Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Graphite: the new critical mineral

Abstract

Graphite is the backbone of the lithium-ion battery industry owing to its indispensability as the primary anode material, making it a critical mineral in the global shift to clean energy. Natural graphite supply remains geographically concentrated with sluggish mining scalability, leading to an escalation in supply-chain vulnerabilities. Consequently, synthetic graphite, preferred for its purity and performance, is gaining traction, although its production remains energy intensive and reliant on fossil fuel derivatives, undercutting sustainability goals. The future of graphite hinges on two game-changing developments: green synthesis from renewable carbon sources and efficient recycling of spent anodes. Although emerging synthesis methods such as biomass-derived precursors, plasma processing and microwave-assisted graphitization show promise, their industrial scalability remains a challenge. At the same time, advanced recycling technologies could transform spent graphite into a viable secondary source, reducing dependence on virgin materials. As the demand for this critical mineral surges, innovation in production and recycling will be key to balancing performance, cost and environmental impact. Additionally, support in the form of policies, market incentives and economic frameworks is crucial to fostering an ecosystem for sustainable graphite sourcing, green manufacturing and circular value chains.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Global landscape of graphite supply, applications and environmental impact.
Fig. 2: Emerging sustainable synthetic routes for graphite production.
Fig. 3: Degradation of a typical graphite anode and its subsequent recycling pathways.
Fig. 4: Environmental impacts of graphite production pathways.
Fig. 5: Framework for sustainable graphite development.

References

  1. Abdollahifar, M., Doose, S., Cavers, H. & Kwade, A. Graphite recycling from end-of-life lithium-ion batteries: processes and applications. Adv. Mater. Technol. 8, 2200368 (2023).

    Article  CAS  Google Scholar 

  2. Asenbauer, J. et al. The success story of graphite as a lithium-ion anode material — fundamentals, remaining challenges, and recent developments including silicon (oxide) composites. Sustain. Energy Fuels 4, 5387–5416 (2020).

    Article  CAS  Google Scholar 

  3. He, S. et al. Considering critical factors of silicon/graphite anode materials for practical high-energy lithium-ion battery applications. Energy Fuels 35, 944–964 (2021).

    Article  CAS  Google Scholar 

  4. International Energy Agency. Global Critical Minerals Outlook 2024 — Analysis (IEA, 2024).

  5. Tian, H., Graczyk-Zajac, M., Kessler, A., Weidenkaff, A. & Riedel, R. Recycling and reusing of graphite from retired lithium-ion batteries: a review. Adv. Mater. 36, 2308494 (2024).

    Article  CAS  Google Scholar 

  6. Kulkarni, S. et al. Prospective life cycle assessment of synthetic graphite manufactured via electrochemical graphitization. ACS Sustain. Chem. Eng. 10, 13607–13618 (2022).

    Article  CAS  Google Scholar 

  7. Acheson, E. G. Process of making graphite. US patent US711031A (1902).

  8. Engels, P. et al. Life cycle assessment of natural graphite production for lithium-ion battery anodes based on industrial primary data. J. Clean. Prod. 336, 130474 (2022).

    Article  CAS  Google Scholar 

  9. Carrère, T., Khalid, U., Baumann, M., Bouzidi, M. & Allard, B. Carbon footprint assessment of manufacturing of synthetic graphite battery anode material for electric mobility applications. J. Energy Storage 94, 112356 (2024).

    Article  Google Scholar 

  10. Istrate, R. et al. Decarbonizing lithium-ion battery primary raw materials supply chain. Joule 8, 2992–3016 (2024).

    Article  CAS  Google Scholar 

  11. Erickson, C. Graphite emissions fuel search for solutions along EV supply chain. S&P Global https://www.spglobal.com/market-intelligence/en/news-insights/articles/2022/4/graphite-emissions-fuel-search-for-solutions-along-ev-supply-chain-69599516 (2022).

  12. Li, Q. et al. A super-hydrophilic graphite directly from lignin enabled by a room-temperature cascade catalytic carbonization. Bioresour. Technol. 402, 130802 (2024).

    Article  CAS  PubMed  Google Scholar 

  13. Kim, D.-Y., Nishiyama, Y., Wada, M. & Kuga, S. Graphitization of highly crystalline cellulose. Carbon 39, 1051–1056 (2001).

