Skip to main content

Biochemical Reconstitution of Replication-Coupled Cohesin Acetylation

  • Protocol
  • First Online:
SMC Proteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2991))

  • 221 Accesses

Abstract

Concomitantly with DNA replication, the cohesin complex establishes cohesion between the newly synthesized sister chromatids. Cohesion establishment requires acetylation of the cohesin subunit Smc3 by the Eco1 acetyltransferase. Acetylation is tightly coupled to DNA replication and depends on (i) DNA replication factors, (ii) DNA structures that transiently form at replication forks, as well as (iii) auxiliary cohesin complex components. Here, we describe a protocol to study DNA replication-coupled cohesin acetylation using purified budding yeast proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 159.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

') var buybox = document.querySelector("[data-id=id_"+ timestamp +"]").parentNode var buyingOptions = buybox.querySelectorAll(".buying-option") ;[].slice.call(buyingOptions).forEach(initCollapsibles) var buyboxMaxSingleColumnWidth = 480 function initCollapsibles(subscription, index) { var toggle = subscription.querySelector(".buying-option-price") subscription.classList.remove("expanded") var form = subscription.querySelector(".buying-option-form") var priceInfo = subscription.querySelector(".price-info") var buyingOption = toggle.parentElement if (toggle && form && priceInfo) { toggle.setAttribute("role", "button") toggle.setAttribute("tabindex", "0") toggle.addEventListener("click", function (event) { var expandedBuyingOptions = buybox.querySelectorAll(".buying-option.expanded") var buyboxWidth = buybox.offsetWidth ;[].slice.call(expandedBuyingOptions).forEach(function(option) { if (buyboxWidth <= buyboxMaxSingleColumnWidth && option != buyingOption) { hideBuyingOption(option) } }) var expanded = toggle.getAttribute("aria-expanded") === "true" || false toggle.setAttribute("aria-expanded", !expanded) form.hidden = expanded if (!expanded) { buyingOption.classList.add("expanded") } else { buyingOption.classList.remove("expanded") } priceInfo.hidden = expanded }, false) } } function hideBuyingOption(buyingOption) { var toggle = buyingOption.querySelector(".buying-option-price") var form = buyingOption.querySelector(".buying-option-form") var priceInfo = buyingOption.querySelector(".price-info") toggle.setAttribute("aria-expanded", false) form.hidden = true buyingOption.classList.remove("expanded") priceInfo.hidden = true } function initKeyControls() { document.addEventListener("keydown", function (event) { if (document.activeElement.classList.contains("buying-option-price") && (event.code === "Space" || event.code === "Enter")) { if (document.activeElement) { event.preventDefault() document.activeElement.click() } } }, false) } function initialStateOpen() { var buyboxWidth = buybox.offsetWidth ;[].slice.call(buybox.querySelectorAll(".buying-option")).forEach(function (option, index) { var toggle = option.querySelector(".buying-option-price") var form = option.querySelector(".buying-option-form") var priceInfo = option.querySelector(".price-info") if (buyboxWidth > buyboxMaxSingleColumnWidth) { toggle.click() } else { if (index === 0) { toggle.click() } else { toggle.setAttribute("aria-expanded", "false") form.hidden = "hidden" priceInfo.hidden = "hidden" } } }) } initialStateOpen() if (window.buyboxInitialised) return window.buyboxInitialised = true initKeyControls() })()

Institutional subscriptions

Similar content being viewed by others

References

  1. Uhlmann F (2016) SMC complexes: from DNA to chromosomes. Nat Rev Mol Cell Biol 17:399–412

    Article  PubMed  CAS  Google Scholar 

  2. Hoencamp C, Rowland BD (2023) Genome control by SMC complexes. Nat Rev Mol Cell Biol 24:633–650

    Article  PubMed  CAS  Google Scholar 

  3. Murayama Y, Uhlmann F (2015) DNA entry into and exit out of the cohesin ring by an interlocking gate mechanism. Cell 163:1628–1640

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Moldovan GL, Pfander B, Jentsch S (2006) PCNA controls establishment of sister chromatid cohesion during S phase. Mol Cell 23:723–732

    Article  PubMed  CAS  Google Scholar 

  5. Rolef Ben-Shahar T, Heeger S, Lehane C et al (2008) Eco1-dependent cohesin acetylation during establishment of sister chromatid cohesion. Science 321:563–566

    Article  PubMed  Google Scholar 

  6. Borges V, Smith DJ, Whitehouse I et al (2013) An Eco1-independent sister chromatid cohesion establishment pathway in S. cerevisiae. Chromosoma 122:121–134

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Minamino M, Bouchoux C, Canal B et al (2023) A replication fork determinant for the establishment of sister chromatid cohesion. Cell 186:837–849

    Article  PubMed  CAS  Google Scholar 

  8. Posse V, Johansson E, Diffley JFX (2021) Eukaryotic DNA replication with purified budding yeast proteins. Methods Enzymol 661:1–33

    Article  PubMed  CAS  Google Scholar 

  9. Minamino M, Higashi TL, Bouchoux C et al (2018) Topological in vitro loading of the budding yeast cohesin ring onto DNA. Life Sci Alliance 1:e201800143

    Article  PubMed  PubMed Central  Google Scholar 

  10. Liu HW, Bouchoux C, Panarotto M et al (2020) Division of labor between PCNA loaders in DNA replication and sister chromatid cohesion establishment. Mol Cell 78:725–738

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Uhlmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2026 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Minamino, M., Bouchoux, C., Uhlmann, F. (2026). Biochemical Reconstitution of Replication-Coupled Cohesin Acetylation. In: Murayama, Y., Kakui, Y. (eds) SMC Proteins. Methods in Molecular Biology, vol 2991. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-5005-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-5005-9_11

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-5004-2

  • Online ISBN: 978-1-0716-5005-9

  • eBook Packages: Springer Protocols

Key words

Publish with us

Policies and ethics