Skip to main content

Interactor-Guided Dephosphorylation by Protein Phosphatase-1

  • Protocol
  • First Online:
Phosphatase Modulators

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1053))

  • 4643 Accesses

  • 18 Citations

Abstract

Protein phosphatase-1 (PP1) is an essential enzyme for every eukaryotic cell and catalyzes more than half of all protein dephosphorylations at serine and threonine residues. The free catalytic subunit of PP1 shows little substrate selectivity but is tightly regulated in vivo by a large variety of structurally unrelated PP1-interacting proteins (PIPs). PIPs form highly specific dimeric or trimeric PP1 holoenzymes by acting as substrates, inhibitors, and/or substrate-specifiers. The surface of PP1 contains many binding sites for short PP1-docking motifs that are combined by PIPs to create a PP1-binding code that is universal, specific, degenerate, nonexclusive, and dynamic. These properties of the PP1-binding code can be used for the rational design of small molecules that disrupt subsets of PP1 holoenzymes and have a therapeutic potential.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

') var buybox = document.querySelector("[data-id=id_"+ timestamp +"]").parentNode var buyingOptions = buybox.querySelectorAll(".buying-option") ;[].slice.call(buyingOptions).forEach(initCollapsibles) var buyboxMaxSingleColumnWidth = 480 function initCollapsibles(subscription, index) { var toggle = subscription.querySelector(".buying-option-price") subscription.classList.remove("expanded") var form = subscription.querySelector(".buying-option-form") var priceInfo = subscription.querySelector(".price-info") var buyingOption = toggle.parentElement if (toggle && form && priceInfo) { toggle.setAttribute("role", "button") toggle.setAttribute("tabindex", "0") toggle.addEventListener("click", function (event) { var expandedBuyingOptions = buybox.querySelectorAll(".buying-option.expanded") var buyboxWidth = buybox.offsetWidth ;[].slice.call(expandedBuyingOptions).forEach(function(option) { if (buyboxWidth <= buyboxMaxSingleColumnWidth && option != buyingOption) { hideBuyingOption(option) } }) var expanded = toggle.getAttribute("aria-expanded") === "true" || false toggle.setAttribute("aria-expanded", !expanded) form.hidden = expanded if (!expanded) { buyingOption.classList.add("expanded") } else { buyingOption.classList.remove("expanded") } priceInfo.hidden = expanded }, false) } } function hideBuyingOption(buyingOption) { var toggle = buyingOption.querySelector(".buying-option-price") var form = buyingOption.querySelector(".buying-option-form") var priceInfo = buyingOption.querySelector(".price-info") toggle.setAttribute("aria-expanded", false) form.hidden = true buyingOption.classList.remove("expanded") priceInfo.hidden = true } function initKeyControls() { document.addEventListener("keydown", function (event) { if (document.activeElement.classList.contains("buying-option-price") && (event.code === "Space" || event.code === "Enter")) { if (document.activeElement) { event.preventDefault() document.activeElement.click() } } }, false) } function initialStateOpen() { var buyboxWidth = buybox.offsetWidth ;[].slice.call(buybox.querySelectorAll(".buying-option")).forEach(function (option, index) { var toggle = option.querySelector(".buying-option-price") var form = option.querySelector(".buying-option-form") var priceInfo = option.querySelector(".price-info") if (buyboxWidth > buyboxMaxSingleColumnWidth) { toggle.click() } else { if (index === 0) { toggle.click() } else { toggle.setAttribute("aria-expanded", "false") form.hidden = "hidden" priceInfo.hidden = "hidden" } } }) } initialStateOpen() if (window.buyboxInitialised) return window.buyboxInitialised = true initKeyControls() })()

Institutional subscriptions

Similar content being viewed by others

References

  1. Olsen JV, Blagoev B, Gnad F et al (2006) Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell 127:635–648

    Article  PubMed  CAS  Google Scholar 

  2. Mann M, Jensen ON (2003) Proteomic analysis of post-translational modifications. Nat Biotechnol 21:255–261

    Article  PubMed  CAS  Google Scholar 

  3. Manning G, Plowman GD, Hunter T et al (2002) Evolution of protein kinase signaling from yeast to man. Trends Biochem Sci 27:514–520

    Article  PubMed  CAS  Google Scholar 

  4. Ubersax JA, Ferrell JE Jr (2007) Mechanisms of specificity in protein phosphorylation. Nat Rev Mol Cell Biol 8:530–541

