Skip to main content
Log in

Hematological and Biochemical Outcomes of Leishmania Infantum Infection in the South American Coati (Nasua nasua) in an Endemic Area of Visceral Leishmaniasis in Central Western Brazil

  • Research
  • Published:
View saved research
Acta Parasitologica Aims and scope Submit manuscript

Abstract

Purpose

Wildlife is a major source of infectious diseases affecting humans and domestic animals; however, the impacts of parasitism on naturally parasitized fauna remain largely unknown. In this study, we evaluated the outcomes of Leishmania infantum infection in blood parameters of South American coatis (Nasua nasua) in an area endemic for leishmaniasis in the Brazilian Midwest region.

Methods

In total, 128 blood samples were obtained from 77 adult South American coatis. Health status was inferred from hematological and biochemical parameters categorized into the following indicators: red blood cell count, coagulation, immune response (IMRI), infection response, kidney damage, liver damage (LDI), cardiac damage, skeletal muscle damage (SMDI), nutritional profile (NPI), and protein profile (PPI). We compared the hematological and biochemical parameters of seropositive, DNA detection and negative groups using ANOVA and Kruskal-Wallis tests, and assessed the direct effects of L. infantum on health indicators and body condition (BC) through path analysis.

Results

Our findings showed that L. infantum infection affected LDI, IMRI, PPI and NPI but had no negative impact on BC. However, BC was influenced by SMDI, IMRI, NPI and KDI regardless of parasitism.

Conclusions

Our results indicate that L. infantum may cause long-lasting subclinical infections associated with alterations in liver function, immune response, and protein and nutritional profiles of coatis living in urban areas of the Brazilian Midwest. We highlight the importance of monitoring the impact of L. infantum infections on wild mammals in leishmaniasis-endemic areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Data Availability

No datasets were generated or analysed during the current study.

References

  1. Bradley CA, Altizer S (2007) Urbanization and the ecology of wildlife diseases. Trends Ecol Evol 22(2):95–102. https://doi.org/10.1016/j.tree.2006.11.001

    Article  PubMed  Google Scholar 

  2. Acevedo-Whitehouse K, Duffus AL (2009) Effects of environmental change on wildlife health. Philos Trans R Soc Lond B Bio Sci 364(1534):3429–3438. https://doi.org/10.1098/rstb.2009.0128

    Article  Google Scholar 

  3. Hassell JM, Begon M, Ward MJ, Fèvre EM (2017) Urbanization and disease emergence: dynamics at the Wildlife-Livestock-Human interface. Trends Ecol Evol 32(1):55–67. https://doi.org/10.1016/j.tree.2016.09.012

    Article  PubMed  Google Scholar 

  4. Werneck GL (2008) Forum: geographic spread and urbanization of visceral leishmaniasis in Brazil. Introduction Cadernos De Saúde Pública 24(12):2937–2940. https://doi.org/10.1590/S0102-311X2008001200023

    Article  PubMed  Google Scholar 

  5. de Souza Fernandes W, Infran JOM, de Oliveira EF, Casaril AE, Barrios SPG, de Oliveira SLL et al (2022) Phlebotomine sandfly (Diptera: Psychodidae) fauna and the association between Climatic variables and the abundance of Lutzomyia longipalpis sensu Lato in an intense transmission area for visceral leishmaniasis in central Western Brazil. J Med Entomol 59(3):997–1007. https://doi.org/10.1093/jme/tjac006

    Article  PubMed  Google Scholar 

  6. Roque AL, Jansen AM (2014) Wild and synanthropic reservoirs of Leishmania species in the Americas. Int J Parasitol Parasites Wildl 3(3):251–262. https://doi.org/10.1016/j.ijppaw.2014.08.004

    Article  PubMed  PubMed Central  Google Scholar 

  7. Azami-Conesa I, Gómez-Muñoz MT, Martínez-Díaz RA (2021) A systematic review (1990–2021) of wild animals infected with zoonotic Leishmania. Microorganisms 9(5):1101. https://doi.org/10.3390/microorganisms9051101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. de Macedo GC, Barreto WTG, de Oliveira CE, Santos FM, Porfírio GEO, Xavier SCDC et al (2023) Leishmania infantum infecting the carnivore Nasua nasua from urban forest fragments in an endemic area of visceral leishmaniasis in Brazilian Midwest. Front Cell Infect Microbiol 12:1050339 https://doi.org/10.3389/fcimb.2022.1050339