    Article  CAS  Google Scholar 

  14. Dongre, M., Varma, P., Parthasarathy, A. & Kandasubramanian, B. Algae-derived precursors for sustainable electrochemical energy storage. Energy Technol. 13, 2401465 (2025).

    Article  CAS  Google Scholar 

  15. Lower, L. et al. Catalytic graphitization of biocarbon for lithium-ion anodes: a minireview. ChemSusChem 16, e202300729 (2023).

    Article  CAS  PubMed  Google Scholar 

  16. You, H. et al. Sustainable production of biomass-derived graphite and graphene conductive inks from biochar. Small 20, 2406669 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Shi, Z. et al. Establishment of green graphite industry: graphite from biomass and its various applications. SusMat 3, 402–415 (2023).

    Article  CAS  Google Scholar 

  18. Banek, N. A., McKenzie, K. R., Abele, D. T. & Wagner, M. J. Sustainable conversion of biomass to rationally designed lithium-ion battery graphite. Sci. Rep. 12, 8080 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Woodard, A., Shojaei, K., Nava, G. & Mangolini, L. Graphitization of carbon particles in a non-thermal plasma reactor. Plasma Chem. Plasma Process. 38, 683–694 (2018).

    Article  CAS  Google Scholar 

  20. Wei, X. et al. Evaluation of graphitization and tensile property in microwave plasma treated carbon fiber. Diam. Relat. Mater. 126, 109094 (2022).

    Article  CAS  Google Scholar 

  21. Kim, T. et al. Facile conversion of activated carbon to battery anode material using microwave graphitization. Carbon 104, 106–111 (2016).

    Article  CAS  Google Scholar 

  22. Khoshk Rish, S., Tahmasebi, A., Wang, R., Dou, J. & Yu, J. Formation mechanism of nano graphitic structures during microwave catalytic graphitization of activated carbon. Diam. Relat. Mater. 120, 108699 (2021).

    Article  CAS  Google Scholar 

  23. Jeon, I., Yoon, B., He, M. & Swager, T. M. Hyperstage graphite: electrochemical synthesis and spontaneous reactive exfoliation. Adv. Mater. 30, 1704538 (2018).

    Article  Google Scholar 

  24. Cho, C.-H. et al. Facile synthesis of nano-Si/graphite-carbon anode through microwave-induced carbothermal shock for lithium-ion batteries. Carbon 229, 119542 (2024).

    Article  CAS  Google Scholar 

  25. Ma, C. et al. Synthesis and electrochemical properties of artificial graphite as an anode for high-performance lithium-ion batteries. Carbon 64, 553–556 (2013).

    Article  CAS  Google Scholar 

  26. Peng, J. et al. Electrochemically driven transformation of amorphous carbons to crystalline graphite nanoflakes: a facile and mild graphitization method. Angew. Chem. Int. Ed. 129, 1777–1781 (2017).

    Article  Google Scholar 

  27. Thapaliya, B. P. et al. Molten salt electrochemical upcycling of CO2 to graphite for high performance battery anodes. Carbon 212, 118151 (2023).

    Article  CAS  Google Scholar 

  28. Elnobi, S. et al. Room-temperature graphitization in a solid-phase reaction. RSC Adv. 10, 914–922 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kato, R. & Hasegawa, M. Fast synthesis of thin graphite film with high-performance thermal and electrical properties grown by plasma CVD using polycrystalline nickel foil at low temperature. Carbon 141, 768–773 (2019).

    Article  CAS  Google Scholar 

  30. Lee, C. et al. C4F8 plasma treatment as an effective route for improving rate performance of natural/synthetic graphite anodes in lithium ion batteries. Carbon 103, 28–35 (2016).

    Article  CAS  Google Scholar 

  31. Glad, X. et al. Plasma synthesis of hexagonal-pyramidal graphite hillocks. Carbon 76, 330–340 (2014).

    Article  CAS  Google Scholar 

  32. Manning, T. J., Mitchell, M., Stach, J. & Vickers, T. Synthesis of exfoliated graphite from fluorinated graphite using an atmospheric-pressure argon plasma. Carbon 37, 1159–1164 (1999).

    Article  CAS  Google Scholar 

  33. Çakmak, G. & Öztürk, T. Continuous synthesis of graphite with tunable interlayer distance. Diam. Relat. Mater. 96, 134–139 (2019).

    Article  Google Scholar 

  34. Li, F. et al. Ultrafast synthesis of battery grade graphite enabled by a multi-physics field carbonization. Chem. Eng. J. 461, 142128 (2023).

    Article  CAS  Google Scholar 

  35. Jin, X., He, R. & Dai, S. Electrochemical graphitization: an efficient conversion of amorphous carbons to nanostructured graphites. Chem. Eur. J. 23, 11455–11459 (2017).

    Article  CAS  PubMed  Google Scholar 

  36. Chen, Z. et al. Synthesis of nanostructured graphite via molten salt reduction of CO2 and SO2 at a relatively low temperature. J. Mater. Chem. A 5, 20603–20607 (2017).

    Article  CAS  Google Scholar 

  37. Thapaliya, B. P. et al. Low-cost transformation of biomass-derived carbon to high-performing nano-graphite via low-temperature electrochemical graphitization. ACS Appl. Mater. Interfaces 13, 4393–4401 (2021).

    Article  CAS  PubMed  Google Scholar 

  38. Zhang, Z. et al. Continuous epitaxy of single-crystal graphite films by isothermal carbon diffusion through nickel. Nat. Nanotechnol. 17, 1258–1264 (2022).

    Article  CAS  PubMed  Google Scholar 

  39. Liang, C. et al. Green synthesis of graphite from CO2 without graphitization process of amorphous carbon. Nat. Commun. 12, 119 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Cheng, Q. et al. Graphene-like-graphite as fast-chargeable and high-capacity anode materials for lithium ion batteries. Sci. Rep. 7, 14782 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Pan, S. Natural graphite under pressure from synthetics, amid oversupply, slow trade flows. Fastmarkets https://www.fastmarkets.com/insights/natural-graphite-under-pressure-from-synthetics-amid-oversupply-slow-trade-flows (2024).

  42. Oak Ridge National Library. Two paths, many benefits. ORNL https://www.ornl.gov/news/two-paths-many-benefits (2024).

  43. Carey, N. GM signs supply deal with Vianode for synthetic graphite for EV batteries. Reuters https://www.reuters.com/business/autos-transportation/gm-signs-supply-deal-with-vianode-synthetic-graphite-ev-batteries-2025-01-15 (2025).

  44. Hoyle, R. Novonix eyes second graphite plant after deals with battery makers. Wall Street Journal https://www.wsj.com/business/novonix-eyes-second-graphite-plant-after-deals-with-battery-makers-829bb9fd (2024).

  45. Zhang, P. et al. Influence of current density on graphite anode failure in lithium-ion batteries. J. Electrochem. Soc. 166, A5489 (2019).

    Article  CAS  Google Scholar 

  46. Takahashi, K. & Srinivasan, V. Examination of graphite particle cracking as a failure mode in lithium-ion batteries: a model-experimental study. J. Electrochem. Soc. 162, A635 (2015).

    Article  CAS  Google Scholar 

  47. Xu, W., Welty, C., Peterson, M. R., Read, J. A. & Stadie, N. P. Exploring the limits of the rapid-charging performance of graphite as the anode in lithium-ion batteries. J. Electrochem. Soc. 169, 010531 (2022).

    Article  CAS  Google Scholar 

  48. Sarkar, A., Nlebedim, I. C. & Shrotriya, P. Performance degradation due to anodic failure mechanisms in lithium-ion batteries. J. Power Sources 502, 229145 (2021).

    Article  CAS  Google Scholar 

  49. Liu, D. et al. On the stress characteristics of graphite anode in commercial pouch lithium-ion battery. J. Power Sources 232, 29–33 (2013).

    Article  CAS  Google Scholar 

  50. Lin, N. et al. Understanding the crack formation of graphite particles in cycled commercial lithium-ion batteries by focused ion beam–scanning electron microscopy. J. Power Sources 365, 235–239 (2017).

    Article  CAS  Google Scholar 

  51. Bhattacharya, S., Riahi, A. R. & Alpas, A. T. A transmission electron microscopy study of crack formation and propagation in electrochemically cycled graphite electrode in lithium-ion cells. J. Power Sources 196, 8719–8727 (2011).