    Article  PubMed  CAS  Google Scholar 

  5. Cohen P (2000) The regulation of protein function by multisite phosphorylation-a 25 year update. Trends Biochem Sci 25:596–601

    Article  PubMed  CAS  Google Scholar 

  6. Heroes E, Lesage B, Gornemann J et al (2013) The PP1 binding code: a molecular-lego strategy that governs specificity. FEBS J 280(2):584–595

    Article  PubMed  CAS  Google Scholar 

  7. Moorhead GB, Trinkle-Mulcahy L, Ulke-Lemee A (2007) Emerging roles of nuclear protein phosphatases. Nat Rev Mol Cell Biol 8:234–244

    Article  PubMed  CAS  Google Scholar 

  8. Brautigan DL (2013) Protein Ser/Thr phosphatases—the ugly ducklings of cell signalling. FEBS J 280(2):324–345

    Article  PubMed  CAS  Google Scholar 

  9. Shi Y (2009) Serine/threonine phosphatases: mechanism through structure. Cell 139:468–484

    Article  PubMed  CAS  Google Scholar 

  10. Alonso A, Sasin J, Bottini N et al (2004) Protein tyrosine phosphatases in the human genome. Cell 117:699–711

    Article  PubMed  CAS  Google Scholar 

  11. Tonks NK (2012) Protein tyrosine phosphatases: from housekeeping enzymes to master-regulators of signal transduction. FEBS J 280(2):346–378

    Article  Google Scholar 

  12. Barford D, Das AK, Egloff MP (1998) The structure and mechanism of protein phosphatases: insights into catalysis and regulation. Annu Rev Biophys Biomol Struct 27:133–164

    Article  PubMed  CAS  Google Scholar 

  13. Ceulemans H, Stalmans W, Bollen M (2002) Regulator-driven functional diversification of protein phosphatase-1 in eukaryotic evolution. Bioessays 24:371–381

    Article  PubMed  CAS  Google Scholar 

  14. Beck M, Schmidt A, Malmstroem J et al (2011) The quantitative proteome of a human cell line. Mol Syst Biol 7:549

    Article  PubMed  Google Scholar 

  15. Nagaraj N, Wisniewski JR, Geiger T et al (2011) Deep proteome and transcriptome mapping of a human cancer cell line. Mol Syst Biol 7:548

    Article  PubMed  Google Scholar 

  16. Cohen PT (2002) Protein phosphatase 1–targeted in many directions. J Cell Sci 115:241–256

    PubMed  CAS  Google Scholar 

  17. Ceulemans H, Bollen M (2004) Functional diversity of protein phosphatase-1, a cellular economizer and reset button. Physiol Rev 84:1–39

    Article  PubMed  CAS  Google Scholar 

  18. Egloff MP, Cohen PT, Reinemer P et al (1995) Crystal structure of the catalytic subunit of human protein phosphatase 1 and its complex with tungstate. J Mol Biol 254:942–959

    Article  PubMed  CAS  Google Scholar 

  19. Goldberg J, Huang HB, Kwon YG et al (1995) Three-dimensional structure of the catalytic subunit of protein serine/threonine phosphatase-1. Nature 376:745–753

    Article  PubMed  CAS  Google Scholar 

  20. Bollen M, Peti W, Ragusa MJ et al (2010) The extended PP1 toolkit: designed to create specificity. Trends Biochem Sci 35:450–458

    Article  PubMed  CAS  Google Scholar 

  21. Terrak M, Kerff F, Langsetmo K et al (2004) Structural basis of protein phosphatase 1 regulation. Nature 429:780–784

    Article  PubMed  CAS  Google Scholar 

  22. Ragusa MJ, Dancheck B, Critton DA et al (2010) Spinophilin directs protein phosphatase 1 specificity by blocking substrate binding sites. Nat Struct Mol Biol 17:459–464

    Article  PubMed  CAS  Google Scholar 

  23. Dancheck B, Nairn AC, Peti W (2008) Detailed structural characterization of unbound protein phosphatase 1 inhibitors. Biochemistry 47:12346–12356

    Article  PubMed  CAS  Google Scholar 

  24. Cannon JF (2012) How phosphorylation activates the protein phosphatase-1 * inhibitor-2 complex. Biochim Biophys Acta 1834:71–86

