Abstract
The genetic analysis of a gene at a late developmental stage can be impeded if the gene is required at an earlier developmental stage. The construction of mosaic animals, particularly in Drosophila, has been a means to overcome this obstacle. However, the phenotypic analysis of mitotic clones is often complicated because standard methods for generating mitotic clones render mosaic tissues that are a composite of both mutant and phenotypically normal cells. We describe here a genetic method (called EGUF/hid) that uses both the GAL4/UAS and FLP/FRT systems to overcome this limitation for the Drosophila eye by producing genetically mosaic flies that are otherwise heterozygous but in which the eye is composed exclusively of cells homozygous for one of the five major chromosome arms. These eyes are nearly wild type in size, morphology, and physiology. Applications of this genetic method include phenotypic analysis of existing mutations and F(1) genetic screens to identify as yet unknown genes involved in the biology of the fly eye. We illustrate the utility of the method by applying it to lethal mutations in the synaptic transmission genes synaptotagmin and syntaxin.
Full Text
The Full Text of this article is available as a PDF (266.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Benzer S. BEHAVIORAL MUTANTS OF Drosophila ISOLATED BY COUNTERCURRENT DISTRIBUTION. Proc Natl Acad Sci U S A. 1967 Sep;58(3):1112–1119. doi: 10.1073/pnas.58.3.1112. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Burgess R. W., Deitcher D. L., Schwarz T. L. The synaptic protein syntaxin1 is required for cellularization of Drosophila embryos. J Cell Biol. 1997 Aug 25;138(4):861–875. doi: 10.1083/jcb.138.4.861. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DiAntonio A., Schwarz T. L. The effect on synaptic physiology of synaptotagmin mutations in Drosophila. Neuron. 1994 Apr;12(4):909–920. doi: 10.1016/0896-6273(94)90342-5. [DOI] [PubMed] [Google Scholar]
- Dickson B. J., van der Straten A., Dominguez M., Hafen E. Mutations Modulating Raf signaling in Drosophila eye development. Genetics. 1996 Jan;142(1):163–171. doi: 10.1093/genetics/142.1.163. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Duffy J. B., Harrison D. A., Perrimon N. Identifying loci required for follicular patterning using directed mosaics. Development. 1998 Jun;125(12):2263–2271. doi: 10.1242/dev.125.12.2263. [DOI] [PubMed] [Google Scholar]
- Engels W. R. P elements in Drosophila. Curr Top Microbiol Immunol. 1996;204:103–123. doi: 10.1007/978-3-642-79795-8_5. [DOI] [PubMed] [Google Scholar]
- Freeman M., Kimmel B. E., Rubin G. M. Identifying targets of the rough homeobox gene of Drosophila: evidence that rhomboid functions in eye development. Development. 1992 Oct;116(2):335–346. doi: 10.1242/dev.116.2.335. [DOI] [PubMed] [Google Scholar]
- Gitschier J., Strichartz G. R., Hall L. M. Saxitoxin binding to sodium channels in head extracts from wild-type and tetrodotoxin-sensitive strains of Drosophila melanogaster. Biochim Biophys Acta. 1980 Jan 25;595(2):291–303. doi: 10.1016/0005-2736(80)90091-7. [DOI] [PubMed] [Google Scholar]
- Golic K. G., Lindquist S. The FLP recombinase of yeast catalyzes site-specific recombination in the Drosophila genome. Cell. 1989 Nov 3;59(3):499–509. doi: 10.1016/0092-8674(89)90033-0. [DOI] [PubMed] [Google Scholar]
- Grether M. E., Abrams J. M., Agapite J., White K., Steller H. The head involution defective gene of Drosophila melanogaster functions in programmed cell death. Genes Dev. 1995 Jul 15;9(14):1694–1708. doi: 10.1101/gad.9.14.1694. [DOI] [PubMed] [Google Scholar]
- Harris W. A., Stark W. S., Walker J. A. Genetic dissection of the photoreceptor system in the compound eye of Drosophila melanogaster. J Physiol. 1976 Apr;256(2):415–439. doi: 10.1113/jphysiol.1976.sp011331. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hay B. A., Wolff T., Rubin G. M. Expression of baculovirus P35 prevents cell death in Drosophila. Development. 1994 Aug;120(8):2121–2129. doi: 10.1242/dev.120.8.2121. [DOI] [PubMed] [Google Scholar]
- Hazelett D. J., Bourouis M., Walldorf U., Treisman J. E. decapentaplegic and wingless are regulated by eyes absent and eyegone and interact to direct the pattern of retinal differentiation in the eye disc. Development. 1998 Sep;125(18):3741–3751. doi: 10.1242/dev.125.18.3741. [DOI] [PubMed] [Google Scholar]
- Karim F. D., Chang H. C., Therrien M., Wassarman D. A., Laverty T., Rubin G. M. A screen for genes that function downstream of Ras1 during Drosophila eye development. Genetics. 1996 May;143(1):315–329. doi: 10.1093/genetics/143.1.315. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Neufeld T. P., Tang A. H., Rubin G. M. A genetic screen to identify components of the sina signaling pathway in Drosophila eye development. Genetics. 1998 Jan;148(1):277–286. doi: 10.1093/genetics/148.1.277. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ondek B., Hardy R. W., Baker E. K., Stamnes M. A., Shieh B. H., Zuker C. S. Genetic dissection of cyclophilin function. Saturation mutagenesis of the Drosophila cyclophilin homolog ninaA. J Biol Chem. 1992 Aug 15;267(23):16460–16466. [PubMed] [Google Scholar]
- Pak W. L. Drosophila in vision research. The Friedenwald Lecture. Invest Ophthalmol Vis Sci. 1995 Nov;36(12):2340–2357. [PubMed] [Google Scholar]
- Pak W. L., Grossfield J., White N. V. Nonphototactic mutants in a study of vision of Drosophila. Nature. 1969 Apr 26;222(5191):351–354. doi: 10.1038/222351a0. [DOI] [PubMed] [Google Scholar]
- Pak W. L. Molecular genetic studies of photoreceptor function using Drosophila mutants. Prog Clin Biol Res. 1991;362:1–32. [PubMed] [Google Scholar]
- Pignoni F., Hu B., Zipursky S. L. Identification of genes required for Drosophila eye development using a phenotypic enhancer-trap. Proc Natl Acad Sci U S A. 1997 Aug 19;94(17):9220–9225. doi: 10.1073/pnas.94.17.9220. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Quiring R., Walldorf U., Kloter U., Gehring W. J. Homology of the eyeless gene of Drosophila to the Small eye gene in mice and Aniridia in humans. Science. 1994 Aug 5;265(5173):785–789. doi: 10.1126/science.7914031. [DOI] [PubMed] [Google Scholar]
- Reinke R., Zipursky S. L. Cell-cell interaction in the Drosophila retina: the bride of sevenless gene is required in photoreceptor cell R8 for R7 cell development. Cell. 1988 Oct 21;55(2):321–330. doi: 10.1016/0092-8674(88)90055-4. [DOI] [PubMed] [Google Scholar]
- Simon M. A., Bowtell D. D., Dodson G. S., Laverty T. R., Rubin G. M. Ras1 and a putative guanine nucleotide exchange factor perform crucial steps in signaling by the sevenless protein tyrosine kinase. Cell. 1991 Nov 15;67(4):701–716. doi: 10.1016/0092-8674(91)90065-7. [DOI] [PubMed] [Google Scholar]
- Simon M. A. Signal transduction during the development of the Drosophila R7 photoreceptor. Dev Biol. 1994 Dec;166(2):431–442. doi: 10.1006/dbio.1994.1327. [DOI] [PubMed] [Google Scholar]
- Stephenson R. S., O'Tousa J., Scavarda N. J., Randall L. L., Pak W. L. Drosophila mutants with reduced rhodopsin content. Symp Soc Exp Biol. 1983;36:477–501. [PubMed] [Google Scholar]
- Thaker H. M., Kankel D. R. Mosaic analysis gives an estimate of the extent of genomic involvement in the development of the visual system in Drosophila melanogaster. Genetics. 1992 Aug;131(4):883–894. doi: 10.1093/genetics/131.4.883. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zipursky S. L., Rubin G. M. Determination of neuronal cell fate: lessons from the R7 neuron of Drosophila. Annu Rev Neurosci. 1994;17:373–397. doi: 10.1146/annurev.ne.17.030194.002105. [DOI] [PubMed] [Google Scholar]
- Zuker C. S. The biology of vision of Drosophila. Proc Natl Acad Sci U S A. 1996 Jan 23;93(2):571–576. doi: 10.1073/pnas.93.2.571. [DOI] [PMC free article] [PubMed] [Google Scholar]