    Article  PubMed  PubMed Central  Google Scholar 

  9. Lindsay DS, Hendrix CM, Blagburn BL (1988) Experimental Cryptosporidium parvum infections in opossums (Didelphis virginiana). J Wildl Dis 24(1):157–159. https://doi.org/10.7589/0090-3558-24.1.157

    Article  CAS  PubMed  Google Scholar 

  10. Franke CR, Greiner M, Mehlitz D (1994) Monitoring of clinical, parasitological and serological parameters during an experimental infection of capybaras (Hydrochaeris hydrochaeris) with Trypanosoma evansi. Acta Trop 58(2):171–174. https://doi.org/10.1016/0001-706x(94)90056-6

    Article  CAS  PubMed  Google Scholar 

  11. Araujo Carreira JC, Jansen AM, Deane MP, Lenzi HL (1996) Histopathological study of experimental and natural infections by Trypanosoma cruzi in Didelphis marsupialis. Mem Inst Oswaldo Cruz 91(5):609–618 https://doi.org/10.1590/s0074-02761996000500012

    Article  CAS  PubMed  Google Scholar 

  12. Herrera HM, Aquino LP, Menezes RF, Marques LC, Moraes MA, Werther K et al (2001) Trypanosoma evansi experimental infection in the South American Coati (Nasua nasua): clinical, parasitological and humoral immune response. Vet Parasitol 102(3):209–216. https://doi.org/10.1016/s0304-4017(01)00532-5

    Article  CAS  PubMed  Google Scholar 

  13. Singh VP, Pratap K, Sinha J, Desiraju K, Bahal D, Kukreti R (2016) Critical evaluation of challenges and future use of animals in experimentation for biomedical research. Int J Immunopathol Pharmacol 29(4):551–561. https://doi.org/10.1177/0394632016671728

    Article  PubMed  PubMed Central  Google Scholar 

  14. Ruykys L, Rich B, McCarthy P (2012) Haematology and biochemistry of Warru (Petrogale lateralis Mac-Donnell ranges race) in captivity and the wild. Aust Vet J 90(9):331–340. https://doi.org/10.1111/j.1751-0813.2012.00956.x

    Article  CAS  PubMed  Google Scholar 

  15. Clarke J, Warren K, Calver M, de Tores P, Mills J, Robertson I (2013) Hematologic and serum biochemical reference ranges and assessment of exposure to infectious diseases prior to translocation of the threatened Western ringtail opossum (Pseudocheirus occidentalis). J Wildl Dis 49(4):831–840. https://doi.org/10.7589/2011-12-345

    Article  CAS  PubMed  Google Scholar 

  16. Pacioni C, Robertson ID, Maxwell M, van Weenen J, Wayne AF (2013) Hematologic characteristics of the Woylie (Bettongia penicillata ogilbyi). J Wildl Dis 49(4):816–830. https://doi.org/10.7589/2011-09-275

    Article  PubMed  Google Scholar 

  17. Olifiers N, Jansen AM, Herrera HM, Bianchi R, de C, D’Andrea PS, de Mourão G M, et al (2015) Coinfection and wild animal health: effects of trypanosomatids and Gastrointestinal parasites on Coatis of the Brazilian Pantanal. PLoS ONE 10(12):e0143997. https://doi.org/10.1371/journal.pone.0143997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Santos FM, de Macedo GC, Barreto WTG, Oliveira-Santos LGR, Garcia CM, Mourão GM et al (2018) Outcomes of Trypanosoma Cruzi and Trypanosoma evansi infections on health of South American Coati (Nasua nasua), crab-eating Fox (Cerdocyon thous), and ocelot (Leopardus pardalis) in the Brazilian Pantanal. PLoS ONE 13(8):e0201357. https://doi.org/10.1371/journal.pone.0201357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Nantes WAG, Barreto WTG, Santos FM, de Macedo GC, Rucco AC, Assis WO et al (2019) The influence of parasitism by Trypanosoma Cruzi in the hematological parameters of the white ear opossum (Didelphis albiventris) from Campo Grande, Mato Grosso do Sul, Brazil. Int J Parasitol Parasites Wildl 9:16–20. https://doi.org/10.1016/j.ijppaw.2019.03.015

