Nature Biotechnology Nature Biotechnology is a monthly journal publishing new concepts in biological technology of relevance to bioengineering, medicine, energy, agriculture, food and the environment. It has a magazine covering the commercial, political, ethical, legal and societal aspects of this research. http://feeds.nature.com/nbt/rss/current Nature Publishing Group en © 2025 Macmillan Publishers Limited, part of Springer Nature. All rights reserved. Nature Biotechnology © 2025 Macmillan Publishers Limited, part of Springer Nature. All rights reserved. [email protected]
  • Nature Biotechnology https://www.nature.com/uploads/product/nbt/rss.png http://feeds.nature.com/nbt/rss/current <![CDATA[Long-term imaging of cell divisions in human preimplantation embryos]]> https://www.nature.com/articles/s41587-025-02841-3 <![CDATA[

    Nature Biotechnology, Published online: 23 October 2025; doi:10.1038/s41587-025-02841-3

    An optimized approach for live imaging of human embryos enables visualization of mitotic errors during blastocyst development.]]> <![CDATA[Long-term imaging of cell divisions in human preimplantation embryos]]> Corentin MollierJean-Léon Maître doi:10.1038/s41587-025-02841-3 Nature Biotechnology, Published online: 2025-10-23; | doi:10.1038/s41587-025-02841-3 2025-10-23 Nature Biotechnology 10.1038/s41587-025-02841-3 https://www.nature.com/articles/s41587-025-02841-3 <![CDATA[Overcoming barriers to the wide adoption of single-cell large language models in biomedical research]]> https://www.nature.com/articles/s41587-025-02846-y <![CDATA[

    Nature Biotechnology, Published online: 23 October 2025; doi:10.1038/s41587-025-02846-y

    Transformer-based large language models are gaining traction in biomedical research, particularly in single-cell omics. Despite their promise, the application of single-cell large language models (scLLMs) remains limited in practice. In this Comment, we examine the current landscape of scLLMs and the benchmark studies that assess their applications in various analytical tasks. We highlight existing technical gaps and practical barriers, and discuss future directions toward a more accessible and effective ecosystem to promote the applications of scLLMs in the biomedical community.]]>
    <![CDATA[Overcoming barriers to the wide adoption of single-cell large language models in biomedical research]]> Fang XieBingkang ZhaoSongxiang XuZehua WangJames J. MoonLana X. Garmire doi:10.1038/s41587-025-02846-y Nature Biotechnology, Published online: 2025-10-23; | doi:10.1038/s41587-025-02846-y 2025-10-23 Nature Biotechnology 10.1038/s41587-025-02846-y https://www.nature.com/articles/s41587-025-02846-y
    <![CDATA[RNA structure modulates Cas13 activity and enables mismatch detection]]> https://www.nature.com/articles/s41587-025-02868-6 <![CDATA[

    Nature Biotechnology, Published online: 23 October 2025; doi:10.1038/s41587-025-02868-6

    An effective CRISPR RNA occlusion strategy enhances mismatch detection when using Cas13.]]>
    <![CDATA[RNA structure modulates Cas13 activity and enables mismatch detection]]> Benjamin B. LarsenOfer KimchiOwen R. S. DunkleyMaaike S. GrimmJurre Y. SiegersYujia HuangVenu G. VandavasiLong T. NguyenCaitlin H. LambIrina AranovichDirk EgginkAdam MeijerHamid JalalDaniel A. NottermanErik A. KarlssonAartjan J. W. te VelthuisCameron Myhrvold doi:10.1038/s41587-025-02868-6 Nature Biotechnology, Published online: 2025-10-23; | doi:10.1038/s41587-025-02868-6 2025-10-23 Nature Biotechnology 10.1038/s41587-025-02868-6 https://www.nature.com/articles/s41587-025-02868-6
    <![CDATA[Elucidating lipid nanoparticle properties and structure through biophysical analyses]]> https://www.nature.com/articles/s41587-025-02855-x <![CDATA[

    Nature Biotechnology, Published online: 23 October 2025; doi:10.1038/s41587-025-02855-x

    Guidance for optimizing lipid nanoparticle formulations is derived using sophisticated biophysical techniques.]]>
    <![CDATA[Elucidating lipid nanoparticle properties and structure through biophysical analyses]]> Marshall S. PadillaSarah J. ShepherdAndrew R. HannaMartin KurnikXujun ZhangMichelle ChenJames ByrnesRyann A. JosephHannah M. YamagataAdele S. RicciardiKaitlin MrksichDavid IssadoreKushol GuptaMichael J. Mitchell doi:10.1038/s41587-025-02855-x Nature Biotechnology, Published online: 2025-10-23; | doi:10.1038/s41587-025-02855-x 2025-10-23 Nature Biotechnology 10.1038/s41587-025-02855-x https://www.nature.com/articles/s41587-025-02855-x
    <![CDATA[Discovery and engineering of retrons for precise genome editing]]> https://www.nature.com/articles/s41587-025-02879-3 <![CDATA[

    Nature Biotechnology, Published online: 23 October 2025; doi:10.1038/s41587-025-02879-3

    A metagenomic screen identifies retron reverse transcriptases for precise genome-editing applications.]]>
    <![CDATA[Discovery and engineering of retrons for precise genome editing]]> Jesse D. BuffingtonHung-Che KuoKuang HuYou-Chiun ChangKamyab JavanmardiBrittney VoigtYi-Ru LiMary E. LittleSravan K. DevanathanBlerta XhemalçeRyan S. GrayIlya J. Finkelstein doi:10.1038/s41587-025-02879-3 Nature Biotechnology, Published online: 2025-10-23; | doi:10.1038/s41587-025-02879-3 2025-10-23 Nature Biotechnology 10.1038/s41587-025-02879-3 https://www.nature.com/articles/s41587-025-02879-3
    <![CDATA[Live imaging of late-stage preimplantation human embryos reveals de novo mitotic errors]]> https://www.nature.com/articles/s41587-025-02851-1 <![CDATA[

    Nature Biotechnology, Published online: 23 October 2025; doi:10.1038/s41587-025-02851-1

    A method to label cultured human embryos finds chromosome segregation errors in placenta-fated cells.]]>
    <![CDATA[Live imaging of late-stage preimplantation human embryos reveals de novo mitotic errors]]> Ahmed AbdelbakiAfshan McCarthyAnita KarsaLeila MuresanKay ElderAthanasios PapathanasiouPhil SnellLeila ChristieMartin WildingBenjamin J. SteventonKathy K. Niakan doi:10.1038/s41587-025-02851-1 Nature Biotechnology, Published online: 2025-10-23; | doi:10.1038/s41587-025-02851-1 2025-10-23 Nature Biotechnology 10.1038/s41587-025-02851-1 https://www.nature.com/articles/s41587-025-02851-1
    <![CDATA[Tissue and cellular spatiotemporal dynamics in colon aging]]> https://www.nature.com/articles/s41587-025-02830-6 <![CDATA[

    Nature Biotechnology, Published online: 22 October 2025; doi:10.1038/s41587-025-02830-6

    cSplotch compares spatial transcriptomics data across ages and regions of mouse colon tissue.]]>
    <![CDATA[Tissue and cellular spatiotemporal dynamics in colon aging]]> Aidan C. DalyFrancesco CambuliTarmo ÄijöBritta LötstedtNemanja Despot MarjanovicSara FernandezOlena KuksenkoMatthew Smith-ErbDaniel DomovicNicholas Van WittenbergheEugene DrokhlyanskyGabriel K. GriffinHemali PhatnaniRichard BonneauAviv RegevSanja Vickovic doi:10.1038/s41587-025-02830-6 Nature Biotechnology, Published online: 2025-10-22; | doi:10.1038/s41587-025-02830-6 2025-10-22 Nature Biotechnology 10.1038/s41587-025-02830-6 https://www.nature.com/articles/s41587-025-02830-6
    <![CDATA[AlphaDIA enables DIA transfer learning for feature-free proteomics]]> https://www.nature.com/articles/s41587-025-02791-w <![CDATA[

    Nature Biotechnology, Published online: 21 October 2025; doi:10.1038/s41587-025-02791-w

    An open-source platform for data-independent acquisition proteomics adapts predicted libraries to experimental settings.]]>
    <![CDATA[AlphaDIA enables DIA transfer learning for feature-free proteomics]]> Georg WallmannPatricia SkowronekVincenth BrennsteinerMikhail LebedevMarvin ThielertSophia SteigerwaldMohamed KotbOscar DespardTim HeymannXie-Xuan ZhouMaximilian T. StraussConstantin AmmarSander WillemsMagnus SchwörerWen-Feng ZengMatthias Mann doi:10.1038/s41587-025-02791-w Nature Biotechnology, Published online: 2025-10-21; | doi:10.1038/s41587-025-02791-w 2025-10-21 Nature Biotechnology 10.1038/s41587-025-02791-w https://www.nature.com/articles/s41587-025-02791-w