Skip to main content

Constrained Dynamics in Conformal and Projective Geometric Algebra

  • Conference paper
  • First Online:
Advances in Computer Graphics (CGI 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12221))

Included in the following conference series:

Abstract

In this paper we tackle the problem of constrained rigid body dynamics in the Conformal and Projective Geometric Algebras (CGA, PGA). First we construct a screw-theory based formulation of dynamics in CGA and note the equivalence between this and the PGA dynamics presented by Gunn in [1]. After verifying the formulation via simulation, we move on to the challenge of adding constraints. First we apply the standard mechanical engineering technique of virtual power to the constraint problem in our Geometric Algebra (GA) framework. We then discuss a novel technique for ‘pinning’ dynamic rigid bodies to geometric primitives, a technique that relies on the invariance of certain multivectors and functions of multivectors to specific rotor transformations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

') var buybox = document.querySelector("[data-id=id_"+ timestamp +"]").parentNode var buyingOptions = buybox.querySelectorAll(".buying-option") ;[].slice.call(buyingOptions).forEach(initCollapsibles) var buyboxMaxSingleColumnWidth = 480 function initCollapsibles(subscription, index) { var toggle = subscription.querySelector(".buying-option-price") subscription.classList.remove("expanded") var form = subscription.querySelector(".buying-option-form") var priceInfo = subscription.querySelector(".price-info") var buyingOption = toggle.parentElement if (toggle && form && priceInfo) { toggle.setAttribute("role", "button") toggle.setAttribute("tabindex", "0") toggle.addEventListener("click", function (event) { var expandedBuyingOptions = buybox.querySelectorAll(".buying-option.expanded") var buyboxWidth = buybox.offsetWidth ;[].slice.call(expandedBuyingOptions).forEach(function(option) { if (buyboxWidth <= buyboxMaxSingleColumnWidth && option != buyingOption) { hideBuyingOption(option) } }) var expanded = toggle.getAttribute("aria-expanded") === "true" || false toggle.setAttribute("aria-expanded", !expanded) form.hidden = expanded if (!expanded) { buyingOption.classList.add("expanded") } else { buyingOption.classList.remove("expanded") } priceInfo.hidden = expanded }, false) } } function hideBuyingOption(buyingOption) { var toggle = buyingOption.querySelector(".buying-option-price") var form = buyingOption.querySelector(".buying-option-form") var priceInfo = buyingOption.querySelector(".price-info") toggle.setAttribute("aria-expanded", false) form.hidden = true buyingOption.classList.remove("expanded") priceInfo.hidden = true } function initKeyControls() { document.addEventListener("keydown", function (event) { if (document.activeElement.classList.contains("buying-option-price") && (event.code === "Space" || event.code === "Enter")) { if (document.activeElement) { event.preventDefault() document.activeElement.click() } } }, false) } function initialStateOpen() { var buyboxWidth = buybox.offsetWidth ;[].slice.call(buybox.querySelectorAll(".buying-option")).forEach(function (option, index) { var toggle = option.querySelector(".buying-option-price") var form = option.querySelector(".buying-option-form") var priceInfo = option.querySelector(".price-info") if (buyboxWidth > buyboxMaxSingleColumnWidth) { toggle.click() } else { if (index === 0) { toggle.click() } else { toggle.setAttribute("aria-expanded", "false") form.hidden = "hidden" priceInfo.hidden = "hidden" } } }) } initialStateOpen() if (window.buyboxInitialised) return window.buyboxInitialised = true initKeyControls() })()

Institutional subscriptions

Similar content being viewed by others

References

  1. Gunn, C.: On the homogeneous model of Euclidean geometry. In: Dorst, L., Lasenby, J. (eds.) Guide to Geometric Algebra in Practice, pp. 297–327. Springer, London (2011). https://doi.org/10.1007/978-0-85729-811-9_15

    Chapter  Google Scholar 

  2. Pottmann, H., Wallner, J.: Computational Line Geometry. MATHVISUAL. Springer, Heidelberg (2001). https://doi.org/10.1007/978-3-642-04018-4

    Book  MATH  Google Scholar 

  3. Lasenby, A., Lasenby, R., Doran, C.: Rigid body dynamics and conformal geometric algebra. In: Dorst, L., Lasenby, J. (eds.) Guide to Geometric Algebra in Practice, pp. 3–24. Springer, London (2011). https://doi.org/10.1007/978-0-85729-811-9_1

    Chapter  MATH  Google Scholar 

  4. Candy, L.P.: Kinematics in conformal geometric algebra with applications in strapdown inertial navigation. Ph.D. thesis. University of Cambridge (2012)

    Google Scholar 

  5. Boyle, M.: The integration of angular velocity. Adv. Appl. Clifford Algebras 27(3), 2345–2374 (2017). https://doi.org/10.1007/s00006-017-0793-z

    Article  MathSciNet  MATH  Google Scholar 

  6. Gunn, C.: Non-metric alternatives to reciprocal frames. The bivector.net forums. https://discourse.bivector.net/t/non-metric-alternative-to-reciprocal-frame/105/4. Accessed 12 May 2020

  7. Dorst, L., Fontijne, D., Mann, S.: Geometric Algebra for Computer Science: An Object-Oriented Approach to Geometry, 1st edn. Elsevier, Morgan Kaufmann, Amsterdam (2007)

    Google Scholar 

  8. Gallardo-Alvarado, J.: Kinematic Analysis of Parallel Manipulators by Algebraic Screw Theory. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-31126-5

    Book  MATH  Google Scholar 

  9. Arsenovic, A., Hadfield, H., Wieser, E., Kern, R., The Pygae Team: Clifford (Version v1.3.0), 29 May 2020. Zenodo. https://doi.org/10.5281/zenodo.3865446

  10. Du, J., Goldman, R., Mann, S.: Modeling 3D geometry in the Clifford algebra R(4, 4). Adv. Appl. Clifford Algebras 27(4), 3039–3062 (2017). https://doi.org/10.1007/s00006-017-0798-7

    Article  MathSciNet  MATH  Google Scholar 

  11. Easter, R.B., Hitzer, E.: Double conformal geometric algebra. Adv. Appl. Clifford Algebras 27(3), 2175–2199 (2017). https://doi.org/10.1007/s00006-017-0784-0

    Article  MathSciNet  MATH  Google Scholar 

  12. Breuils, S., Nozick, V., Sugimoto, A., Hitzer, E.: Quadric conformal geometric algebra of \({\mathbb{R}}^{9,6}\). Adv. Appl. Clifford Algebras 28(2), 1–16 (2018). https://doi.org/10.1007/s00006-018-0851-1

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hugo Hadfield .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hadfield, H., Lasenby, J. (2020). Constrained Dynamics in Conformal and Projective Geometric Algebra. In: Magnenat-Thalmann, N., et al. Advances in Computer Graphics. CGI 2020. Lecture Notes in Computer Science(), vol 12221. Springer, Cham. https://doi.org/10.1007/978-3-030-61864-3_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-61864-3_39

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-61863-6

  • Online ISBN: 978-3-030-61864-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics