Abstract
Mercury is a neurotoxic heavy metal that threatens to human health and ecosystems. This study examinedthe mercury tolerance and biosorption capacity of the GRAS yeast Saccharomyces cerevisiae BY4741 Growth persisted at 100 ppm but was completely inhibited at 200 ppm; thus, the MIC is bracketed between 100 and 200 ppm. Tolerance assays revealed that the strain BY4741 exhibits a minimum inhibitory concentration (MIC) of ≥ 100 ppm for HgCl₂. Cell viability showed a significant decline (p ≤ 0.05) with increasing mercury concentrations, as determined by the Total Plate Count method. Bioinformatic analysis identified detoxification-related genes (YCF1, YAP1, GSH1, URE2) that were upregulated under HgCl₂ exposure, which are involved in glutathione metabolism, transcriptional regulation, vacuolar efflux, redox homeostasis, and metal ion transport. qRT-PCR confirmed selective activation of these genes, with URE2 displaying the highest induction. Biosorption efficiency reached 49.13% after 24 h of contact time, and X-ray mapping confirmed the accumulation of mercury within the S. cerevisiae biomass. These findings highlight the potential application of S. cerevisiae as a microbial biosorbent for mercury in bioremediation strategies.







Similar content being viewed by others
Data availability
The data will be made available upon request.
References
Al-Ghouti MA, Da’ana D, Abu-Dieyeh M, Khraisheh M (2019) Adsorptive removal of mercury from water by adsorbents derived from date pits. Sci Rep 9(1):15327. https://doi.org/10.1038/s41598-019-51594-y
Amini S, Astuti RI, Batubara I (2022) Apoptosis in yeast is modulated by clove leaf extract and Eugenol potentially by interfering caspase YCA1. Online J Biol Sci 22(3):388–394. https://doi.org/10.3844/ojbsci.2022.388.394
Ashafani NF, Astuti RI, Listiyowati S, Batubara I (2023) Quercetin-containing extract from clove Syzygium aromaticum L. endophytic bacteria, fictibacillus phosphorivorans P1U2, exhibits antimutagenic activity in yeast Saccharomyces cerevisiae. HAYATI J Biosci 30(4):734–742. https://doi.org/10.4308/hjb.30.4.734-742
Astuti RI, Watanabe D, Takagi H (2016) Nitric oxide signaling and its role in oxidative stress response in Schizosaccharomyces pombe. Nitric Oxide 52:29–40. https://doi.org/10.1016/j.niox.2015.11.001
Astuti RI, Nasuno R, Takagi H (2018) Nitric oxide signalling in yeast. Adv Microb Physiol 72:29–63. https://doi.org/10.1016/bs.ampbs.2018.01.003
Astuti RI, Prastya ME, Batubara I, Budiarti E, Ilmiyawati A (2021) Antiaging and antioxidant bioactivities of Asteraceae plant fractions on the cellular functions of the yeast Schizosaccharomyces pombe. Adv Pharmacol Pharm Sci 2021:1–12. https://doi.org/10.1155/2021/2119634
Astuti RI, Prastya ME, Wulan R, Anam K, Meryandini A (2023) Current trends and future perspective of probiotic yeasts research in Indonesia. FEMS Yeast Res 23:foad013. https://doi.org/10.1093/femsyr/foad013
Astuti RI, Maulana I, Wahyuni WT, Meryandini A (2025) Genetic properties of mercury–tolerant yeast, Pichia kudriavzevii 1P4. Int Microbiol. https://doi.org/10.1007/s10123-025-00666-3
Badan Pengawas Obat dan Makanan (BPOM) (2022) Peraturan Badan Pengawas Obat dan Makanan Nomor 9 Tahun 2022 tentang Persyaratan Cemaran Logam Berat dalam Pangan Olahan. Badan Pengawas Obat dan Makanan Republik Indonesia (BPOM RI), Jakarta. Available at: https://peraturan.bpk.go.id/Details/223968/peraturan-bpom-no-9-tahun-2022
Bellion M, Courbot M, Jacob C, Blaudez D, Chalot M (2006) Extracellular and cellular mechanisms sustaining metal tolerance in ectomycorrhizal fungi. FEMS Microbiol Lett 254(2):173–181. https://doi.org/10.1111/j.1574-6968.2005.00044.x
Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL, Vandesompele J, Wittwer CT (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55(4):611–622. https://doi.org/10.1373/clinchem.2008.112797
Cappelletti S, Piacentino D, Fineschi V, Frati P, D’Errico S, Aromatario M (2019) Mercuric chloride poisoning: symptoms, analysis, therapies, and autoptic findings. A review of the literature. Crit Rev Toxicol 49(4):329–341. https://doi.org/10.1080/10408444.2019.1621262
Cariccio VL, Samà A, Bramanti P, Mazzon E (2019) Mercury involvement in neuronal damage and in neurodegenerative diseases. Biol Trace Elem Res 187(2):341–356. https://doi.org/10.1007/s12011-018-1380-4
Charkiewicz AE, Omeljaniuk WJ, Garley M, Nikliński J (2025) Mercury exposure and health effects: what do we really know? IJMS 26(5):2326. https://doi.org/10.3390/ijms26052326
Charoenbhakdi S, Dokpikul T, Burphan T, Techo T, Auesukaree C (2016) Vacuolar H+ -ATPase protects Saccharomyces cerevisiae cells against Ethanol-Induced oxidative and cell wall stresses. Appl Environ Microbiol 82(10):3121–3130. https://doi.org/10.1128/AEM.00376-16
Do Nascimento JM, De Oliveira JD, Rizzo ACL, Leite SGF (2019) Biosorption Cu(II) by the yeast Saccharomyces cerevisiae. Biotechnol Rep 21:e00315. https://doi.org/10.1016/j.btre.2019.e00315
Fan C, Zhang D, Mo Q, Yuan J (2021) High performance Saccharomyces cerevisiae based biosensor for heavy metal detection. BioRxiv. https://doi.org/10.1101/2021.12.13.472527
Food US, and Drug Administration (FDA) (2025) § 184.1983 Bakers yeast extract. Code of Federal Regulations. 21 § 184.1983. Silver Spring. https://www.ecfr.gov/current/title-21/section-184.1983
Gajewska J, Azzahra NA, Bingöl ÖA, Izbiańska-Jankowska K, Jelonek T, Deckert J, Floryszak-Wieczorek J, Arasimowicz-Jelonek M (2020) Cadmium stress reprograms ROS/RNS homeostasis in phytophthora infestans (Mont.) de Bary. IJMS 21(21):8375. https://doi.org/10.3390/ijms21218375
González-Reguero D, Robas-Mora M, Probanza Lobo A, Jiménez Gómez PA (2023) Bioremediation of environments contaminated with mercury. Present and perspectives. World J Microbiol Biotechnol 39(9):249. https://doi.org/10.1007/s11274-023-03686-1
Goutam J, Sharma J, Singh R, Sharma D (2021) Fungal-Mediated bioremediation of heavy Metal–Polluted environment. In: Panpatte DG, Jhala YK (eds) Microbial rejuvenation of polluted environment. Springer, Singapore, pp 51–76. https://doi.org/10.1007/978-981-15-7455-9
Gueldry O, Lazard M, Delort F, Dauplais M, Grigoras I, Blanquet S, Plateau P (2003) Ycf1p-dependent Hg(II) detoxification in Saccharomyces cerevisiae. Eur J Biochem 270(11):2486–2496. https://doi.org/10.1046/j.1432-1033.2003.03620.x
Habashi F (2013) Mercury, physical and chemical properties. In: Kretsinger RH, Uversky VN, Permyakov EA (eds) Encyclopedia of metalloproteins. Springer, New York, pp 1375–1377. https://doi.org/10.1007/978-1-4614- 1533-6_ 307
Imam SSA, Rajpoot IK, Gajjar B, Sachdeva A (2016) Comparative study of heavy metal bioremediation in soil by Bacillus subtilis and Saccharomyces cerevisiae. IJST 9(1):1–7. https://doi.org/10.17485/ijst/2016/v9i47/106911
Irawati W, Wijaya Y, Christian S, Djojo ES (2016) Characterization of heavy metals resistant yeast isolated from activated sludge in Rungkut, Surabaya, Indonesia as biosorbent of mercury, copper, and lead. AIP Conf Proc 1744:1–8. https://doi.org/10.1063/1.4953535
Junior WJF, Treu L, Nadai C, Da Silva Duarte V, Campanaro S, Fabrega-Prats M, Giacomini A, Corcih V (2021) Genomic insights into the glutathione metabolism of the non-conventional wine yeast Starmerella bacillaris. OENO One 55(1). https://doi.org/10.20870/oeno-one.2021.55.1.4374
Kanehisa M, Sato Y, Morishima K (2016) BlastKOALA and ghostkoala: KEGG tools for functional characterization of genome and metagenome sequences. J Mol Biol 428(4):726–731. https://doi.org/10.1016/j.jmb.2015.11.006
Khandelwal NK, Millan CR, Zangari SI, Avila S, Williams D, Thaker TM, Tomasiak TM (2022) The structural basis for regulation of the glutathione transporter Ycf1 by regulatory domain phosphorylation. Nat Commun 13(1):1278. https://doi.org/10.1038/s41467-022-28811-w
Krakowiak A, Janasik B, Sadowski Ł, Szwabe K, Machała W (2023) Acute mercuric chloride poisoning at a potentially lethal dose ended with survival: symptoms, concentration in cerebrospinal fluid, treatment. Int J Occup Med Environ Health 36(5):685–692. https://doi.org/10.13075/ijomeh.1896.02235
Kung H-C, Wu C-H, Huang B-W, Chang-Chien G-P, Mutuku JK, Lin W-C (2024) Mercury abatement in the environment: insights from industrial emissions and fates in the environment. Heliyon 10(7):28253. https://doi.org/10.1016/j.heliyon.2024.e28253
Lenka AB, Astuti RI, Listiyowati S (2021) Yeasts isolated from traditional brem bali show stress tolerance phenotype against fermentation-related stresses. Makara J Sci 25(1). https://doi.org/10.7454/mss.v25i1.1209
Li C, Xu Y, Jiang W, Dong X, Wang D, Liu B (2013) Effect of NaCl on the heavy metal tolerance and bioaccumulation of Zygosaccharomyces rouxii and Saccharomyces cerevisiae. Bioresour Technol 143:46–52. https://doi.org/10.1016/j.biortech.2013.05.114
Li X, Zhang D, Sheng F, Qing H (2018) Adsorption characteristics of copper(Ⅱ), zinc(Ⅱ) and mercury(Ⅱ) by four kinds of immobilized fungi residues. Ecotoxicol Environ Saf 147:357–366. https://doi.org/10.1016/j.ecoenv.2017.08.058
Liu B, Wang C, Liu D, He N, Deng X (2017) Hg tolerance and biouptake of an isolated pigmentation yeast Rhodotorula mucilaginosa. PLoS ONE 12(3):e0172984. https://doi.org/10.1371/journal.pone.0172984
Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2 – ∆∆CT method. Methods 25(4):402–408. https://doi.org/10.1006/meth.2001.1262
Mahbub KR, Krishnan K, Naidu R, Andrews S, Megharaj M (2017) Mercury toxicity to terrestrial biota. Ecol Indic 74:451–462. https://doi.org/10.1016/j.ecolind.2016.12.004
Massoud R, Hadiani MR, Hamzehlou P, Khosravi-Darani K (2019) Bioremediation of heavy metals in food industry: application of Saccharomyces cerevisiae. Electron J Biotechnol 37:56–60. https://doi.org/10.1016/j.ejbt.2018.11.003
