Guo et al.report that lipin1 plays a protective role in the heart following ischemic injury via preservation of lipid metabolism in ischemic cardiomyocytes. The cover shows neonatal rat cardiomyocytes (red) treated with stearic acid. Lipid droplets were stained with BODIPY (green), and nuclei were stained with DAPI (blue). Image credit: Jiaxi Guo.
HDAC8, an evolutionarily distinct, X-linked, zinc-dependent class I histone/protein deacetylase, is implicated in developmental disorders, parasitic infections, myopathy, and cancers. Our study demonstrates the important role of HDAC8 in immune cells by conditional targeting of HDAC8 in murine T cells and application of selective HDAC8 inhibitors. Using flow cytometry, RNA-seq and ChIP-seq analyses, we demonstrate that knocking down or inhibiting HDAC8 impaired murine Treg suppressive function in vitro and in vivo, but promoted conventional host T cell responses, thereby limiting syngeneic tumor growth. Mechanistically, HDAC8 knockout downregulated Foxp3 expression, enhanced H3K27 acetylation levels and promoted IL-2, IL-6, Fas, and FasL expression in both Treg and conventional T-effector cells. Thus, our combined genetic and pharmacologic studies establish the central importance of HDAC8 in T cell responses and suggest that selective HDAC8 inhibitors represent a potential therapeutic approach in immuno-oncology.
Fanhua Kong, Yan Xiong, Liqing Wang, Rongxiang Han, Hossein Fazelinia, Jennifer Roof, Lynn A. Spruce, Aaron B. Beeler, Wayne W. Hancock
BACKGROUND. WP1066 is an orally bioavailable, small molecule inhibitor of activated p-STAT3 that has demonstrated preclinical efficacy in pediatric brain tumor models. METHODS. In a first-in-child, single-center, single-arm 3+3 design Phase I clinical trial, ten patients were treated with WP1066 twice daily, Monday-Wednesday-Friday, for 14 days of each 28-day cycle to determine the maximum tolerated dose (MTD)/maximum feasible dose (MFD) of WP1066. Compassionate use treatment with WP1066 in three pediatric patients with H3.3 G34R/V-mutant high-grade glioma (HGG) is also described. RESULTS. There was no significant toxicity and the MFD was determined to be 8 mg/kg. Treatment-related adverse events were Grade 1-2 (diarrhea and nausea most common); there were no dose-limiting toxicities. Median progression-free and overall survival were 1.8 months and 4.9 months, respectively. One partial response was observed in a patient with pontine glioma. Among the H3.3 G34R/V-mutant HGG patients not on study, WP1066 was administered after upfront radiation to one patient for 17 months. At all dose levels tested, WP1066 suppressed p-STAT3 expression by peripheral blood mononuclear cells (PBMCs). Single cell RNA-seq analysis of PBMCs demonstrated increased CD4+ and CD8+ T cells, pro-inflammatory TNFA signaling, differentiation activity in myeloid cells, and downregulation of Tregs after WP1066 treatment, consistent with systemically inhibited STAT3 activity. CONCLUSIONS. WP1066 is safe, has minimal toxicity, and induces anti-tumor immune responses in pediatric brain tumor patients. Phase II investigation of WP1066 at the MFD in this patient population is warranted. TRIAL REGISTRATION. ClinicalTrials.gov NCT04334863. FUNDING. CURE Childhood Cancer (TJM) and Peach Bowl, Inc. (TJM)
Robert C. Castellino, Hope L. Mumme, Andrea T. Franson, Bing Yu, M. Hope Robinson, Kavita Dhodapkar, Dolly Aguilera, Matthew J. Schniederjan, Rohali Keesari, Zhulin He, Manoj Bhasin, Waldemar Priebe, Amy B. Heimberger, Tobey J. MacDonald
Oral lichen planus (OLP) is a recalcitrant inflammatory disease with potential for malignant transformation, involving a cytotoxic CD8+ T cells-mediated basal keratinocyte apoptosis. However, it lacks an appropriate mouse model for study. Here we developed an OLP-like mouse model using topical oxazolone to induce a delayed-type hypersensitivity-mediated oral lichenoid reaction. Histological and ultrastructural analysis confirmed hallmark pathological features of OLP, including band-like CD8+ T cell infiltration and basal cell damage, and the presence of Civatte bodies. Comparative transcriptomic analysis revealed significant similarity between RNA-seq profiles of the mouse model and human OLP lesions, highlighting shared upregulated genes and enriched pathways, particularly those related to IFN-γ signaling and cytotoxic T cell activity. Functional studies demonstrated that the OLP phenotype depended on IFN-γ, with local priming by IFN-γ intensifying the disease through upregulation of major histocompatibility complex class I. Additionally, the absence of Langerhans cells exacerbated disease severity in vivo. Therapeutic evaluation showed that the JAK inhibitors baricitinib and ruxolitinib effectively reduced disease burden and provided mechanistic insights. In conclusion, this OLP-like mouse model recapitulates key immunopathological and transcriptomic features of human OLP, offering a robust platform for dissecting disease mechanisms and evaluating novel therapeutic strategies.