    Article  CAS  Google Scholar 

  52. Deshpande, R., Verbrugge, M., Cheng, Y.-T., Wang, J. & Liu, P. Battery cycle life prediction with coupled chemical degradation and fatigue mechanics. J. Electrochem. Soc. 159, A1730 (2012).

    Article  CAS  Google Scholar 

  53. Zhang, T. et al. Surface analysis of cobalt-enriched crushed products of spent lithium-ion batteries by X-ray photoelectron spectroscopy. Sep. Purif. Technol. 138, 21–27 (2014).

    Article  CAS  Google Scholar 

  54. He, Y. et al. Recovery of LiCoO2 and graphite from spent lithium-ion batteries by Fenton reagent-assisted flotation. J. Clean. Prod. 143, 319–325 (2017).

    Article  CAS  Google Scholar 

  55. Liu, J. et al. Critical strategies for recycling process of graphite from spent lithium-ion batteries: a review. Sci. Total Environ. 816, 151621 (2022).

    Article  CAS  PubMed  Google Scholar 

  56. Rothermel, S. et al. Graphite recycling from spent lithium-ion batteries. ChemSusChem 9, 3473–3484 (2016).

    Article  CAS  PubMed  Google Scholar 

  57. Zhang, G., He, Y., Feng, Y., Wang, H. & Zhu, X. Pyrolysis-ultrasonic-assisted flotation technology for recovering graphite and LiCoO2 from spent lithium-ion batteries. ACS Sustain. Chem. Eng. 6, 10896–10904 (2018).

    Article  CAS  Google Scholar 

  58. Zhang, G. et al. Application of mechanical crushing combined with pyrolysis-enhanced flotation technology to recover graphite and LiCoO2 from spent lithium-ion batteries. J. Clean. Prod. 231, 1418–1427 (2019).

    Article  CAS  Google Scholar 

  59. Liu, K. et al. From spent graphite to recycle graphite anode for high-performance lithium ion batteries and sodium ion batteries. Electrochim. Acta 356, 136856 (2020).

    Article  CAS  Google Scholar 

  60. Meng, F. et al. Selective recovery of valuable metals from industrial waste lithium-ion batteries using citric acid under reductive conditions: leaching optimization and kinetic analysis. Hydrometallurgy 191, 105160 (2020).

    Article  CAS  Google Scholar 

  61. Ma, X., Chen, M., Chen, B., Meng, Z. & Wang, Y. High-performance graphite recovered from spent lithium-ion batteries. ACS Sustain. Chem. Eng. 7, 19732–19738 (2019).

    Article  CAS  Google Scholar 

  62. Rey, I., Vallejo, C., Santiago, G., Iturrondobeitia, M. & Lizundia, E. Environmental impacts of graphite recycling from spent lithium-ion batteries based on life cycle assessment. ACS Sustain. Chem. Eng. 9, 14488–14501 (2021).

    Article  CAS  Google Scholar 

  63. Wang, H. et al. Reclaiming graphite from spent lithium ion batteries ecologically and economically. Electrochim. Acta 313, 423–431 (2019).

    Article  CAS  Google Scholar 

  64. Cao, N. et al. An innovative approach to recover anode from spent lithium-ion battery. J. Power Sources 483, 229163 (2021).

    Article  CAS  Google Scholar 

  65. Shan, M. et al. Rapid regeneration of graphite anodes via self-induced microwave plasma. Adv. Funct. Mat. 34, 2411834 (2024).

    Article  CAS  Google Scholar 

  66. Battery Industry. EcoGraf: recycled lithium-ion battery anode material achieves 99.98%. Battery Industry https://batteryindustry.net/ecograf-recycled-lithium-ion-battery-anode-material-achieves-99-98 (2021).

  67. Carey, N. European EV battery material startups make recycling breakthroughs. Reuters https://www.reuters.com/sustainability/climate-energy/european-ev-battery-material-startups-make-recycling-breakthroughs-2025-02-13 (2025).

  68. VentureRadar. Librec Ltd. VentureRadar https://www.ventureradar.com/organisation/Librec%20Ltd/94032548-1450-46cc-92a8-bf957d6f98db (2021).