    Article  Google Scholar 

  20. Santos FM, de Macedo GC, Barreto WTG, Nantes WAG, de Assis WO, Herrera HM (2019) Hematological values of crab-eating foxes (Cerdocyon thous) from Pantanal, Mato Grosso do Sul, Brazil, naturally infected and non-infected by Trypanosoma cruzi e T. evansi. Ciênc Anim Bras 20:e–50604 https://doi.org/10.1590/1089-6891v20e-50604

    Article  Google Scholar 

  21. da Silva AR, Herrera HM, de Oliveira CE, Torres JM, Ferreira AMR, Leite JDS et al (2023) The relationships among Leishmania infantum and phyllostomid bats assessed by histopathological and molecular assays. Int J Parasitol Parasites Wildl 23:100904. https://doi.org/10.1016/j.ijppaw.2023.100904

    Article  PubMed  PubMed Central  Google Scholar 

  22. Courtenay O, Quinnell RJ, Garcez LM, Dye C (2002) Low infectiousness of a wildlife host of Leishmania infantum: the crab-eating Fox is not important for transmission. Parasitol 125(Pt 5):407–414. https://doi.org/10.1017/s0031182002002238

    Article  CAS  Google Scholar 

  23. Millán J, Chirife AD, Altet L (2015) Serum chemistry reference values for the common genet (Genetta genetta): variations associated with Leishmania infantum infection. Vet Q 35(1):43–47. https://doi.org/10.1080/01652176.2014.987883

    Article  PubMed  Google Scholar 

  24. da Silva MAD, Oliveira MR, Schettino SC, dos Santos IG, Neto MBO, da Silva WSI et al (2021) New insights on severe clinical manifestations and deaths from visceral leishmaniasis in free-living crab-eating foxes (Cerdocyon thous) in Brazil. Res Soc Devel 10(16):e108101622869. https://doi.org/10.33448/rsd-v10i16.22869

    Article  Google Scholar 

  25. Gompper ME, Decker DM (1998) Nasua Nasua. Mamm Species 580:1–9

    Article  Google Scholar 

  26. Bovendorp R, Galetti M (2007) Density and population size of mammals introduced on a land-bridge Island in southeastern Brazil. Biol Invasions 9:353–357. https://doi.org/10.1007/s10530-006-9031-7

    Article  Google Scholar 

  27. Costa EMJ, Mauro RA, Silva JSV (2009) Group composition and activity patterns of brown-nosed Coatis in savanna fragments, Mato Grosso do Sul, Brazil. Braz J Biol 69(4):985–991. https://doi.org/10.1590/S1519-69842009000500002

    Article  CAS  PubMed  Google Scholar 

  28. Estevam LGTM, Fonseca Junior AA, Silvestre BT, Hemetrio NS, Almeida LR, Oliveira MM et al (2020) Seven years of evaluation of ectoparasites and vector-borne pathogens among ring-tailed Coatis in an urban park in southeastern Brazil. Vet Parasitol Reg Stud Rep 21:100442. https://doi.org/10.1016/j.vprsr.2020.100442

    Article  CAS  Google Scholar 

  29. Barreto WTG, Herrera HM, de Macedo GC, Rucco AC, Santos LGO, de Assis WO et al (2021) Density and survivorship of the South American Coati (Procyonidae: Nasua nasua) in the urban area of Campo Grande, Centra-Western Brazil. Hystrix It J Mamm 32(1):82–88. https://doi.org/10.4404/hystrix-00386-2020

    Article  Google Scholar 

  30. Brazuna JCM, Araujo e Silva E, Brazuna JM, Domingos IH, Chaves N, Honer MR et al (2012) Profile and geographic distribution of reported cases of visceral leishmaniasis in Campo Grande, state of Mato Grosso do Sul, Brazil, from 2002 to 2009. Rev Soc Bras Med Trop 45(5):601–606. https://doi.org/10.1590/S0037-86822012000500012

