Abstract
1. The hypothesis that cellular hydration state modulates muscle glycogen synthesis was tested by measuring the incorporation of [14C]glucose into glycogen (glycogen synthesis) in primary rat myotubes after experimentally induced volume changes. 2. Glycogen synthesis in myotubes increased (by 75%, P < 0.01) after swelling induced by 60 min exposure to hyposmotic media (170 mosmol kg-1) relative to isosmotic control (300 mosmol kg-1) values, it decreased (by 31%, P < 0.05) after shrinkage induced by 60 min exposure to hyperosmotic (430 mosmol kg-1) media. Myotube 2-deoxy-D-glucose (0.05 mM) uptake was unaffected by changes in external osmolality. 3. Wortmannin (100 nM; 60 min), a phosphatidylinositol 3-kinase inhibitor, decreased basal glycogen synthesis by 28% whereas rapamycin (100 nM; 60 min), which blocks the activation of p70 S6 kinase, had no effect. Both wortmannin (100 nM; 60 min) and rapamycin (100 nM; 60 min) blocked the changes in glycogen synthesis resulting from hypo- and hyperosmotic exposure. 4. Myotube glycogen synthesis is modulated by volume changes independently of changes in glucose uptake. The phenomenon may be physiologically important in promoting glycogen storage during circumstances of myofibrillar swelling, e.g. after feeding or exercise.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Agius L., Peak M., Alberti K. G. Regulation of glycogen synthesis from glucose and gluconeogenic precursors by insulin in periportal and perivenous rat hepatocytes. Biochem J. 1990 Feb 15;266(1):91–102. doi: 10.1042/bj2660091. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bangsbo J., Graham T., Johansen L., Saltin B. Muscle lactate metabolism in recovery from intense exhaustive exercise: impact of light exercise. J Appl Physiol (1985) 1994 Oct;77(4):1890–1895. doi: 10.1152/jappl.1994.77.4.1890. [DOI] [PubMed] [Google Scholar]
- Baquet A., Hue L., Meijer A. J., van Woerkom G. M., Plomp P. J. Swelling of rat hepatocytes stimulates glycogen synthesis. J Biol Chem. 1990 Jan 15;265(2):955–959. [PubMed] [Google Scholar]
- Baquet A., Lavoinne A., Hue L. Comparison of the effects of various amino acids on glycogen synthesis, lipogenesis and ketogenesis in isolated rat hepatocytes. Biochem J. 1991 Jan 1;273(Pt 1):57–62. doi: 10.1042/bj2730057. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Clarke M. S., Feeback D. L. Mechanical load induces sarcoplasmic wounding and FGF release in differentiated human skeletal muscle cultures. FASEB J. 1996 Mar;10(4):502–509. doi: 10.1096/fasebj.10.4.8647349. [DOI] [PubMed] [Google Scholar]
- Häussinger D. The role of cellular hydration in the regulation of cell function. Biochem J. 1996 Feb 1;313(Pt 3):697–710. doi: 10.1042/bj3130697. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Komulainen J., Kytölä J., Vihko V. Running-induced muscle injury and myocellular enzyme release in rats. J Appl Physiol (1985) 1994 Nov;77(5):2299–2304. doi: 10.1152/jappl.1994.77.5.2299. [DOI] [PubMed] [Google Scholar]
- Low S. Y., Taylor P. M., Rennie M. J. Responses of glutamine transport in cultured rat skeletal muscle to osmotically induced changes in cell volume. J Physiol. 1996 May 1;492(Pt 3):877–885. doi: 10.1113/jphysiol.1996.sp021353. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MacLennan P. A., Brown R. A., Rennie M. J. A positive relationship between protein synthetic rate and intracellular glutamine concentration in perfused rat skeletal muscle. FEBS Lett. 1987 May 4;215(1):187–191. doi: 10.1016/0014-5793(87)80139-4. [DOI] [PubMed] [Google Scholar]
- Meijer A. J., Baquet A., Gustafson L., van Woerkom G. M., Hue L. Mechanism of activation of liver glycogen synthase by swelling. J Biol Chem. 1992 Mar 25;267(9):5823–5828. [PubMed] [Google Scholar]
- Peak M., al-Habori M., Agius L. Regulation of glycogen synthesis and glycolysis by insulin, pH and cell volume. Interactions between swelling and alkalinization in mediating the effects of insulin. Biochem J. 1992 Mar 15;282(Pt 3):797–805. doi: 10.1042/bj2820797. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rennie M. J., MacLennan P. A., Hundal H. S., Weryk B., Smith K., Taylor P. M., Egan C., Watt P. W. Skeletal muscle glutamine transport, intramuscular glutamine concentration, and muscle-protein turnover. Metabolism. 1989 Aug;38(8 Suppl 1):47–51. doi: 10.1016/0026-0495(89)90140-6. [DOI] [PubMed] [Google Scholar]
- Schliess F., Schreiber R., Häussinger D. Activation of extracellular signal-regulated kinases Erk-1 and Erk-2 by cell swelling in H4IIE hepatoma cells. Biochem J. 1995 Jul 1;309(Pt 1):13–17. doi: 10.1042/bj3090013. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shepherd P. R., Navé B. T., Siddle K. Insulin stimulation of glycogen synthesis and glycogen synthase activity is blocked by wortmannin and rapamycin in 3T3-L1 adipocytes: evidence for the involvement of phosphoinositide 3-kinase and p70 ribosomal protein-S6 kinase. Biochem J. 1995 Jan 1;305(Pt 1):25–28. doi: 10.1042/bj3050025. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tsakiridis T., McDowell H. E., Walker T., Downes C. P., Hundal H. S., Vranic M., Klip A. Multiple roles of phosphatidylinositol 3-kinase in regulation of glucose transport, amino acid transport, and glucose transporters in L6 skeletal muscle cells. Endocrinology. 1995 Oct;136(10):4315–4322. doi: 10.1210/endo.136.10.7664650. [DOI] [PubMed] [Google Scholar]
- Varnier M., Leese G. P., Thompson J., Rennie M. J. Stimulatory effect of glutamine on glycogen accumulation in human skeletal muscle. Am J Physiol. 1995 Aug;269(2 Pt 1):E309–E315. doi: 10.1152/ajpendo.1995.269.2.E309. [DOI] [PubMed] [Google Scholar]
