Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2002 Jan 15;361(Pt 2):185–192. doi: 10.1042/0264-6021:3610185

Torbafylline (HWA 448) inhibits enhanced skeletal muscle ubiquitin-proteasome-dependent proteolysis in cancer and septic rats.

Lydie Combaret 1, Thomas Tilignac 1, Agnès Claustre 1, Laure Voisin 1, Daniel Taillandier 1, Christiane Obled 1, Keiji Tanaka 1, Didier Attaix 1
PMCID: PMC1222298  PMID: 11772390

Abstract

The development of new pharmacological approaches for preventing muscle wasting in cancer is an important goal because cachectic patients display a reduced response to chemotherapy and radiotherapy. Xanthine derivatives such as pentoxifylline inhibit tumour necrosis factor-alpha (TNF) production, which has been implicated in the signalling of muscle wasting. However, the effect of pentoxifylline has been inconclusive in clinical trials. We report here the first direct evidence that daily injections of torbafylline (also known as HWA 448), another xanthine derivative, had no effect by itself on muscle proteolysis in control healthy rats. In cancer rats, the drug blocked the lipopolysaccharide-induced hyperproduction of TNF and prevented muscle wasting. In these animals HWA 448 suppressed the enhanced proteasome-dependent proteolysis, which is sensitive to the proteasome inhibitor MG132, and the accumulation of high-molecular-mass ubiquitin (Ub) conjugates in the myofibrillar fraction. The drug also normalized the enhanced muscle expression of Ub, which prevails in the atrophying muscles from cancer rats. In contrast, HWA 448 did not reduce the increased expression of either the 14 kDa Ub conjugating enzyme E2 or the ATPase and non-ATPase subunits of the 19 S regulatory complex of the 26 S proteasome, including the non-ATPase subunit S5a, which recognizes polyUb degradation signals. Finally, the drug also prevented muscle wasting in septic rats (which exhibit increased TNF production), and was much more potent than pentoxifylline or other xanthine derivatives. Taken together, the data indicate that HWA 448 is a powerful inhibitor of muscle wasting that blocks enhanced Ub-proteasome-dependent proteolysis in situations where TNF production rises, including cancer and sepsis.

Full Text

The Full Text of this article is available as a PDF (217.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aboudrar S., Desplanches D., Graber-von Bergen F., Favier R., Okyayuz-Baklouti I., Hoppeler H. Effects of torbafylline on muscle atrophy: prevention and recovery. Can J Physiol Pharmacol. 1992 Jun;70(6):814–820. doi: 10.1139/y92-109. [DOI] [PubMed] [Google Scholar]
  2. Ahn J. Y., Tanahashi N., Akiyama K., Hisamatsu H., Noda C., Tanaka K., Chung C. H., Shibmara N., Willy P. J., Mott J. D. Primary structures of two homologous subunits of PA28, a gamma-interferon-inducible protein activator of the 20S proteasome. FEBS Lett. 1995 Jun 5;366(1):37–42. doi: 10.1016/0014-5793(95)00492-r. [DOI] [PubMed] [Google Scholar]
  3. Attaix D., Combaret L., Pouch M. N., Taillandier D. Regulation of proteolysis. Curr Opin Clin Nutr Metab Care. 2001 Jan;4(1):45–49. doi: 10.1097/00075197-200101000-00009. [DOI] [PubMed] [Google Scholar]
  4. Attaix D., Combaret L., Tilignac T., Taillandier D. Adaptation of the ubiquitin-proteasome proteolytic pathway in cancer cachexia. Mol Biol Rep. 1999 Apr;26(1-2):77–82. doi: 10.1023/a:1006961919775. [DOI] [PubMed] [Google Scholar]