  69. Librec. Our core expertise. Librec https://librec.ch/en/expertise (2025).

  70. Wanjing, Yu, et. al. Regeneration method of lithium ion battery graphite cathode and regenerated graphite cathode thereof. Chinese patent CN113594420B (2021).

  71. Li, M. et. al. A method for recycling carbon anode material from waste lithium-ion battery. Chinese patent CN114583315A (2022).

  72. Yu, H. et al. Mechanistic insights into the lattice reconfiguration of the anode graphite recycled from spent high-power lithium-ion batteries. J. Power Sources 481, 229159 (2021).

    Article  CAS  Google Scholar 

  73. Liang, H.-J. et al. Staging Na/K-ion de-/intercalation of graphite retrieved from spent Li-ion batteries: in operando X-ray diffraction studies and an advanced anode material for Na/K-ion batteries. Energy Environ. Sci. 12, 3575–3584 (2019).

    Article  CAS  Google Scholar 

  74. Xu, Q. et al. The direct application of spent graphite as a functional interlayer with enhanced polysulfide trapping and catalytic performance for Li–S batteries. Green Chem. 23, 942–950 (2021).

    Article  CAS  Google Scholar 

  75. Schiavi, P. G., Altimari, P., Zanoni, R. & Pagnanelli, F. Full recycling of spent lithium ion batteries with production of core-shell nanowires//exfoliated graphite asymmetric supercapacitor. J. Energy Chem. 58, 336–344 (2021).

    Article  CAS  Google Scholar 

  76. Ribeiro, J. S., Freitas, M. B. J. G. & Freitas, J. C. C. Recycling of graphite and metals from spent Li-ion batteries aiming the production of graphene/CoO-based electrochemical sensors. J. Environ. Chem. Eng. 9, 104689 (2021).

    Article  CAS  Google Scholar 

  77. Natarajan, S., Shanthana Lakshmi, D., Bajaj, H. C. & Srivastava, D. N. Recovery and utilization of graphite and polymer materials from spent lithium-ion batteries for synthesizing polymer–graphite nanocomposite thin films. J. Environ. Chem. Eng. 3, 2538–2545 (2015).

    Article  CAS  Google Scholar 

  78. Zhao, T. et al. Preparation of MnO2-modified graphite sorbents from spent Li-ion batteries for the treatment of water contaminated by lead, cadmium, and silver. ACS Appl. Mater. Interfaces 9, 25369–25376 (2017).

    Article  CAS  PubMed  Google Scholar 

  79. Natarajan, S., Bajaj, H. C. & Aravindan, V. Template-free synthesis of carbon hollow spheres and reduced graphene oxide from spent lithium-ion batteries towards efficient gas storage. J. Mater. Chem. A 7, 3244–3252 (2019).

    Article  CAS  Google Scholar 

  80. Chen, X. et al. Direct exfoliation of the anode graphite of used Li-ion batteries into few-layer graphene sheets: a green and high yield route to high-quality graphene preparation. J. Mater. Chem. A 5, 5880–5885 (2017).

    Article  CAS  Google Scholar 

  81. Dunn, J. B. et al. Material and Energy Flows in the Production of Cathode and Anode Materials for Lithium Ion Batteries (OSTI, 2015).

  82. International Energy Agency. Energy system of Indonesia. IEA https://www.iea.org/countries/indonesia (2023).

  83. Wu, C. et al. Hard carbon for sodium-ion batteries: progress, strategies and future perspective. Chem. Sci. 15, 6244–6268 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Pramanik, A. et al. Graphite cone/disc anodes as alternative to hard carbons for Na/K-ion batteries. Adv. Funct. Mat. 35, 2505848 (2025).

    Article  Google Scholar 

  85. Li, Y. et al. Si-based anode lithium-ion batteries: a comprehensive review of recent progress. ACS Mater. Lett. 5, 2948–2970 (2023).

    Article  CAS  Google Scholar 

  86. Sun, K. et al. Unveiling the interplay between silicon and graphite in composite anodes for lithium-ion batteries. Small 20, 2405674 (2024).

    Article  CAS  Google Scholar 

  87. Xu, Q. et al. Silicon/graphite composite anode with constrained swelling and a stable solid electrolyte interphase enabled by spent graphite. Green Chem. 23, 4531–4539 (2021).

    Article  CAS  Google Scholar 

  88. CarbonScape. Press release: CarbonScape to build demonstration plant for biographite production in Finland. CarbonScape https://www.carbonscape.com/latest-news/carbonscape-and-stora-enso-select-sunila-finland-for-biographite-demonstration-plant (2025).

  89. BatteryTech Network. CarbonScape reaches 90% yield in battery-grade graphite. BatteryTech Network https://battery-tech.net/carbonscape-reaches-90-yield-in-battery-grade-graphite (2025).

  90. McCormick, M. The global race to break China’s grip on graphite. Financial Times https://www.ft.com/content/b6a5e923-3eb2-4f8a-9b4f-c24999cdfa8c (2024).

  91. Lawrence, C. UP Catalyst secures €4M Seed investment for for first scalable green graphite extraction. tech.eu https://tech.eu/2023/12/05/up-catalyst-secures-4m-seed-investment-for-for-first-scalable-green-graphite-extraction/ (2023).

  92. Foley, E. New tech that turns waste into battery-grade graphite lands support. pv magazine https://www.pv-magazine-australia.com/2024/05/08/new-tech-that-turns-waste-into-battery-grade-graphite-lands-support/ (2024).

  93. 6K. 6K energy technology: introducing the advantages of UniMelt by 6K. 6K https://www.6kinc.com/6k-energy-technology (2025).

  94. China Magnesium Materials Network. Heilongjiang Huasheng Graphite Group’s high-purity graphite workshop will be put into production at the end of the year [Chinese]. China Magnesium Materials Network https://www.easynai.com/article/detail.aspx?article_id=4228(2021).

  95. Minqin County Rong Media Center. The total investment is 6.6 billion yuan! Minqin’s annual output of 400,000 tons of lithium battery graphitized anode material project construction “accelerated” [Chinese]. Tencent News https://news.qq.com/rain/a/20250807A077XM00 (2025).

  96. Aibang Lithium Power Network. The world’s first technology has been implemented! Gansu Ruizhi’s 60,000-ton lithium battery graphite anode material project has started construction in Wuwei [Chinese]. Aibang Lithium Power Network https://www.aibanglib.com/a/27614 (2025).

  97. Innova Cleantech. Technology. Innova Cleantech https://www.innovacleantech.com/technology (2025).

  98. Solidion Technology. Solidion Technology (NASDAQ: STI) and Oak Ridge National Laboratory win 2025 R&D 100 Award for breakthrough in sustainable graphite production. PR Newswire https://www.prnewswire.com/news-releases/solidion-technology-nasdaq-sti-and-oak-ridge-national-laboratory-win-2025-rd-100-award-for-breakthrough-in-sustainable-graphite-production-302542385.html (2025).

  99. ExxonMobil. Superior Graphite, superior acquisitions for synthetic graphite production. ExxonMobil https://corporate.exxonmobil.com/news/corporate-news/superior-graphite-superior-acquisitions-for-synthetic-graphite-production (2025).

  100. US Geological Survey. Mineral Commodity Summaries 2025 (USGS, 2025).

  101. Bhutada, G. Visualizing the natural graphite supply problem. Visual Capitalist https://elements.visualcapitalist.com/visualizing-the-natural-graphite-supply-problem (2021).

  102. Qiao, Y. et al. Recycling of graphite anode from spent lithium-ion batteries: advances and perspectives. EcoMat 5, e12321 (2023).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

S.R. acknowledges funding from the Chandrakanta Kesavan Centre for Energy Policy and Climate Solutions, IIT Kanpur project number DORA/2021136H and IIT Kanpur research grant IITK/SEE/2024098.

Author information

Authors and Affiliations

Authors

Contributions

S.B., S.R., N.C and A.V. researched data for the article. S.B., A.V. and P.A. contributed substantially to discussion of the content. S.B., S.R., X.L. and A.V. wrote the article. S.B., S.R., N.C. and P.A reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Pulickel M. Ajayan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Materials thanks Sheng Dai, Ralf Riedel and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhattacharyya, S., Roy, S., Lin, X. et al. Graphite: the new critical mineral. Nat Rev Mater (2025). https://doi.org/10.1038/s41578-025-00848-5

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41578-025-00848-5

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing