Summary
We re-examine the notion of the quantum potential introduced by the Broglie and Bohm and calculate its explicit form in the case of the two-slit interference experiment. We also calculate the ensemble of particle trajectories through the two slits. The results show clearly how the quantum potential produces the bunching of trajectories that is required to obtain the usual fringe intensity pattern. Hence we are able to account for the interference fringes while retaining the notion of a well-defined particle trajectory. The wider implications of the quantum potential particularly in regard to the quantum interconnectedness are discussed.
Riassunto
Si riesamina la nozione di potenziale quantico introdotta da de Broglie e Bohm e si calcola la sua forma esplicita nel caso di un esperimento d'interferenza a due passaggi. Si calcola anche l'insieme di traiettorie delle particelle attraverso i due passaggi. I risultati mostrano chiaramente come il potenziale quantico produce l'agglomerato di traiettorie che è richiesto per ottenere l'usuale comportamento di intensità di frangia. Quindi si è in grado di spiegare le frange di interferenza conservando la nozione di una ben definita traiettoria della particella. Si discutono le più ampie implicazioni del potenziale quantico particolarmente rispetto all'interazione quantica.
Резюме
Мы заново исследуем понятие квантового потенциала, введенного де Бройлем и Бомом, и вычисляем его явный вид в случае интерференционного эксперимента на двух щелях. Мы также вычисляем совокупность траекторий частиц, прошедших через две щели. Полученные результаты показывают, что квантовый потенциал приводит к группированию траекторий, что требуется для получения обычных интерференционных полос интенсивности. Следовательно, мы можем объяснитб образование интерференционных полос, сохраняя понятие определенных траекторий частиц. Обсуждаются следствия квантового потенциала относительно квантовой взаимосвязанности.
Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
M. Jammer:The Philosophy of Quantum Mechanics (London, 1974).
R. P. Feynman:The Character of Physical Law (Cambridge, Mass., 1965).
L. de Broglie:Found. of Phys.,1, 5 (1970).
D. J. Bohm:Phys. Rev.,85, 166, 180 (1952).
N. Bohr:Atomic Physics and Human Knowledge (New York, N. Y., 1961).
C. Hooker:Paradigms and Paradoxes, edited byR. G. Colodny (Pittsburg, Pa., 1972).
E. Schrödinger:Naturwiss.,23, 807 (1935).
W. Renniger:Zeits. Phys.,158, 417 (1960).
L. de Broglie:Etude critique des bases de l'interpretation actuelle de la mecanique ondulatoire (Paris, 1952) (English translation:The Current Interpretation of Wave-Mechanics: A Critical Study (Amsterdam, 1964)).
A. Baracca, D. J. Bohm, B. J. Hiley andA. E. G. Stuart:Nuovo Cimento,28 B, 453 (1975).
C. Phillippidis:Fundamenta Scientiae, Vol.60 (Strasbourg, 1976).
M. Paty:Quantum Mechanics, a Half-Century Later, edited byJ. L. Lopes andM. Paty (Dordrecht, 1974).
J. F. Clauser andA. Shimony:Reports on Progress in Physics,41, 1881 (1978).
F. Bopp:Observation and Interpretation in the Philosophy of Physics, edited byS. Körner (New York, N. Y., 1962), p. 51. A similar conclusion in regard to a more general class of theories of this type has been expressed more recently byV. Buonomano:Nuovo Cimento,45 B, 77 (1978).
R. P. Feynman andA. R. Hibbs:Quantum Mechanics and Path Integrals (New York, N. Y., 1965).
C. Jönsson:Zeit. Phys.,161, 454 (1961).
R. Thom:Stabilité structurelle et morphogènèse (Reading, Mass., 1972) (English translation (Reading, Mass., 1975)).
Author information
Authors and Affiliations
Additional information
Traduzione a cura della Redazione.
Переведено редакцией.
Rights and permissions
About this article
Cite this article
Philippidis, C., Dewdney, C. & Hiley, B.J. Quantum interference and the quantum potential. Nuov Cim B 52, 15–28 (1979). https://doi.org/10.1007/BF02743566
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1007/BF02743566