    PubMed  Google Scholar 

  25. Marsh JA, Dancheck B, Ragusa MJ et al (2010) Structural diversity in free and bound states of intrinsically disordered protein phosphatase 1 regulators. Structure 18:1094–1103

    Article  PubMed  CAS  Google Scholar 

  26. Peti W, Nairn AC, Page R (2012) Folding of intrinsically disordered protein phosphatase 1 regulatory proteins. Curr Phys Chem 2:107–114

    PubMed  CAS  Google Scholar 

  27. Bollen M (2001) Combinatorial control of protein phosphatase-1. Trends Biochem Sci 26:426–431

    Article  PubMed  CAS  Google Scholar 

  28. Gibbons JA, Kozubowski L, Tatchell K et al (2007) Expression of human protein phosphatase-1 in Saccharomyces cerevisiae highlights the role of phosphatase isoforms in regulating eukaryotic functions. J Biol Chem 282:21838–21847

    Article  PubMed  CAS  Google Scholar 

  29. Yang J, Roe SM, Prickett TD et al (2007) The structure of Tap42/alpha4 reveals a tetratricopeptide repeat-like fold and provides insights into PP2A regulation. Biochemistry 46:8807–8815

    Article  PubMed  CAS  Google Scholar 

  30. Hendrickx A, Beullens M, Ceulemans H et al (2009) Docking motif-guided mapping of the interactome of protein phosphatase-1. Chem Biol 16:365–371

    Article  PubMed  CAS  Google Scholar 

  31. Meiselbach H, Sticht H, Enz R (2006) Structural analysis of the protein phosphatase 1 docking motif: molecular description of binding specificities identifies interacting proteins. Chem Biol 13:49–59

    Article  PubMed  CAS  Google Scholar 

  32. Dancheck B, Ragusa MJ, Allaire M et al (2011) Molecular investigations of the structure and function of the protein phosphatase 1-spinophilin-inhibitor 2 heterotrimeric complex. Biochemistry 50:1238–1246

    Article  PubMed  CAS  Google Scholar 

  33. Eto M, Kitazawa T, Matsuzawa F et al (2007) Phosphorylation-induced conformational switching of CPI-17 produces a potent myosin phosphatase inhibitor. Structure 15:1591–1602

    Article  PubMed  CAS  Google Scholar 

  34. Hurley TD, Yang J, Zhang L et al (2007) Structural basis for regulation of protein phosphatase 1 by inhibitor-2. J Biol Chem 282:28874–28883

    Article  PubMed  CAS  Google Scholar 

  35. Beullens M, Van Eynde A, Stalmans W et al (1992) The isolation of novel inhibitory polypeptides of protein phosphatase 1 from bovine thymus nuclei. J Biol Chem 267:16538–16544

    PubMed  CAS  Google Scholar 

  36. Satinover DL, Leach CA, Stukenberg PT et al (2004) Activation of Aurora-A kinase by protein phosphatase inhibitor-2, a bifunctional signaling protein. Proc Natl Acad Sci USA 101:8625–8630

    Article  PubMed  CAS  Google Scholar 

  37. Eto M, Elliott E, Prickett TD et al (2002) Inhibitor-2 regulates protein phosphatase-1 complexed with NimA-related kinase to induce centrosome separation. J Biol Chem 277:44013–44020

    Article  PubMed  CAS  Google Scholar 

  38. Connor JH, Weiser DC, Li S et al (2001) Growth arrest and DNA damage-inducible protein GADD34 assembles a novel signaling complex containing protein phosphatase 1 and inhibitor 1. Mol Cell Biol 21:6841–6850

    Article  CAS  Google Scholar 

  39. Eto M (2009) Regulation of cellular protein phosphatase-1 (PP1) by phosphorylation of the CPI-17 family, C-kinase-activated PP1 inhibitors. J Biol Chem 284:35273–35277

    Article  PubMed  CAS  Google Scholar 

  40. Helps NR, Luo X, Barker HM et al (2000) NIMA-related kinase 2 (Nek2), a cell-cycle-regulated protein kinase localized to centrosomes, is complexed to protein phosphatase 1. Biochem J 349:509–518

    Article  PubMed  CAS  Google Scholar 

  41. Mi J, Guo C, Brautigan DL et al (2007) Protein phosphatase-1alpha regulates centrosome splitting through Nek2. Cancer Res 67:1082–1089

    Article  PubMed  CAS  Google Scholar 

  42. Durfee T, Becherer K, Chen PL et al (1993) The retinoblastoma protein associates with the protein phosphatase type 1 catalytic subunit. Genes Dev 7:555–569

    Article  PubMed  CAS  Google Scholar 

  43. Hirschi A, Cecchini M, Steinhardt RC et al (2010) An overlapping kinase and phosphatase docking site regulates activity of the retinoblastoma protein. Nat Struct Mol Biol 17:1051–1057

    Article  PubMed  CAS  Google Scholar 

  44. Grassie ME, Moffat LD, Walsh MP et al (2011) The myosin phosphatase targeting protein (MYPT) family: a regulated mechanism for achieving substrate specificity of the catalytic subunit of protein phosphatase type 1delta. Arch Biochem Biophys 510:147–159

    Article  PubMed  CAS  Google Scholar 

  45. O’Connell N, Nichols SR, Heroes E et al (2012) The molecular basis for substrate specificity of the nuclear NIPP1:PP1 holoenzyme. Structure 20:1746–1756

    Article  PubMed  Google Scholar 

  46. Beullens M, Van Eynde A, Vulsteke V et al (1999) Molecular determinants of nuclear protein phosphatase-1 regulation by NIPP-1. J Biol Chem 274:14053–14061

    Article  PubMed  CAS  Google Scholar 

  47. Tanuma N, Kim SE, Beullens M et al (2008) Nuclear inhibitor of protein phosphatase-1 (NIPP1) directs protein phosphatase-1 (PP1) to dephosphorylate the U2 small nuclear ribonucleoprotein particle (snRNP) component, spliceosome-associated protein 155 (Sap155). J Biol Chem 283:35805–35814

    Article  PubMed  CAS  Google Scholar 

  48. Minnebo N, Görnemann J, O’Connell N et al (2013) NIPP1 maintains EZH2 phosphorylation and promoter occupancy at proliferation-related target genes. Nucleic Acids Res 41(2):842–854

    Article  CAS  Google Scholar 

  49. Qian J, Lesage B, Beullens M et al (2011) PP1/Repo-man dephosphorylates mitotic histone H3 at T3 and regulates chromosomal aurora B targeting. Curr Biol 21:766–773

    Article  PubMed  CAS  Google Scholar 

  50. Bollen M, De Munter S, Kohn M (2012) Challenges and opportunities in the development of protein phosphatase-directed therapeutics. ACS Chem Biol 8(1):36–45

    Google Scholar 

  51. Chatterjee J, Beullens M, Sukackaite R et al (2012) Development of a peptide that selectively activates protein phosphatase-1 in living cells. Angew Chem Int Ed Engl 51:10054–10059

    Article  PubMed  CAS  Google Scholar 

  52. Tsaytler P, Harding HP, Ron D et al (2011) Selective inhibition of a regulatory subunit of protein phosphatase 1 restores proteostasis. Science 332:91–94

    Article  PubMed  CAS  Google Scholar 

  53. Fullwood MJ, Zhou W, Shenolikar S (2012) Targeting phosphorylation of eukaryotic initiation factor-2alpha to treat human disease. Prog Mol Biol Transl Sci 106:75–106

    Article  PubMed  CAS  Google Scholar 

  54. Llanos S, Royer C, Lu M et al (2011) Inhibitory member of the apoptosis-stimulating proteins of the p53 family (iASPP) interacts with protein phosphatase 1 via a noncanonical binding motif. J Biol Chem 286:43039–43044

    Article  PubMed  CAS  Google Scholar 

  55. Ceulemans H, Vulsteke V, De Maeyer M et al (2002) Binding of the concave surface of the Sds22 superhelix to the alpha 4/alpha 5/alpha 6-triangle of protein phosphatase-1. J Biol Chem 277:47331–47337

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a “Flemish Concerted Research Action” (GOA 10/16) and the “Foundation against cancer.”

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Boens, S., Szekér, K., Van Eynde, A., Bollen, M. (2013). Interactor-Guided Dephosphorylation by Protein Phosphatase-1. In: Millán, J. (eds) Phosphatase Modulators. Methods in Molecular Biology, vol 1053. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-562-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-562-0_16

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-561-3

  • Online ISBN: 978-1-62703-562-0

  • eBook Packages: Springer Protocols

Key words

Publish with us

Policies and ethics