Mesquita VA, Machado MD, Silva CF, Soares EV (2015) Impact of multi-metals (Cd, Pb and Zn) exposure on the physiology of the yeast Pichia kudriavzevii. Environ Sci Pollut Res 22(14):11127–11136. https://doi.org/10.1007/s11356-015-4326-9
Meyer L, Guyot S, Chalot M, Capelli N (2023) The potential of microorganisms as biomonitoring and bioremediation tools for mercury-contaminated soils. Ecotoxicol Environ Saf 262:115185. https://doi.org/10.1016/j.ecoenv.2023.115185
Mirisola MG, Braun RJ, Petranovic D (2014) Approaches to study yeast cell aging and death. FEMS Yeast Res 14(1):109–118. https://doi.org/10.1111/1567-1364.12112
Nielsen J (2019) Yeast systems biology: model organism and cell factory. Biotechnol J 14(9):1800421. https://doi.org/10.1002/biot.201800421
Orlean P (2012) Architecture and biosynthesis of the Saccharomyces cerevisiae cell wall. Genetics 192(3):775–818. https://doi.org/10.1534/genetics.112.144485
Oyetibo GO, Miyauchi K, Suzuki H, Endo G (2016) Mercury removal during growth of mercury tolerant and self-aggregating Yarrowia spp. AMB Expr 6(1):99. https://doi.org/10.1186/s13568-016-0271-3
Paumi CM, Chuk M, Snider J, Stagljar I, Michaelis S (2009) ABC transporters in Saccharomyces cerevisiae and their interactors: new technology advances the biology of the ABCC (MRP) subfamily. Microbiol Mol Biol Rev 73(4):577–593. https://doi.org/10.1128/MMBR.00020-09
Prastya M, Astuti R, Batubara I, Wahyudi A (2018) Bacillus sp. SAB E-41-derived extract shows antiaging properties via ctt1-mediated oxidative stress tolerance response in yeast Schizosaccharomyces pombe. Asian Pac J Trop Biomed 8(11):533. https://doi.org/10.4103/2221-1691.245958
Priyadarshanee M, Chatterjee S, Rath S, Dash HR, Das S (2022) Cellular and genetic mechanism of bacterial mercury resistance and their role in biogeochemistry and bioremediation. J Hazard Mater 423:126985. https://doi.org/10.1016/j.jhazmat.2021.126985
Qiu X, Liu M, Zhang Y, Zhang Q, Lin H, Cai X, Li J, Dai R, Zheng S, Wang J, Zhu Y, Shen H, Shen G, Wang X, Tao S (2025) Declines in anthropogenic mercury emissions in the global North and China offset by the global South. Nat Commun 16(1):1179. https://doi.org/10.1038/s41467-025-56274-2
Rahmadhani N, Astuti RI, Meryandini A (2022) Ethanol productivity of ethanol-tolerant mutant strain Pichia kudriavzevii R-T3 in monoculture and co-culture fermentation with Saccharomyces cerevisiae. HAYATI J Biosci 29(4):435–444. https://doi.org/10.4308/hjb.29.4.435-444
Ramos A, Dos Santos MM, De Macedo GT, Wildner G, Prestes AS, Masuda CA, Dalla Corte CL, Teixeira Da Rocha JB, Barbosa NV (2020) Methyl and ethylmercury elicit oxidative stress and unbalance the antioxidant system in Saccharomyces cerevisiae. Chem Biol Interact 315:108867. https://doi.org/10.1016/j.cbi.2019.108867
Ribeiro RA, Bourbon-Melo N, Sá-Correia I (2022) The cell wall and the response and tolerance to stresses of biotechnological relevance in yeasts. Front Microbiol 13:953479. https://doi.org/10.3389/fmicb.2022.953479
Rodrigues-Pousada C, Devaux F, Caetano SM, Pimentel C, Da Silva S, Cordeiro AC, Amaral C (2019) Yeast AP-1 like transcription factors (Yap) and stress response: a current overview. Microb Cell 6(6):267–285. https://doi.org/10.15698/mic2019.06.679
Rodríguez C, Tejera P, Medina B, Guillén R, Domínguez Á, Ramos J, Siverio JM (2010) Ure2 is involved in nitrogen catabolite repression and salt tolerance via Ca2 + Homeostasis and calcineurin activation in the yeast Hansenula polymorpha. J Biol Chem 285(48):37551–37560. https://doi.org/10.1074/jbc.M110.146902
Rueda C, Cuenca-Estrella M, Zaragoza O (2014) Paradoxical growth of Candida albicans in the presence of Caspofungin is associated with multiple cell wall rearrangements and decreased virulence. Antimicrob Agents Chemother 58(2):1071–1083. https://doi.org/10.1128/AAC.00946-13
Santos AAD, Ferrer B, Marques Gonçalves F, Tsatsakis AM, Renieri EA, Skalny AV, Farina M, Rocha JBT, Aschner M (2018) Oxidative stress in methylmercury-Induced cell toxicity. Toxics 6(3):47. https://doi.org/10.3390/toxics6030047
Sarima ARI, Meryandini A (2019) Modulation of aging in yeast Saccharomyces cerevisiae by roselle petal extract (Hibiscus Sabdariffa L.). Am J Biochem Biotechnol 15(1):23–32. https://doi.org/10.3844/ajbbsp.2019.23.32
Schoch CL, Ciufo S, Domrachev M, Hotton CL, Kannan S, Khovanskaya R, Leipe D, Mcveigh R, O’Neill K, Robbertse B, Sharma S, Soussov V, Sullivan JP, Sun L, Turner S, Karsch-Mizrachi I (2020) NCBI taxonomy: a comprehensive update on curation, resources and tools. Database 2020(baaa062). https://doi.org/10.1093/database/baaa062
Shen M, Zhao D-K, Qiao Q, Liu L, Wang J-L, Cao G-H, Li T, Zhao Z-W (2015) Identification of glutathione S-Transferase (GST) genes from a dark septate endophytic fungus (Exophiala pisciphila) and their expression patterns under varied metals stress. PLoS One 10(4):e0123418. https://doi.org/10.1371/journal.pone.0123418
Sousa CA, Soares HMVM, Soares EV (2018) Nickel oxide (NiO) nanoparticles induce loss of cell viability in yeast mediated by oxidative stress. Chem Res Toxicol 31(8):658–665. https://doi.org/10.1021/acs.chemrestox.8b00022
Spiegel SJ (2017) New mercury pollution threats: a global health caution. Lancet 390(10091):226–227. https://doi.org/10.1016/S0140-6736(17)31810-X
Tao Z, Yuan H, Liu M, Liu Q, Zhang S, Liu H, Jiang Y, Huang D, Wang T (2023) Yeast extract: Characteristics, Production, applications and future perspectives. J Microbiol Biotechnol 33(2):151–166. https://doi.org/10.4014/jmb.2207.07057
Techo T, Jindarungrueng S, Tatip S, Limcharoensuk T, Pokethitiyook P, Kruatrachue M, Auesukaree C (2020) Vacuolar H+ - ATPase is involved in preventing heavy metal‐induced oxidative stress in Saccharomyces cerevisiae. Environ Microbiol 22(6):2403–2418. https://doi.org/10.1111/1462-2920.15022
Ueno K, Saito M, Nagashima M, Kojima A, Nishinoaki S, Toshima JY, Toshima J (2014) V-ATPase-dependent luminal acidification is required for endocytic recycling of a yeast cell wall stress sensor, Wsc1p. Biochem Biophys Res Commun 443(2):549–555. https://doi.org/10.1016/j.bbrc.2013.12.008
Verma S, Kuila A (2019) Bioremediation of heavy metals by microbial process. Environ Technol Innov 14:100369. https://doi.org/10.1016/j.eti.2019.100369
Volaric A, Svircev Z, Tamindzija D, Radnovic D (2021) Microbial bioremediation of heavy metals. Hem Ind 75(2):103–115. https://doi.org/10.2298/HEMIND200915010V
Westwater J, McLaren NF, Dormer UH, Jamieson DJ (2002) The adaptive response of Saccharomyces cerevisiae to mercury exposure. Yeast 19(3):233–239. https://doi.org/10.1002/yea.835
World Health Organization (WHO) (2017) Guidelines for drinking-water quality: fourth edition incorporating first addendum, 4th ed., 1st add. WHO, Geneva. Available at: https://iris.who.int/handle/10665/254637
Wu Y-S, Osman AI, Hosny M, Elgarahy AM, Eltaweil AS, Rooney DW, Chen Z, Rahim NS, Sekar M, Gopinath SCB, Mat Rani NNI, Batumalaie K, Yap P-S (2024) The toxicity of mercury and its chemical compounds: molecular mechanisms and environmental and human health implications: A comprehensive review. ACS Omega 9(5):5100–5126. https://doi.org/10.1021/acsomega.3c07047
Wysocki R, Tamás MJ (2010) How Saccharomyces cerevisiae copes with toxic metals and metalloids. FEMS Microbiol Rev 34(6):925–951. https://doi.org/10.1111/j.1574-6976.2010.00217.x
Xian J, Ni L, Liu C, Li J, Cao Y, Qin J, Liu D, Wang X (2024) Genome-Scale screening of Saccharomyces cerevisiae deletion mutants to gain molecular insight into tolerance to mercury ions. J Fungi 10(7):492. https://doi.org/10.3390/jof10070492
Xu J, Bravo AG, Lagerkvist A, Bertilsson S, Sjöblom R, Kumpiene J (2015) Sources and remediation techniques for mercury contaminated soil. Environ Int 74:42–53. https://doi.org/10.1016/j.envint.2014.09.007
Zhang Y, Song Z, Huang S, Zhang P, Peng Y, Wu P, Gu J, Dutkiewicz S, Zhang H, Wu S, Wang F, Chen L, Wang S, Li P (2021) Global health effects of future atmospheric mercury emissions. Nat Commun 12(1):3035. https://doi.org/10.1038/s41467-021-23391-7
Zhao G, Huang X, Tang Z, Huang Q, Niu F, Wang X (2018) Polymer-based nanocomposites for heavy metal ions removal from aqueous solution: a review. Polym Chem 9(26):3562–3582. https://doi.org/10.1039/C8PY00484F
Zinicovscaia I, Yushin N, Abdusamadzoda D, Grozdov D, Shvetsova M (2020) Efficient removal of metals from synthetic and real galvanic Zinc-containing effluents by brewer’s yeast Saccharomyces cerevisiae. J Mater 13(16):3624. https://doi.org/10.3390/ma13163624
Funding
The research leading to these results received funding from the Indonesia Endowment Fund for Education (LPDP), Ministry of Finance of the Republic of Indonesia, through the “Master Program Scholarship” to Nurul Azma, under Grant Agreement No: LOG-8642/LPDP.3/2024.
Author information
Authors and Affiliations
Contributions
Author Contributions: Nurul Azma: Formal Analysis, Investigation, Data Curation, Writing—Original Draft, Writing—Review & Editing, Visualization, Funding acquisition. Rika Indri Astuti: Conceptualization, Methodology, Validation, Formal Analysis, Resources, Writing—Review & Editing, Supervision, Project Administration. Wulan Tri Wahyuni: Conceptualization, Methodology, Validation, Formal Analysis, Writing—Review & Editing, Supervision.
Corresponding author
Ethics declarations
Conflict of interest
On behalf of all authors, the corresponding author states that there are no conflicts of interest, whether financial or non-financial, related to the subject matter or materials discussed in this manuscript.
Ethics committee approval
None declared.
Informed consent
None declared.
Additional information
Communicated by Dr. Nischitha R
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Azma, N., Wahyuni, W.T. & Astuti, R.I. Biosorption-based decontamination of mercury by Saccharomyces cerevisiae BY4741. Arch Microbiol 207, 295 (2025). https://doi.org/10.1007/s00203-025-04521-x
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/s00203-025-04521-x