  5. Baracos V. E., DeVivo C., Hoyle D. H., Goldberg A. L. Activation of the ATP-ubiquitin-proteasome pathway in skeletal muscle of cachectic rats bearing a hepatoma. Am J Physiol. 1995 May;268(5 Pt 1):E996–1006. doi: 10.1152/ajpendo.1995.268.5.E996. [DOI] [PubMed] [Google Scholar]
  6. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  7. Combaret L., Rallière C., Taillandier D., Tanaka K., Attaix D. Manipulation of the ubiquitin-proteasome pathway in cachexia: pentoxifylline suppresses the activation of 20S and 26S proteasomes in muscles from tumor-bearing rats. Mol Biol Rep. 1999 Apr;26(1-2):95–101. doi: 10.1023/a:1006955832323. [DOI] [PubMed] [Google Scholar]
  8. Costelli P., Carbó N., Tessitore L., Bagby G. J., Lopez-Soriano F. J., Argilés J. M., Baccino F. M. Tumor necrosis factor-alpha mediates changes in tissue protein turnover in a rat cancer cachexia model. J Clin Invest. 1993 Dec;92(6):2783–2789. doi: 10.1172/JCI116897. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Dawson S. P., Arnold J. E., Mayer N. J., Reynolds S. E., Billett M. A., Gordon C., Colleaux L., Kloetzel P. M., Tanaka K., Mayer R. J. Developmental changes of the 26 S proteasome in abdominal intersegmental muscles of Manduca sexta during programmed cell death. J Biol Chem. 1995 Jan 27;270(4):1850–1858. doi: 10.1074/jbc.270.4.1850. [DOI] [PubMed] [Google Scholar]
  10. Deveraux Q., Ustrell V., Pickart C., Rechsteiner M. A 26 S protease subunit that binds ubiquitin conjugates. J Biol Chem. 1994 Mar 11;269(10):7059–7061. [PubMed] [Google Scholar]
  11. Dezube B. J., Sherman M. L., Fridovich-Keil J. L., Allen-Ryan J., Pardee A. B. Down-regulation of tumor necrosis factor expression by pentoxifylline in cancer patients: a pilot study. Cancer Immunol Immunother. 1993;36(1):57–60. doi: 10.1007/BF01789132. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Dinarello C. A. Proinflammatory cytokines. Chest. 2000 Aug;118(2):503–508. doi: 10.1378/chest.118.2.503. [DOI] [PubMed] [Google Scholar]
  13. Ferrell K., Deveraux Q., van Nocker S., Rechsteiner M. Molecular cloning and expression of a multiubiquitin chain binding subunit of the human 26S protease. FEBS Lett. 1996 Feb 26;381(1-2):143–148. doi: 10.1016/0014-5793(96)00101-9. [DOI] [PubMed] [Google Scholar]
  14. Fort P., Marty L., Piechaczyk M., el Sabrouty S., Dani C., Jeanteur P., Blanchard J. M. Various rat adult tissues express only one major mRNA species from the glyceraldehyde-3-phosphate-dehydrogenase multigenic family. Nucleic Acids Res. 1985 Mar 11;13(5):1431–1442. doi: 10.1093/nar/13.5.1431. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Fujita J., Tsujinaka T., Yano M., Ebisui C., Saito H., Katsume A., Akamatsu K., Ohsugi Y., Shiozaki H., Monden M. Anti-interleukin-6 receptor antibody prevents muscle atrophy in colon-26 adenocarcinoma-bearing mice with modulation of lysosomal and ATP-ubiquitin-dependent proteolytic pathways. Int J Cancer. 1996 Nov 27;68(5):637–643. doi: 10.1002/(SICI)1097-0215(19961127)68:5<637::AID-IJC14>3.0.CO;2-Z. [DOI] [PubMed] [Google Scholar]
  16. Goldberg R. M., Loprinzi C. L., Mailliard J. A., O'Fallon J. R., Krook J. E., Ghosh C., Hestorff R. D., Chong S. F., Reuter N. F., Shanahan T. G. Pentoxifylline for treatment of cancer anorexia and cachexia? A randomized, double-blind, placebo-controlled trial. J Clin Oncol. 1995 Nov;13(11):2856–2859. doi: 10.1200/JCO.1995.13.11.2856. [DOI] [PubMed] [Google Scholar]
  17. Hasselgren P. O., Fischer J. E. Muscle cachexia: current concepts of intracellular mechanisms and molecular regulation. Ann Surg. 2001 Jan;233(1):9–17. doi: 10.1097/00000658-200101000-00003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hershko A., Ciechanover A., Varshavsky A. Basic Medical Research Award. The ubiquitin system. Nat Med. 2000 Oct;6(10):1073–1081. doi: 10.1038/80384. [DOI] [PubMed] [Google Scholar]
  19. Jakobsen P. H., Koch C., Bendtzen K. Inhibition of LPS and Plasmodium falciparum induced cytokine secretion by pentoxifylline and two analogues. Scand J Immunol. 1997 May;45(5):546–550. doi: 10.1046/j.1365-3083.1997.d01-425.x. [DOI] [PubMed] [Google Scholar]
  20. Lecker S. H., Solomon V., Mitch W. E., Goldberg A. L. Muscle protein breakdown and the critical role of the ubiquitin-proteasome pathway in normal and disease states. J Nutr. 1999 Jan;129(1S):227S–237S. doi: 10.1093/jn/129.1.227S. [DOI] [PubMed] [Google Scholar]
  21. Lecker S. H., Solomon V., Price S. R., Kwon Y. T., Mitch W. E., Goldberg A. L. Ubiquitin conjugation by the N-end rule pathway and mRNAs for its components increase in muscles of diabetic rats. J Clin Invest. 1999 Nov;104(10):1411–1420. doi: 10.1172/JCI7300. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Llovera M., Carbó N., García-Martínez C., Costelli P., Tessitore L., Baccino F. M., Agell N., Bagby G. J., López-Soriano F. J., Argilés J. M. Anti-TNF treatment reverts increased muscle ubiquitin gene expression in tumour-bearing rats. Biochem Biophys Res Commun. 1996 Apr 25;221(3):653–655. doi: 10.1006/bbrc.1996.0651. [DOI] [PubMed] [Google Scholar]
  23. Llovera M., García-Martínez C., Agell N., Marzábal M., López-Soriano F. J., Argilés J. M. Ubiquitin gene expression is increased in skeletal muscle of tumour-bearing rats. FEBS Lett. 1994 Feb 7;338(3):311–318. doi: 10.1016/0014-5793(94)80290-4. [DOI] [PubMed] [Google Scholar]
  24. Lorite M. J., Thompson M. G., Drake J. L., Carling G., Tisdale M. J. Mechanism of muscle protein degradation induced by a cancer cachectic factor. Br J Cancer. 1998 Oct;78(7):850–856. doi: 10.1038/bjc.1998.592. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Lundholm K., Bylund A. C., Holm J., Scherstén T. Skeletal muscle metabolism in patients with malignant tumor. Eur J Cancer. 1976 Jun;12(6):465–473. doi: 10.1016/0014-2964(76)90036-0. [DOI] [PubMed] [Google Scholar]
  26. Mansoor O., Beaufrere B., Boirie Y., Ralliere C., Taillandier D., Aurousseau E., Schoeffler P., Arnal M., Attaix D. Increased mRNA levels for components of the lysosomal, Ca2+-activated, and ATP-ubiquitin-dependent proteolytic pathways in skeletal muscle from head trauma patients. Proc Natl Acad Sci U S A. 1996 Apr 2;93(7):2714–2718. doi: 10.1073/pnas.93.7.2714. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Mitch W. E., Goldberg A. L. Mechanisms of muscle wasting. The role of the ubiquitin-proteasome pathway. N Engl J Med. 1996 Dec 19;335(25):1897–1905. doi: 10.1056/NEJM199612193352507. [DOI] [PubMed] [Google Scholar]
  28. Mykles D. L. Differential effects of bovine PA28 on six peptidase activities of the lobster muscle proteasome (multicatalytic proteinase). Arch Biochem Biophys. 1996 Jan 1;325(1):77–81. doi: 10.1006/abbi.1996.0009. [DOI] [PubMed] [Google Scholar]
  29. Oliff A., Defeo-Jones D., Boyer M., Martinez D., Kiefer D., Vuocolo G., Wolfe A., Socher S. H. Tumors secreting human TNF/cachectin induce cachexia in mice. Cell. 1987 Aug 14;50(4):555–563. doi: 10.1016/0092-8674(87)90028-6. [DOI] [PubMed] [Google Scholar]
  30. Rock K. L., Gramm C., Rothstein L., Clark K., Stein R., Dick L., Hwang D., Goldberg A. L. Inhibitors of the proteasome block the degradation of most cell proteins and the generation of peptides presented on MHC class I molecules. Cell. 1994 Sep 9;78(5):761–771. doi: 10.1016/s0092-8674(94)90462-6. [DOI] [PubMed] [Google Scholar]
  31. Semmler J., Gebert U., Eisenhut T., Moeller J., Schönharting M. M., Alléra A., Endres S. Xanthine derivatives: comparison between suppression of tumour necrosis factor-alpha production and inhibition of cAMP phosphodiesterase activity. Immunology. 1993 Apr;78(4):520–525. [PMC free article] [PubMed] [Google Scholar]
  32. Shibuya H., Irie K., Ninomiya-Tsuji J., Goebl M., Taniguchi T., Matsumoto K. New human gene encoding a positive modulator of HIV Tat-mediated transactivation. Nature. 1992 Jun 25;357(6380):700–702. doi: 10.1038/357700a0. [DOI] [PubMed] [Google Scholar]
  33. Smith P. K., Krohn R. I., Hermanson G. T., Mallia A. K., Gartner F. H., Provenzano M. D., Fujimoto E. K., Goeke N. M., Olson B. J., Klenk D. C. Measurement of protein using bicinchoninic acid. Anal Biochem. 1985 Oct;150(1):76–85. doi: 10.1016/0003-2697(85)90442-7. [DOI] [PubMed] [Google Scholar]
  34. Solomon V., Baracos V., Sarraf P., Goldberg A. L. Rates of ubiquitin conjugation increase when muscles atrophy, largely through activation of the N-end rule pathway. Proc Natl Acad Sci U S A. 1998 Oct 13;95(21):12602–12607. doi: 10.1073/pnas.95.21.12602. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Taillandier D., Aurousseau E., Meynial-Denis D., Bechet D., Ferrara M., Cottin P., Ducastaing A., Bigard X., Guezennec C. Y., Schmid H. P. Coordinate activation of lysosomal, Ca 2+-activated and ATP-ubiquitin-dependent proteinases in the unweighted rat soleus muscle. Biochem J. 1996 May 15;316(Pt 1):65–72. doi: 10.1042/bj3160065. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Takayanagi K., Dawson S., Reynolds S. E., Mayer R. J. Specific developmental changes in the regulatory subunits of the 26 S proteasome in intersegmental muscles preceding eclosion in Manduca sexta. Biochem Biophys Res Commun. 1996 Nov 12;228(2):517–523. doi: 10.1006/bbrc.1996.1692. [DOI] [PubMed] [Google Scholar]
  37. Temparis S., Asensi M., Taillandier D., Aurousseau E., Larbaud D., Obled A., Béchet D., Ferrara M., Estrela J. M., Attaix D. Increased ATP-ubiquitin-dependent proteolysis in skeletal muscles of tumor-bearing rats. Cancer Res. 1994 Nov 1;54(21):5568–5573. [PubMed] [Google Scholar]
  38. Tessitore L., Costelli P., Bonetti G., Baccino F. M. Cancer cachexia, malnutrition, and tissue protein turnover in experimental animals. Arch Biochem Biophys. 1993 Oct;306(1):52–58. doi: 10.1006/abbi.1993.1479. [DOI] [PubMed] [Google Scholar]
  39. Tiao G., Hobler S., Wang J. J., Meyer T. A., Luchette F. A., Fischer J. E., Hasselgren P. O. Sepsis is associated with increased mRNAs of the ubiquitin-proteasome proteolytic pathway in human skeletal muscle. J Clin Invest. 1997 Jan 15;99(2):163–168. doi: 10.1172/JCI119143. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Tischler M. E., Desautels M., Goldberg A. L. Does leucine, leucyl-tRNA, or some metabolite of leucine regulate protein synthesis and degradation in skeletal and cardiac muscle? J Biol Chem. 1982 Feb 25;257(4):1613–1621. [PubMed] [Google Scholar]
  41. Tisdale M. J. Biomedicine. Protein loss in cancer cachexia. Science. 2000 Sep 29;289(5488):2293–2294. doi: 10.1126/science.289.5488.2293. [DOI] [PubMed] [Google Scholar]
  42. Todorov P., Cariuk P., McDevitt T., Coles B., Fearon K., Tisdale M. Characterization of a cancer cachectic factor. Nature. 1996 Feb 22;379(6567):739–742. doi: 10.1038/379739a0. [DOI] [PubMed] [Google Scholar]
  43. Tracey K. J., Wei H., Manogue K. R., Fong Y., Hesse D. G., Nguyen H. T., Kuo G. C., Beutler B., Cotran R. S., Cerami A. Cachectin/tumor necrosis factor induces cachexia, anemia, and inflammation. J Exp Med. 1988 Mar 1;167(3):1211–1227. doi: 10.1084/jem.167.3.1211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Vary T., Dardevet D., Grizard J., Voisin L., Buffiere C., Denis P., Breuille D., Obled C. Pentoxifylline improves insulin action limiting skeletal muscle catabolism after infection. J Endocrinol. 1999 Oct;163(1):15–24. doi: 10.1677/joe.0.1630015. [DOI] [PubMed] [Google Scholar]
  45. Voges D., Zwickl P., Baumeister W. The 26S proteasome: a molecular machine designed for controlled proteolysis. Annu Rev Biochem. 1999;68:1015–1068. doi: 10.1146/annurev.biochem.68.1.1015. [DOI] [PubMed] [Google Scholar]
  46. Voisin L., Breuillé D., Combaret L., Pouyet C., Taillandier D., Aurousseau E., Obled C., Attaix D. Muscle wasting in a rat model of long-lasting sepsis results from the activation of lysosomal, Ca2+ -activated, and ubiquitin-proteasome proteolytic pathways. J Clin Invest. 1996 Apr 1;97(7):1610–1617. doi: 10.1172/JCI118586. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. WAALKES T. P., UDENFRIEND S. A fluorometric method for the estimation of tyrosine in plasma and tissues. J Lab Clin Med. 1957 Nov;50(5):733–736. [PubMed] [Google Scholar]
  48. Williams A., Sun X., Fischer J. E., Hasselgren P. O. The expression of genes in the ubiquitin-proteasome proteolytic pathway is increased in skeletal muscle from patients with cancer. Surgery. 1999 Oct;126(4):744–750. [PubMed] [Google Scholar]
  49. Wing S. S., Haas A. L., Goldberg A. L. Increase in ubiquitin-protein conjugates concomitant with the increase in proteolysis in rat skeletal muscle during starvation and atrophy denervation. Biochem J. 1995 May 1;307(Pt 3):639–645. doi: 10.1042/bj3070639. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Yokota K., Kagawa S., Shimizu Y., Akioka H., Tsurumi C., Noda C., Fujimuro M., Yokosawa H., Fujiwara T., Takahashi E. CDNA cloning of p112, the largest regulatory subunit of the human 26s proteasome, and functional analysis of its yeast homologue, sen3p. Mol Biol Cell. 1996 Jun;7(6):853–870. doi: 10.1091/mbc.7.6.853. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. van Nocker S., Sadis S., Rubin D. M., Glickman M., Fu H., Coux O., Wefes I., Finley D., Vierstra R. D. The multiubiquitin-chain-binding protein Mcb1 is a component of the 26S proteasome in Saccharomyces cerevisiae and plays a nonessential, substrate-specific role in protein turnover. Mol Cell Biol. 1996 Nov;16(11):6020–6028. doi: 10.1128/mcb.16.11.6020. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES