Abstract
Purpose
Wildlife is a major source of infectious diseases affecting humans and domestic animals; however, the impacts of parasitism on naturally parasitized fauna remain largely unknown. In this study, we evaluated the outcomes of Leishmania infantum infection in blood parameters of South American coatis (Nasua nasua) in an area endemic for leishmaniasis in the Brazilian Midwest region.
Methods
In total, 128 blood samples were obtained from 77 adult South American coatis. Health status was inferred from hematological and biochemical parameters categorized into the following indicators: red blood cell count, coagulation, immune response (IMRI), infection response, kidney damage, liver damage (LDI), cardiac damage, skeletal muscle damage (SMDI), nutritional profile (NPI), and protein profile (PPI). We compared the hematological and biochemical parameters of seropositive, DNA detection and negative groups using ANOVA and Kruskal-Wallis tests, and assessed the direct effects of L. infantum on health indicators and body condition (BC) through path analysis.
Results
Our findings showed that L. infantum infection affected LDI, IMRI, PPI and NPI but had no negative impact on BC. However, BC was influenced by SMDI, IMRI, NPI and KDI regardless of parasitism.
Conclusions
Our results indicate that L. infantum may cause long-lasting subclinical infections associated with alterations in liver function, immune response, and protein and nutritional profiles of coatis living in urban areas of the Brazilian Midwest. We highlight the importance of monitoring the impact of L. infantum infections on wild mammals in leishmaniasis-endemic areas.


Data Availability
No datasets were generated or analysed during the current study.
References
Bradley CA, Altizer S (2007) Urbanization and the ecology of wildlife diseases. Trends Ecol Evol 22(2):95–102. https://doi.org/10.1016/j.tree.2006.11.001
Acevedo-Whitehouse K, Duffus AL (2009) Effects of environmental change on wildlife health. Philos Trans R Soc Lond B Bio Sci 364(1534):3429–3438. https://doi.org/10.1098/rstb.2009.0128
Hassell JM, Begon M, Ward MJ, Fèvre EM (2017) Urbanization and disease emergence: dynamics at the Wildlife-Livestock-Human interface. Trends Ecol Evol 32(1):55–67. https://doi.org/10.1016/j.tree.2016.09.012
Werneck GL (2008) Forum: geographic spread and urbanization of visceral leishmaniasis in Brazil. Introduction Cadernos De Saúde Pública 24(12):2937–2940. https://doi.org/10.1590/S0102-311X2008001200023
de Souza Fernandes W, Infran JOM, de Oliveira EF, Casaril AE, Barrios SPG, de Oliveira SLL et al (2022) Phlebotomine sandfly (Diptera: Psychodidae) fauna and the association between Climatic variables and the abundance of Lutzomyia longipalpis sensu Lato in an intense transmission area for visceral leishmaniasis in central Western Brazil. J Med Entomol 59(3):997–1007. https://doi.org/10.1093/jme/tjac006
Roque AL, Jansen AM (2014) Wild and synanthropic reservoirs of Leishmania species in the Americas. Int J Parasitol Parasites Wildl 3(3):251–262. https://doi.org/10.1016/j.ijppaw.2014.08.004
Azami-Conesa I, Gómez-Muñoz MT, Martínez-Díaz RA (2021) A systematic review (1990–2021) of wild animals infected with zoonotic Leishmania. Microorganisms 9(5):1101. https://doi.org/10.3390/microorganisms9051101
de Macedo GC, Barreto WTG, de Oliveira CE, Santos FM, Porfírio GEO, Xavier SCDC et al (2023) Leishmania infantum infecting the carnivore Nasua nasua from urban forest fragments in an endemic area of visceral leishmaniasis in Brazilian Midwest. Front Cell Infect Microbiol 12:1050339 https://doi.org/10.3389/fcimb.2022.1050339
Lindsay DS, Hendrix CM, Blagburn BL (1988) Experimental Cryptosporidium parvum infections in opossums (Didelphis virginiana). J Wildl Dis 24(1):157–159. https://doi.org/10.7589/0090-3558-24.1.157
Franke CR, Greiner M, Mehlitz D (1994) Monitoring of clinical, parasitological and serological parameters during an experimental infection of capybaras (Hydrochaeris hydrochaeris) with Trypanosoma evansi. Acta Trop 58(2):171–174. https://doi.org/10.1016/0001-706x(94)90056-6
Araujo Carreira JC, Jansen AM, Deane MP, Lenzi HL (1996) Histopathological study of experimental and natural infections by Trypanosoma cruzi in Didelphis marsupialis. Mem Inst Oswaldo Cruz 91(5):609–618 https://doi.org/10.1590/s0074-02761996000500012
Herrera HM, Aquino LP, Menezes RF, Marques LC, Moraes MA, Werther K et al (2001) Trypanosoma evansi experimental infection in the South American Coati (Nasua nasua): clinical, parasitological and humoral immune response. Vet Parasitol 102(3):209–216. https://doi.org/10.1016/s0304-4017(01)00532-5
Singh VP, Pratap K, Sinha J, Desiraju K, Bahal D, Kukreti R (2016) Critical evaluation of challenges and future use of animals in experimentation for biomedical research. Int J Immunopathol Pharmacol 29(4):551–561. https://doi.org/10.1177/0394632016671728
Ruykys L, Rich B, McCarthy P (2012) Haematology and biochemistry of Warru (Petrogale lateralis Mac-Donnell ranges race) in captivity and the wild. Aust Vet J 90(9):331–340. https://doi.org/10.1111/j.1751-0813.2012.00956.x
Clarke J, Warren K, Calver M, de Tores P, Mills J, Robertson I (2013) Hematologic and serum biochemical reference ranges and assessment of exposure to infectious diseases prior to translocation of the threatened Western ringtail opossum (Pseudocheirus occidentalis). J Wildl Dis 49(4):831–840. https://doi.org/10.7589/2011-12-345
Pacioni C, Robertson ID, Maxwell M, van Weenen J, Wayne AF (2013) Hematologic characteristics of the Woylie (Bettongia penicillata ogilbyi). J Wildl Dis 49(4):816–830. https://doi.org/10.7589/2011-09-275
Olifiers N, Jansen AM, Herrera HM, Bianchi R, de C, D’Andrea PS, de Mourão G M, et al (2015) Coinfection and wild animal health: effects of trypanosomatids and Gastrointestinal parasites on Coatis of the Brazilian Pantanal. PLoS ONE 10(12):e0143997. https://doi.org/10.1371/journal.pone.0143997
Santos FM, de Macedo GC, Barreto WTG, Oliveira-Santos LGR, Garcia CM, Mourão GM et al (2018) Outcomes of Trypanosoma Cruzi and Trypanosoma evansi infections on health of South American Coati (Nasua nasua), crab-eating Fox (Cerdocyon thous), and ocelot (Leopardus pardalis) in the Brazilian Pantanal. PLoS ONE 13(8):e0201357. https://doi.org/10.1371/journal.pone.0201357
Nantes WAG, Barreto WTG, Santos FM, de Macedo GC, Rucco AC, Assis WO et al (2019) The influence of parasitism by Trypanosoma Cruzi in the hematological parameters of the white ear opossum (Didelphis albiventris) from Campo Grande, Mato Grosso do Sul, Brazil. Int J Parasitol Parasites Wildl 9:16–20. https://doi.org/10.1016/j.ijppaw.2019.03.015
Santos FM, de Macedo GC, Barreto WTG, Nantes WAG, de Assis WO, Herrera HM (2019) Hematological values of crab-eating foxes (Cerdocyon thous) from Pantanal, Mato Grosso do Sul, Brazil, naturally infected and non-infected by Trypanosoma cruzi e T. evansi. Ciênc Anim Bras 20:e–50604 https://doi.org/10.1590/1089-6891v20e-50604
da Silva AR, Herrera HM, de Oliveira CE, Torres JM, Ferreira AMR, Leite JDS et al (2023) The relationships among Leishmania infantum and phyllostomid bats assessed by histopathological and molecular assays. Int J Parasitol Parasites Wildl 23:100904. https://doi.org/10.1016/j.ijppaw.2023.100904
Courtenay O, Quinnell RJ, Garcez LM, Dye C (2002) Low infectiousness of a wildlife host of Leishmania infantum: the crab-eating Fox is not important for transmission. Parasitol 125(Pt 5):407–414. https://doi.org/10.1017/s0031182002002238
Millán J, Chirife AD, Altet L (2015) Serum chemistry reference values for the common genet (Genetta genetta): variations associated with Leishmania infantum infection. Vet Q 35(1):43–47. https://doi.org/10.1080/01652176.2014.987883
da Silva MAD, Oliveira MR, Schettino SC, dos Santos IG, Neto MBO, da Silva WSI et al (2021) New insights on severe clinical manifestations and deaths from visceral leishmaniasis in free-living crab-eating foxes (Cerdocyon thous) in Brazil. Res Soc Devel 10(16):e108101622869. https://doi.org/10.33448/rsd-v10i16.22869
Gompper ME, Decker DM (1998) Nasua Nasua. Mamm Species 580:1–9
Bovendorp R, Galetti M (2007) Density and population size of mammals introduced on a land-bridge Island in southeastern Brazil. Biol Invasions 9:353–357. https://doi.org/10.1007/s10530-006-9031-7
Costa EMJ, Mauro RA, Silva JSV (2009) Group composition and activity patterns of brown-nosed Coatis in savanna fragments, Mato Grosso do Sul, Brazil. Braz J Biol 69(4):985–991. https://doi.org/10.1590/S1519-69842009000500002
Estevam LGTM, Fonseca Junior AA, Silvestre BT, Hemetrio NS, Almeida LR, Oliveira MM et al (2020) Seven years of evaluation of ectoparasites and vector-borne pathogens among ring-tailed Coatis in an urban park in southeastern Brazil. Vet Parasitol Reg Stud Rep 21:100442. https://doi.org/10.1016/j.vprsr.2020.100442
Barreto WTG, Herrera HM, de Macedo GC, Rucco AC, Santos LGO, de Assis WO et al (2021) Density and survivorship of the South American Coati (Procyonidae: Nasua nasua) in the urban area of Campo Grande, Centra-Western Brazil. Hystrix It J Mamm 32(1):82–88. https://doi.org/10.4404/hystrix-00386-2020
Brazuna JCM, Araujo e Silva E, Brazuna JM, Domingos IH, Chaves N, Honer MR et al (2012) Profile and geographic distribution of reported cases of visceral leishmaniasis in Campo Grande, state of Mato Grosso do Sul, Brazil, from 2002 to 2009. Rev Soc Bras Med Trop 45(5):601–606. https://doi.org/10.1590/S0037-86822012000500012
de Sousa KC, André MR, Herrera HM, de Andrade GB, Jusi MM, dos Santos LL et al (2013) Molecular and serological detection of tick-borne pathogens in dogs from an area endemic for Leishmania infantum in Mato Grosso do Sul, Brazil. Rev Bras Parasitol Vet 22(4):525–531. https://doi.org/10.1590/S1984-29612013000400012
Bernal-Valle S, Teixeira MN, de Araújo Neto AR, Gonçalves-Souza T, Feitoza BF, dos Santos SM et al (2022) Parasitic infections, hematological and biochemical parameters suggest appropriate health status of wild Coati populations in anthropic Atlantic forest remnants. Vet Parasitol Reg Stud Rep 30:100693. https://doi.org/10.1016/j.vprsr.2022.100693
Reis AB, Martins-Filho OA, Teixeira-Carvalho A, Carvalho MG, Mayrink W, França-Silva JC et al (2006) Parasite density and impaired biochemical/hematological status are associated with severe clinical aspects of canine visceral leishmaniasis. Res Vet Sci 81(1):68–75. https://doi.org/10.1016/j.rvsc.2005.09.011
de Freitas JC, Nunes-Pinheiro DC, Lopes Neto BE, Santos GJ, Abreu CR, Braga RR et al (2012) Clinical and laboratory alterations in dogs naturally infected by Leishmania Chagasi. Rev Soc Bras Med Trop 45(1):24–29. https://doi.org/10.1590/s0037-86822012000100006
Gatto M, de Abreu MM, Tasca KI, Simão JC, Fortaleza CM, Pereira PC et al (2013) Biochemical and nutritional evaluation of patients with visceral leishmaniasis before and after treatment with leishmanicidal drugs. Rev Soc Bras Med Trop 46(6):735–740. https://doi.org/10.1590/0037-8682-0198-201
Ribeiro RR, da Silva SM, Fulgêncio Gde O, Michalick MS, Frézard FJ (2013) Relationship between clinical and pathological signs and severity of canine leishmaniasis. Rev Bras Parasitol Vet 22(3):373–378. https://doi.org/10.1590/S1984-29612013000300009
Montargil SMA, Carvalho FS, de Oliveira GMS, Munhoz AD, Alberto Carlos RS, Wenceslau AA (2018) Clinical, hematological and biochemical profiles of dogs with Leishmania infantum. Acta Sci Veterinariae 46(1):7. https://doi.org/10.22456/1679-9216.82065
Silva JL, Oliveira VVG, Silva LAMT, Silva RPE, Alves LC, Cavalcanti MP et al (2019) Evaluation of serum biochemical parameters, structural changes, immunohistochemistry and parasite load in the urinary system of dogs infected naturally by Leishmania infantum. J Comp Pathol 167:26–31. https://doi.org/10.1016/j.jcpa.2018.11.007
Tesfanchal B, Gebremichail G, Belay G, Gebremariam G, Teklehaimanot G, Haileslasie H et al (2020) Alteration of clinical chemistry parameters among visceral leishmaniasis patients in Western Tigrai, Ethiopia, 2018/2019: A comparative Cross-Sectional study. Infect Drug Resist 13:3055–3062. https://doi.org/10.2147/IDR.S261698
Cavalera MA, Iatta R, Laricchiuta P, Passantino G, Abramo F, Mendoza-Roldan JA et al (2020) Clinical, haematological and biochemical findings in Tigers infected by Leishmania infantum. BMC Vet Res 16(1):214. https://doi.org/10.1186/s12917-020-02419-y
Olifiers N, Bianchi RC, D’Andrea PS, Mourão G, Gomppers ME (2010) Estimating age of carnivores from the Pantanal region of Brazil. Wildl Biol 16:389–389. https://doi.org/10.2981/09-104
International Species Identification System - ISIS (2002) Reference ranges for physiological values in captive wildlife. Apple Valley
Schubach A, Haddad F, Oliveira-Neto MP, Degrave W, Pirmez C, Grimaldi G Jr et al (1998) Detection of Leishmania DNA by polymerase chain reaction in scars of treated human patients. J Infect Dis 178(3):911–914. https://doi.org/10.1086/515355
Cortes S, Rolão N, Ramada J, Campino L (2004) PCR as a rapid and sensitive tool in the diagnosis of human and canine leishmaniasis using Leishmania donovani s.l.-specific kinetoplastid primers. Trans R Soc Trop Med Hyg 98(1):12–17. https://doi.org/10.1016/s0035-9203(03)00002-6
Graça GC, Volpini AC, Romero GA, Oliveira Neto MP, Hueb M, Porrozzi R et al (2012) Development and validation of PCR-based assays for diagnosis of American cutaneous leishmaniasis and identification of the parasite species. Mem Inst Oswaldo Cruz 107(5):664–674. https://doi.org/10.1590/s0074-02762012000500014
R Core Team. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria (2023) [updated 2025 June 13; cited 2025 June 18]. Available from: http://www.R-project.org/
Giannini EG, Testa R, Savarino V (2005) Liver enzyme alteration: a guide for clinicians. CMAJ 172(3):367–379. https://doi.org/10.1503/cmaj.1040752
Lidbury JA, Steiner JM (2013) Liver-diagnostic evaluation. In: Washabau RJ, Day J (eds) Canine & feline gastroenterology. Elsevier, St. Louis, pp 863–875
Duarte MI, Corbett CE (1987) Histopathological patterns of the liver involvement in visceral leishmaniasis. Rev Inst Med Trop Sao Paulo 29:131–136. https://doi.org/10.1590/s0036-46651987000300003
Kausalya S, Malla N, Ganguly NK, Mahajan RC (1993) Leishmania donovani: in vitro evidence of hepatocyte damage by Kupffer cells and immigrant macrophages in a murine model. Exp Parasitol 77(3):326–333. https://doi.org/10.1006/expr.1993.1090
el Hag IA, Hashim FA, el Toum IA, Homeida M, el Kalifa M, el Hassan AM (1994) Liver morphology and function in visceral leishmaniasis (Kala-azar). J Clin Pathol 47(6):547–551. https://doi.org/10.1136/jcp.47.6.547
Lima IS, Silva JS, Almeida VA, Junior FG, Souza PA, Larangeira DF et al (2014) Severe clinical presentation of visceral leishmaniasis in naturally infected dogs with disruption of the Splenic white pulp. PLoS ONE 9(2):e87742. https://doi.org/10.1371/journal.pone.0087742
Heidarpour M, Soltani S, Mohri M, Khoshnegah J (2012) Canine visceral leishmaniasis: relationships between oxidative stress, liver and kidney variables, trace elements, and clinical status. Parasitol Res 111(4):1491–1496. https://doi.org/10.1007/s00436-012-2985-8
Nieto CG, Barrera R, Habela MA, Navarrete I, Molina C, Jiménez A et al (1992) Changes in the plasma concentrations of lipids and lipoprotein fractions in dogs infected with Leishmania infantum. Vet Parasitol 44(3–4):175–182. https://doi.org/10.1016/0304-4017(92)90115-p
Soares NM, Leal TF, Fiúza MC, Reis EA, Souza MA, Dos-Santos WL et al (2010) Plasma lipoproteins in visceral leishmaniasis and their effect on Leishmania-infected macrophages. Parasite Immunol 32(4):259–266. https://doi.org/10.1111/j.1365-3024.2009.01187.x
Lal CS, Verma N, Rabidas VN, Ranjan A, Pandey K, Verma RB et al (2010) Total serum cholesterol determination can provide Understanding of parasite burden in patients with visceral leishmaniasis infection. Clin Chim Acta 411:2112–2113. https://doi.org/10.1016/j.cca.2010.08.041
Ghosh J, Lal CS, Pandey K, Das VN, Das P, Roychoudhury K et al (2011) Human visceral leishmaniasis: decrease in serum cholesterol as a function of Splenic parasite load. Ann Trop Med Parasitol 105(3):267–271. https://doi.org/10.1179/136485911X12899838683566
Caldas A, Favali C, Aquino D, Vinhas V, van Weyenbergh J, Brodskyn C et al (2005) Balance of IL-10 and interferon-gamma plasma levels in human visceral leishmaniasis: implications in the pathogenesis. BMC Infect Dis 5:113. https://doi.org/10.1186/1471-2334-5-113
Paswan RK, Bimal S, Kumari A, Sinha P, Rabidas VN, Pandey K et al (2016) Reduced high density lipoprotein concentration modulates increased interleukin-10 and decreased interferon-gamma in visceral leishmaniasis patients. Gen Med 4(2):1000233. https://doi.org/10.4172/2327-5146.1000233
Carvalho EM, Badaró R, Reed SG, Jones TC, Johnson WD Jr (1985) Absence of gamma interferon and Interleukin 2 production during active visceral leishmaniasis. J Clin Invest 76(6):2066–2069. https://doi.org/10.1172/JCI112209
Ghalib HW, Piuvezam MR, Skeiky YA, Siddig M, Hashim FA, el-Hassan AM (1993) Interleukin 10 production correlates with pathology in human Leishmania donovani infections. J Clin Invest 92(1):324–329. https://doi.org/10.1172/JCI116570
Pucadyil TJ, Tewary P, Madhubala R, Chattopadhyay A (2004) Cholesterol is required for Leishmania donovani infection: implications in leishmaniasis. Mol Biochem Parasitol 133(2):145–152. https://doi.org/10.1016/j.molbiopara.2003.10.002
Norata GD, Pirillo A, Ammirati E, Catapano AL (2012) Emerging role of high-density lipoproteins as a player in the immune system. Atherosclerosis 220(1):11–21. https://doi.org/10.1016/j.atherosclerosis.2011.06.045
Kumar GA, Roy S, Jafurulla M, Mandal C, Chattopadhyay A (2016) Statin-induced chronic cholesterol depletion inhibits Leishmania donovani infection: relevance of optimum host membrane cholesterol. Biochim Biophys Acta 1858(9):2088–2096. https://doi.org/10.1016/j.bbamem.2016.06.010
Gabay C, Kushner I (1999) Acute-phase proteins and other systemic responses to inflammation. N Engl J Med 340(6):448–454. https://doi.org/10.1056/NEJM199902113400607
de Carvalho CA, Hiramoto RM, Meireles LR, de Andrade HF Jr (2024) Understanding hypergammaglobulinemia in experimental or natural visceral leishmaniasis. Parasite Immunol 46(1):e13021. https://doi.org/10.1111/pim.13021
Perles L, Barreto WTG, Santos FM, Duarte LL, de Macedo GC, Barros-Battesti DM et al (2023a) Molecular survey of hemotropic Mycoplasma spp. And Bartonella spp. In Coatis (Nasua nasua) from Central-Western Brazil. Pathogens 12(4):538. https://doi.org/10.3390/pathogens12040538
Perles L, Barreto WTG, de Macedo GC, Calchi AC, Bezerra-Santos M, Mendoza-Roldan JA et al (2023b) Molecular detection of Babesia spp. And Rickettsia spp. In Coatis (Nasua nasua) And associated ticks from Midwestern Brazil. Parasitol Res 122(5):1151–1158. https://doi.org/10.1007/s00436-023-07815-5
de Macedo GC, Barreto WTG, de Assis WO, Rucco AC, Santos FM, Porfírio GEO et al (2023b) Hematology and biochemistry of South American Coatis Nasua Nasua (Carnivora: Procyonidae) inhabiting urban fragments in Midwest brazil: differences according to intrinsic features and sampling site. Eur J Wildl Res 69:119. https://doi.org/10.1007/s10344-023-01753-4
Costa CHN, Chang KP, Costa DL, Cunha FVM (2023) From infection to death: an overview of the pathogenesis of visceral leishmaniasis. Pathogens 12(7):969. https://doi.org/10.3390/pathogens12070969
Nicolato RC, de Abreu RT, Roatt BM, Aguiar-Soares RD, Reis LE, Carvalho MG et al (2013) Clinical forms of canine visceral leishmaniasis in naturally Leishmania infantum-infected dogs and related myelogram and hemogram changes. PLoS ONE 8(12):e82947. https://doi.org/10.1371/journal.pone.0082947
Shiferaw E, Murad F, Tigabie M, Abebaw M, Alemu T, Abate S et al (2021) Hematological profiles of visceral leishmaniasis patients before and after treatment of anti-leishmanial drugs at university of Gondar Hospital; leishmania research and treatment center Northwest, Ethiopia. BMC Infect Dis 21(1):1005. https://doi.org/10.1186/s12879-021-06691-7
Zijlstra EE, Ali MS, el-Hassan AM, el-Toum IA, Satti M, Ghalib HW (1992) Clinical aspects of kala-azar in children from the sudan: a comparison with the disease in adults. J Trop Pediatr 38(1):17–21. https://doi.org/10.1093/tropej/38.1.17
Caldas AJ, Costa J, Aquino D, Silva AA, Barral-Netto M, Barral A (2006) Are there differences in clinical and laboratory parameters between children and adults with American visceral leishmaniasis? Acta Trop 97(3):252–258. https://doi.org/10.1016/j.actatropica.2005.09.010
Maciel BL, Lacerda HG, Queiroz JW, Galvão J, Pontes NN, Dimenstein R et al (2008) Association of nutritional status with the response to infection with Leishmania Chagasi. Am J Trop Med Hyg 79(4):591–598. https://doi.org/10.4269/ajtmh.2008.79.591
Benatar JR, Sidhu K, Stewart RAH (2013) Effects of high and low fat dairy food on cardio-metabolic risk factors: a meta-analysis of randomized studies. PLoS ONE 8(10):e76480
Delanaye P, Cavalier E, Pottel H (2017) Serum cretinine: not so simple! Nephron 136(4):302–308. https://doi.org/10.1159/000469669
Li P, Yin YL, Li D, Kim SW, Wu G (2007) Amino acids and immune function. Br J Nutr 98(2):237–252. https://doi.org/10.1017/S000711450769936X
Cipryan L (2017) IL-6, antioxidant capacity and muscle damage markers following high-intensity interval training protocols. J Hum Kinet 56:139–148. https://doi.org/10.1515/hukin-2017-0031
Brancaccio P, Lippi G, Maffulli N (2010) Biochemical markers of muscular damage. Clin Chem Lab Med 48(6):757–767. https://doi.org/10.1515/CCLM.2010.179
Knoblauch MA, O’Connor DP, Clarke MS (2013) Obese mice incur greater myofiber membrane disruption in response to mechanical load compared with lean mice. Obes (Silver Spring) 21(1):135–143. https://doi.org/10.1002/oby.20253
Acknowledgements
The authors are grateful to the Air Force Village and the Prosa State Park staffs for the cooperation with the field works, and to the laboratory LABDOC for the support in the hematological and biochemical analyses.
Funding
GCM was supported by the Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (project number SEI E-26/200.295/2025), and ALRR and HMH were supported by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (project numbers 309507/2023-5 and 311769/2023-3 respectively).
Author information
Authors and Affiliations
Contributions
GCM, ALRR, CEO, WTGB and HMH conceived and designed the study. GCM, WTGB, WOA, ACR and JGBP performed the research. GCM, FMS, NYS and SCCX analyzed the data. GCM, WTGB, and ARS, drafted the initial manuscript. ALRR, GEOP, GBA, AMJ and HMH reviewed and edited the original draft. All the authors approved the final version of the manuscript.
Corresponding author
Ethics declarations
Competing Interests
The authors declare no competing interests.
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
de Macedo, G.C., Roque, A.L.R., Santos, F.M. et al. Hematological and Biochemical Outcomes of Leishmania Infantum Infection in the South American Coati (Nasua nasua) in an Endemic Area of Visceral Leishmaniasis in Central Western Brazil. Acta Parasit. 71, 37 (2026). https://doi.org/10.1007/s11686-026-01218-z
Received:
Accepted:
Published:
Version of record:
DOI: https://doi.org/10.1007/s11686-026-01218-z