Skip to main content
Log in

Old Intelligencer

  • Published:
The Mathematical Intelligencer Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Bernoulli, Joh. (1968)OPERA OMNIA II, Hildesheim: G. Olms Verlagsbuchhandl.

    Google Scholar 

  2. Boole, G.An investigation of THE LAWS OF THOUGHT … , New York: Dover Publ.

  3. Bourbaki, N. (1939)Théorie des ensembles (Fascicule de résultats). Paris: Hermann

    Google Scholar 

  4. Bourbaki, N. (1968)Theory of Sets (A translation of Théorie des ensembles), Paris: Hermann

    Google Scholar 

  5. Carey, F. S. (1917)Infinitesimal Calculus I New York: Longmans, Green and Co.

    Google Scholar 

  6. Cauchy, A. (1823)Résumé des leçons … sur le calcul infinitésimal Oeuvres complètes, Ser. 2, Vol. 4, Paris: Gauthier-Villars

    Google Scholar 

  7. Dedekind, R. (1965)Was sind und was sollen die Zahlen? Braunschweig: Vieweg-Verlag

    Book  Google Scholar 

  8. Dirichlet, G. L. (1969) Überdie Darstellung ganz willkürlicherFunctionen durch Sinus- und Cosinusreihen., G. Lejeune Dirichlet’s Werke, New York: Chelsea Publ. Co.

    Google Scholar 

  9. Euler, L. (1922)Introductio in analysin infinitorum, OPERA OMNIA, Ser. I, Vol. VIII, Leipzig und Berlin: Teubner Verlag

    Google Scholar 

  10. Euler, L. (1908)Institutiones calculi differentialis, OPERA OMNIA, Ser. I, Vol. X, Leipzig und Berlin: Teubner Verlag

    Google Scholar 

  11. Fourier, J. B. L. (1888)Théorie analytique de la chaleur, Oeuvres de Fourier, Paris: Gauthier-Villars et Fils

    Google Scholar 

  12. Fourier, J. B. L (1955)The analytical theory of heat (Translation by A. Freeman), New York: Dover Publ.

    Google Scholar 

  13. Frege, G. (1964)Begriffsschrift und andere Aufsätze, Hildesheim: G. Olms Verlagsbuchhandl.

    Google Scholar 

  14. Goursat, E. (1923)Cours d’analyse mathématique I, Paris: Gauthier-Villars

    MATH  Google Scholar 

  15. Hankel, H. (1882) Untersuchungen über die unendlich oft oscillirenden und unstetigen Functionen,Math. Ann. 20, 63–112

    Article  MATH  MathSciNet  Google Scholar 

  16. Hardy, G. H. (1908)A course of pure mathematics, Cambridge: Cambridge Univ. Press

    MATH  Google Scholar 

  17. Lagrange, J. L. (1973)Theorie des fonctions analytique, Oeuvres, Hildesheim: G. Olms Verlagsbuchhandl.

    Google Scholar 

  18. Peano, G. (1911) Sulla definizione di funzione, Atti Accad. naz. Lincei, Rend.,Cl. sci. fis. mat. nat.20, 3–5

    MATH  Google Scholar 

  19. Riemann, B. (1892)Grundlagen für eine allgemeine Theorie der Functionen einer veränderlichen complexen Grösse, MATHEMATISCHE WERKE und wissenschaftlicher Nachlass, Leipzig: Teubner Verlag

    Google Scholar 

  20. Stokes, G. G. (1966) On the critical values of the sums of periodic series.Mathematical and Physical Papers, Vol. I, New York: Johnson Reprint Corp.

    Google Scholar 

  21. Stokes, G. G. (1966) On a difficulty in the theory of sound.Mathematical and Physical Papers, Vol. II, New York: Johnson Reprint Corp.

    Google Scholar 

  22. Tannery, J. (1904)Introduction a la Théorie des Fonctions d’une Variable, Paris: Hermann

    MATH  Google Scholar 

  23. van Heijenoort, J. (1967)From Frege to Gödel—A Source Book in Mathematical Logic, 1879–1931, Cambridge, Mass.: Harvard Univ. Press

    MATH  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

About this article

Cite this article

Old Intelligencer. The Mathematical Intelligencer 6, 71–78 (1984). https://doi.org/10.1007/BF03026743

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03026743

Keywords