Skip to main content

Genetic Algorithms + Data Structures = Evolution Programs

  • Book
  • © 1992

Overview

Part of the book series: Artificial Intelligence (AI)

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

') var buybox = document.querySelector("[data-id=id_"+ timestamp +"]").parentNode var buyboxMaxSingleColumnWidth = 480 ;[].slice.call(buybox.querySelectorAll(".buying-option")).forEach(initCollapsibles) function initCollapsibles(buyingOption, index) { var toggle = buyingOption.querySelector(".buying-option-price") buyingOption.classList.remove("expanded") var form = buyingOption.querySelector(".buying-option-form") var priceInfo = buyingOption.querySelector(".price-info") if (toggle && form && priceInfo) { toggle.setAttribute("role", "button") toggle.setAttribute("tabindex", "0") toggle.addEventListener("click", function (event) { var expandedBuyingOptions = buybox.querySelectorAll(".buying-option.expanded") var buyboxWidth = buybox.offsetWidth ;[].slice.call(expandedBuyingOptions).forEach(function(option) { if (buyboxWidth <= buyboxMaxSingleColumnWidth && option != buyingOption) { hideBuyingOption(option) } }) var expanded = toggle.getAttribute("aria-expanded") === "true" || false toggle.setAttribute("aria-expanded", !expanded) form.hidden = expanded if (!expanded) { buyingOption.classList.add("expanded") } else { buyingOption.classList.remove("expanded") } priceInfo.hidden = expanded }, false) } } function hideBuyingOption(buyingOption) { var toggle = buyingOption.querySelector(".buying-option-price") var form = buyingOption.querySelector(".buying-option-form") var priceInfo = buyingOption.querySelector(".price-info") toggle.setAttribute("aria-expanded", false) form.hidden = true buyingOption.classList.remove("expanded") priceInfo.hidden = true } function initKeyControls() { document.addEventListener("keydown", function (event) { if (document.activeElement.classList.contains("buying-option-price") && (event.code === "Space" || event.code === "Enter")) { if (document.activeElement) { event.preventDefault() document.activeElement.click() } } }, false) } function initialStateOpen() { var buyboxWidth = buybox.offsetWidth var narrowBuyboxArea = buyboxWidth <= buyboxMaxSingleColumnWidth var allOptionsInitiallyCollapsed = buybox.className.indexOf("all-options-initially-collapsed") > -1 ;[].slice.call(buybox.querySelectorAll(".buying-option")).forEach(function (option, index) { var toggle = option.querySelector(".buying-option-price") var form = option.querySelector(".buying-option-form") var priceInfo = option.querySelector(".price-info") if (allOptionsInitiallyCollapsed || narrowBuyboxArea && index > 0) { toggle.setAttribute("aria-expanded", "false") form.hidden = "hidden" priceInfo.hidden = "hidden" } else { toggle.click() } }) } initialStateOpen() if (window.buyboxInitialised) return window.buyboxInitialised = true initKeyControls() })()

Other ways to access

Licence this eBook for your library

Institutional subscriptions

About this book

'What does your Master teach?' asked a visitor. 'Nothing,' said the disciple. 'Then why does he give discourses?' 'He only points the way - he teaches nothing.' Anthony de Mello, One Minute Wisdom During the last three decades there has been a growing interest in algorithms which rely on analogies to natural processes. The emergence of massively par­ allel computers made these algorithms of practical interest. The best known algorithms in this class include evolutionary programming, genetic algorithms, evolution strategies, simulated annealing, classifier systems, and neural net­ works. Recently (1-3 October 1990) the University of Dortmund, Germany, hosted the First Workshop on Parallel Problem Solving from Nature [164]. This book discusses a subclass of these algorithms - those which are based on the principle of evolution (survival of the fittest). In such algorithms a popu­ lation of individuals (potential solutions) undergoes a sequence of unary (muta­ tion type) and higher order (crossover type) transformations. These individuals strive for survival: a selection scheme, biased towards fitter individuals, selects the next generation. After some number of generations, the program converges - the best individual hopefully represents the optimum solution. There are many different algorithms in this category. To underline the sim­ ilarities between them we use the common term "evolution programs" .

Similar content being viewed by others

Keywords

Table of contents (14 chapters)

  1. Introduction

  2. Genetic Algorithms

  3. Numerical Optimization

  4. Evolution Programs

Authors and Affiliations

  • Department of Computer Science, University of North Carolina, Charlotte, USA

    Zbigniew Michalewicz

Bibliographic Information

Publish with us