Abstract
Fundamental properties of N-valued logics are compared and eleven theorems are presented for their Logic Algebras, including Łukasiewicz–Moisil Logic Algebras represented in terms of categories and functors. For example, the Fundamental Logic Adjunction Theorem allows one to transfer certain universal, or global, properties of the Category of Boolean Algebras,

, (which are well-understood) to the more general category \({\cal L}\) M n of Łukasiewicz–Moisil Algebras. Furthermore, the relationships of LM n -algebras to other many-valued logical structures, such as the n-valued Post, MV and Heyting logic algebras, are investigated and several pertinent theorems are derived. Applications of Łukasiewicz–Moisil Algebras to biological problems, such as nonlinear dynamics of genetic networks – that were previously reported – are also briefly noted here, and finally, probabilities are precisely defined over LM n -algebras with an eye to immediate, possible applications in biostatistics.
Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Baianu, I. C., R. Brown, G. Georgescu and J. F. Glazebrook: 2006, ‘Complex Nonlinear Biodynamics in Categories, Higher Dimensional Algebra and Łukasiewicz–Moisil Topos: Transformations of Neuronal, Genetic and Neoplastic Networks’, Axiomathes (current volume)
I. C. Baianu (1977) ArticleTitleA Logical Model of Genetic Activities in Łukasiewicz Algebras: The Non-linear Theory Bulletin of Mathematical Biology 39 249–258 Occurrence Handle10.1016/S0092-8240(77)80012-8
G. Birkhoff (1948) Lattice Theory American Mathematical Society New York
V. Boicescu A. Filipoiu G. Georgescu S. Rudeanu (1991) Łukasiewicz–Moisil Algebras North-Holland Amsterdam
C. C. Chang (1958) ArticleTitleAlgebraic Analysis of Many-Valued logics Transactions American Mathematical Society 88 467–490
C. C. Chang (1959) ArticleTitleA New Proof of the Completeness of the Łukasiewicz Axioms Transactions American Mathematical Society 93 74–80
R. Cignoli F. Esteva L. Godo A. Torrens (2000) ArticleTitleBasic Fuzzy Logic is the Logic of Continuous t-Norms and Their Residua Soft Computing 4 106–112 Occurrence Handle10.1007/s005000000044
Cignoli, R.: 1970. ‘Moisil Algebras’, Notas de Logica Matematica, Inst. Mat., Univ. Nacional del Sur, BahiaBlanca, No. 27
N. Bourbaki (1964) Eléments de Mathématique, Livre II, Algébre, 4 Hermann, Editor Paris
R. Carnap (1938) The Logical Syntax of Language Harcourt, Brace and Co. New York
C. Ehresmann (1965) Catégories et Structures Dunod Paris
S. Eilenberg S. MacLane (1945) ArticleTitleThe General Theory of Natural Equivalences Transactions American Mathematical Society 58 231–294
G. Georgescu D. Popescu (1968) ArticleTitleOn Algebraic Categories Rev. Roum. Math. Pures et Appl. 13 337–342
G. Georgescu C. Vraciu (1970) ArticleTitleOn the Characterization of Centered Łukasiewicz Algebras Journal of Algebra 16 486–495 Occurrence Handle10.1016/0021-8693(70)90002-5
G. Georgescu I. Leuştean (2000) ArticleTitleTowards a Probability Theory Based on Moisil Logic Soft Computing 4 19–26 Occurrence Handle10.1007/s005000050076
R. S. Grigolia (1977) Algebraic Analysis of Łukasiewicz–Tarski’s Logical Systems R. Wójcicki G. Malinowski (Eds) Selected Papers on Łukasiewicz Sentential Calculi Ossolineum Wroclaw 81–92
D. Hilbert W. Ackerman (1927) Grundzüge der theoretischen Logik Springer Berlin
D. M. Kan (1958) ArticleTitleAdjoint Functors Transactions American Mathematical Society 87 294–329
J. Lambek P. J. Scott (1986) Introduction to Higher Order Categorical Logic Cambridge University Press Cambridge, UK
F. W. Lawvere (1963) ArticleTitleFunctorial Semantics of Algebraic Theories Proceedings of the National Academy of Sciences USA 50 869–872
L. Löfgren (1968) ArticleTitleAn Axiomatic Explanation of Complete Self-Reproduction Bulletin of Mathematical Biophysics 30 317–348
Łukasiewicz, J.: 1970. ‘Selected Works’, in L. Borkowski (ed.), North-Holland Publ. Co., Amsterdam and PWN, Warsaw
S. MacLane I. Moerdijk (1992) Sheaves in Geometry and Logic – a first Introduction to Topos Theory Springer Verlag New York
W. McCulloch W. Pitts (1943) ArticleTitleA Logical Calculus of Ideas Immanent in Nervous Activity Bulletin of Mathematical Biophysics 5 115–133
R. McNaughton (1951) ArticleTitleA Theorem about Infinite-Valued Sentential Logic Journal of Symbolic Logic 16 1–13
B. Mitchell (1965) Theory of Categories Academic Press. London
Gr.C. Moisil (1972) Essai sur les Logiques Non-chrysippiennes Ed. Academiei Bucharest
D. Mundici (1986) ArticleTitleInterpretation of AF C*-algebras in Łukasiewicz Sentential Calculus Journal of Functional Analysis 65 15–63 Occurrence Handle10.1016/0022-1236(86)90015-7
N. Popescu (1975) Abelian Categories with applications to Rings and Modules Academic Press New York and London
A. Rose (1956) ArticleTitleFormalisation du Calcul Propositionnel Implicatif à ϰ0 Valeurs de Łukasiewicz C. R. Acad. Sci. Paris 243 1183–1185
A. Rose J. B. Rosser (1958) ArticleTitleFragments of Many-Valued Statement Calculi Transactions American Mathematical Society 87 1–53
A. Rose (1962) ArticleTitleExtensions of Some Theorems of Anderson and Belnap Journal of Symbolic Logic 27 IssueID4 423–425
A. Rose (1978) ArticleTitleFormalisations of Further N0-Valued Łukasiewicz Propositional Calculi Journal of Symbolic Logic 43 IssueID2 207–210
R. Rosen (1958a) ArticleTitleA Relational Theory of Biological Systems Bulletin of Mathematical Biophysics 20 245–260
R. Rosen (1958b) ArticleTitleThe Representation of Biological Systems from the Standpoint of the Theory of Categories Bulletin of Mathematical Biophysics 20 317–341
R. Rosen (1991) Life Itself Columbia University Press New York
R. Rosen (2000) Essays on Life Itself Columbia University Press New York
P. Rosenbloom (1950) The Elements of Mathematical Logic Dover New York
P. Rosenbloom (1962) The Elements of Mathematical Logic Prentice-Hall Englewood Cliffs N.J.
J. B. Rosser A. R. Turquette (1952) Many-Valued Logics North-Holland Publ. Co Amsterdam
Rights and permissions
About this article
Cite this article
Georgescu, G. N-Valued Logics and Łukasiewicz–Moisil Algebras. Axiomathes 16, 123–136 (2006). https://doi.org/10.1007/s10516-005-4145-6
Issue Date:
DOI: https://doi.org/10.1007/s10516-005-4145-6
Keywords
- categories
- N-valued logics and Łukasiewicz–Moisil logic algebras
- categories of Łukasiewicz–Moisil algebras
- the fundamental logic adjunction theorem
- equivalences between pairs of different categories of n-valued logic algebras
- colimits
- limits and adjointness relations in biology
- category of boolean algebras
- Post
- MV and Heyting logic algebras
- universal
- or global
- properties of categories of logic algebras
- full and faithful adjoint functors between certain categories of logic algebras and the boolean logic category
- the logic(s) of life itself
- biological applications of Łukasiewicz–Moisil Algebras
- defining probabilities over LM n -algebras and their potential applications in biostatistics