Zhenlai Zhu, Tinglan Yang, Peng Peng, Kang Li, Wen Qin, Chen Zhang, Shuyan Wang, Yuanyuan Wang, Minghui Wei, Erle Dang, Meng Fu, Hao Guo, Wen Yin, Shuai Shao, Qing Liu
Infection leads to durable cell-autonomous changes in hematopoietic stem and progenitor cells (HSPCs), resulting in production of innate immune cells with heightened immunity. The mechanisms underlying this phenomenon, termed central trained immunity, remain poorly understood. We hypothesized that infection induces histone modifications leading to changes in chromatin accessibility that are conserved during differentiation from HSPCs to myeloid progenitors and monocytes. We conducted genome-wide surveillance of histone marks H3K27ac and H3K4me3 and chromatin accessibility in hematopoietic stem cells, multipotent progenitor 3, granulocyte-monocyte progenitors, monocytes and macrophages of naïve and Mycobacterium avium infected mice. Interferon signaling pathways and related transcription factor binding motifs including IRFs, NF-κB, and CEBP showed increased activating histone marks and chromatin accessibility across cell types. However, histone marks and increased chromatin accessibility were conserved at only a few loci, notably Irf1 and Gbp6. Knock out of IRF1 disrupted enhanced mitochondrial respiration and bacterial killing in human monocyte cell lines, while GBP6 KO monocyte cell lines showed dysregulated mitochondrial respiration. In summary, this study identifies IRF1 and GBP6 as two key loci at which infection-induced systemic inflammation leads to epigenetic changes that are conserved from HSPCs to downstream monocytes, providing a mechanistic avenue for central trained immunity.
Brandon T. Tran, Pamela N. Luna, Ruoqiong Cao, Duy T. Le, Apoorva Thatavarty, Laure Maneix, Bailee N. Kain, Scott Koh, Andre Catic, Katherine Y. King
Vaso-occlusive episodes (VOEs) in the setting of hyperhemolysis can rapidly evolve into multiorgan failure in sickle cell disease (SCD). Although the mechanisms for rapid progression to multiorgan failure are unclear, a systemic vasculopathy with thrombotic microangiopathy-type features has been described. Reduced thrombomodulin (TM) function is implicated in some thrombotic microangiopathy syndromes. We observed a greater decline in platelet count and hemoglobin concentration and increase in vascular injury biomarkers within 24-hours of admission for a VOE in 12 SCD patients with versus 12 without multiorgan failure. We observed decreased TM expression on the lung and kidney vasculature of three additional SCD patients with multiorgan failure and an autopsy performed compared to a non-SCD control. Transgenic SCD mice challenged with cell-free hemoglobin had reduced TM function, increased vascular injury biomarkers, and reduced renal cortical blood flow. Infusion of recombinant TM 2- or 24-hours after the challenge restored cortical blood flow, mitigated increases in vascular injury, complement activation, and tubular injury biomarkers, and protected against acute kidney and lung injury. We demonstrated that impaired TM function may be involved in the systemic vasculopathy of SCD-related multiorgan failure and infusion of recombinant TM may restore vascular function and protect against acute organ damage.
Guohui Ren, Dustin R. Fraidenburg, Suman Setty, Jiwang Chen, Janae Gonzales, Maria Armila Ruiz, Zalaya Ivy, Najmeh Eskandari, Richard D. Minshall, James P. Lash, Victor R. Gordeuk, Santosh L. Saraf