemoto L, Takehana M, Horwitz J (1986) Covalent changes in MIP26K during aging of the human lens membrane. Invest Ophthalmol Vis Sci 27:443–446

    PubMed  CAS  Google Scholar 

  • Tornroth-Horsefield S, Wang Y, Hedfalk K, Johanson U, Karlsson M et al (2006) Structural mechanism of plant aquaporin gating. Nature 439:688–694

    Article  PubMed  CAS  Google Scholar 

  • Uehlein N, Lovisolo C, Siefritz F, Kaldenhoff R (2003) The tobacco aquaporin NtAQP1 is a membrane CO2 pore with physiological functions. Nature 425:734–737

    Article  PubMed  CAS  Google Scholar 

  • Venero JL, Vizuete ML, Ilundain AA, Machado A, Echevarria M, Cano J (1999) Detailed localization of aquaporin-4 messenger RNA in the CNS: preferential expression in periventricular organs. Neuroscience 94:239–250

    Article  PubMed  CAS  Google Scholar 

  • Verbavatz JM, Ma T, Gobin R, Verkman AS (1997) Absence of orthogonal arrays in kidney, brain and muscle from transgenic knockout mice lacking water channel aquaporin-4. J Cell Sci 110:2855–2860

    PubMed  CAS  Google Scholar 

  • Walz T, Smith BL, Agre P, Engel A (1994a) The three-dimensional structure of human erythrocyte aquaporin CHIP. EMBO J 13:2985–2993

    CAS  Google Scholar 

  • Walz T, Smith BL, Zeidel ML, Engel A, Agre P (1994b) Biologically active 2-dimensional crystals of aquaporin CHIP. J Biol Chem 269:1583–1586

    CAS  Google Scholar 

  • Walz T, Hirai T, Murata K, Heymann JB, Mitsuoka K et al (1997) The three-dimensional structure of aquaporin-1. Nature 387:624–627

    Article  PubMed  CAS  Google Scholar 

  • Wu B, Beitz E (2007) Aquaporins with selectivity for unconventional permeants. Cell Mol Life Sci 64:2413–2421

    Article  PubMed  CAS  Google Scholar 

  • Yakata K, Hiroaki Y, Ishibashi K, Sohara E, Sasaki S et al (2007) Aquaporin-11 containing a divergent NPA motif has normal water channel activity. Biochim Biophys Acta 1768:688–693

    Article  PubMed  CAS  Google Scholar 

  • Yasui M, Hazama A, Kwon TH, Nielsen S, Guggino WB, Agre P (1999a) Rapid gating and anion permeability of an intracellular aquaporin. Nature 402:184–187

    Article  CAS  Google Scholar 

  • Yasui M, Kwon TH, Knepper MA, Nielsen S, Agre P (1999b) Aquaporin-6: An intracellular vesicle water channel protein in renal epithelia. Proc Natl Acad Sci USA 96:5808–5813

    Article  CAS  Google Scholar 

  • Zardoya R (2005) Phylogeny and evolution of the major intrinsic protein family. Biol Cell 97: 397–414

    Article  PubMed  CAS  Google Scholar 

  • Zeidel ML, Ambudkar SV, Smith BL, Agre P (1992) Reconstitution of functional water channels in liposomes containing purified red cell CHIP28 protein. Biochemistry 31:7436–7440

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Engel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wspalz, T., Fujiyoshi, Y., Engel, A. (2009). The AQP Structure and Functional Implications. In: Beitz, E. (eds) Aquaporins. Handbook of Experimental Pharmacology, vol 190. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79885-9_2

Download citation

Keywords

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Publish with us

Policies and ethics