    Article  PubMed  Google Scholar 

  31. de Sousa KC, André MR, Herrera HM, de Andrade GB, Jusi MM, dos Santos LL et al (2013) Molecular and serological detection of tick-borne pathogens in dogs from an area endemic for Leishmania infantum in Mato Grosso do Sul, Brazil. Rev Bras Parasitol Vet 22(4):525–531. https://doi.org/10.1590/S1984-29612013000400012

    Article  PubMed  Google Scholar 

  32. Bernal-Valle S, Teixeira MN, de Araújo Neto AR, Gonçalves-Souza T, Feitoza BF, dos Santos SM et al (2022) Parasitic infections, hematological and biochemical parameters suggest appropriate health status of wild Coati populations in anthropic Atlantic forest remnants. Vet Parasitol Reg Stud Rep 30:100693. https://doi.org/10.1016/j.vprsr.2022.100693

    Article  Google Scholar 

  33. Reis AB, Martins-Filho OA, Teixeira-Carvalho A, Carvalho MG, Mayrink W, França-Silva JC et al (2006) Parasite density and impaired biochemical/hematological status are associated with severe clinical aspects of canine visceral leishmaniasis. Res Vet Sci 81(1):68–75. https://doi.org/10.1016/j.rvsc.2005.09.011

    Article  CAS  PubMed  Google Scholar 

  34. de Freitas JC, Nunes-Pinheiro DC, Lopes Neto BE, Santos GJ, Abreu CR, Braga RR et al (2012) Clinical and laboratory alterations in dogs naturally infected by Leishmania Chagasi. Rev Soc Bras Med Trop 45(1):24–29. https://doi.org/10.1590/s0037-86822012000100006

    Article  PubMed  Google Scholar 

  35. Gatto M, de Abreu MM, Tasca KI, Simão JC, Fortaleza CM, Pereira PC et al (2013) Biochemical and nutritional evaluation of patients with visceral leishmaniasis before and after treatment with leishmanicidal drugs. Rev Soc Bras Med Trop 46(6):735–740. https://doi.org/10.1590/0037-8682-0198-201

    Article  PubMed  Google Scholar 

  36. Ribeiro RR, da Silva SM, Fulgêncio Gde O, Michalick MS, Frézard FJ (2013) Relationship between clinical and pathological signs and severity of canine leishmaniasis. Rev Bras Parasitol Vet 22(3):373–378. https://doi.org/10.1590/S1984-29612013000300009

    Article  PubMed  Google Scholar 

  37. Montargil SMA, Carvalho FS, de Oliveira GMS, Munhoz AD, Alberto Carlos RS, Wenceslau AA (2018) Clinical, hematological and biochemical profiles of dogs with Leishmania infantum. Acta Sci Veterinariae 46(1):7. https://doi.org/10.22456/1679-9216.82065

    Article  Google Scholar 

  38. Silva JL, Oliveira VVG, Silva LAMT, Silva RPE, Alves LC, Cavalcanti MP et al (2019) Evaluation of serum biochemical parameters, structural changes, immunohistochemistry and parasite load in the urinary system of dogs infected naturally by Leishmania infantum. J Comp Pathol 167:26–31. https://doi.org/10.1016/j.jcpa.2018.11.007

    Article  CAS  PubMed  Google Scholar 

  39. Tesfanchal B, Gebremichail G, Belay G, Gebremariam G, Teklehaimanot G, Haileslasie H et al (2020) Alteration of clinical chemistry parameters among visceral leishmaniasis patients in Western Tigrai, Ethiopia, 2018/2019: A comparative Cross-Sectional study. Infect Drug Resist 13:3055–3062. https://doi.org/10.2147/IDR.S261698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Cavalera MA, Iatta R, Laricchiuta P, Passantino G, Abramo F, Mendoza-Roldan JA et al (2020) Clinical, haematological and biochemical findings in Tigers infected by Leishmania infantum. BMC Vet Res 16(1):214. https://doi.org/10.1186/s12917-020-02419-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Olifiers N, Bianchi RC, D’Andrea PS, Mourão G, Gomppers ME (2010) Estimating age of carnivores from the Pantanal region of Brazil. Wildl Biol 16:389–389. https://doi.org/10.2981/09-104

    Article  Google Scholar 

  42. International Species Identification System - ISIS (2002) Reference ranges for physiological values in captive wildlife. Apple Valley

  43. Schubach A, Haddad F, Oliveira-Neto MP, Degrave W, Pirmez C, Grimaldi G Jr et al (1998) Detection of Leishmania DNA by polymerase chain reaction in scars of treated human patients. J Infect Dis 178(3):911–914. https://doi.org/10.1086/515355

    Article  CAS  PubMed  Google Scholar 

  44. Cortes S, Rolão N, Ramada J, Campino L (2004) PCR as a rapid and sensitive tool in the diagnosis of human and canine leishmaniasis using Leishmania donovani s.l.-specific kinetoplastid primers. Trans R Soc Trop Med Hyg 98(1):12–17. https://doi.org/10.1016/s0035-9203(03)00002-6

    Article  CAS  PubMed  Google Scholar 

  45. Graça GC, Volpini AC, Romero GA, Oliveira Neto MP, Hueb M, Porrozzi R et al (2012) Development and validation of PCR-based assays for diagnosis of American cutaneous leishmaniasis and identification of the parasite species. Mem Inst Oswaldo Cruz 107(5):664–674. https://doi.org/10.1590/s0074-02762012000500014

    Article  PubMed  Google Scholar 

  46. R Core Team. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria (2023) [updated 2025 June 13; cited 2025 June 18]. Available from: http://www.R-project.org/

  47. Giannini EG, Testa R, Savarino V (2005) Liver enzyme alteration: a guide for clinicians. CMAJ 172(3):367–379. https://doi.org/10.1503/cmaj.1040752

    Article  PubMed  PubMed Central  Google Scholar 

  48. Lidbury JA, Steiner JM (2013) Liver-diagnostic evaluation. In: Washabau RJ, Day J (eds) Canine & feline gastroenterology. Elsevier, St. Louis, pp 863–875

    Google Scholar 

  49. Duarte MI, Corbett CE (1987) Histopathological patterns of the liver involvement in visceral leishmaniasis. Rev Inst Med Trop Sao Paulo 29:131–136. https://doi.org/10.1590/s0036-46651987000300003

    Article  CAS  PubMed  Google Scholar 

  50. Kausalya S, Malla N, Ganguly NK, Mahajan RC (1993) Leishmania donovani: in vitro evidence of hepatocyte damage by Kupffer cells and immigrant macrophages in a murine model. Exp Parasitol 77(3):326–333. https://doi.org/10.1006/expr.1993.1090

    Article  CAS  PubMed  Google Scholar 

  51. el Hag IA, Hashim FA, el Toum IA, Homeida M, el Kalifa M, el Hassan AM (1994) Liver morphology and function in visceral leishmaniasis (Kala-azar). J Clin Pathol 47(6):547–551. https://doi.org/10.1136/jcp.47.6.547

    Article  PubMed  PubMed Central  Google Scholar 

  52. Lima IS, Silva JS, Almeida VA, Junior FG, Souza PA, Larangeira DF et al (2014) Severe clinical presentation of visceral leishmaniasis in naturally infected dogs with disruption of the Splenic white pulp. PLoS ONE 9(2):e87742. https://doi.org/10.1371/journal.pone.0087742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Heidarpour M, Soltani S, Mohri M, Khoshnegah J (2012) Canine visceral leishmaniasis: relationships between oxidative stress, liver and kidney variables, trace elements, and clinical status. Parasitol Res 111(4):1491–1496. https://doi.org/10.1007/s00436-012-2985-8

    Article  CAS  PubMed  Google Scholar 

  54. Nieto CG, Barrera R, Habela MA, Navarrete I, Molina C, Jiménez A et al (1992) Changes in the plasma concentrations of lipids and lipoprotein fractions in dogs infected with Leishmania infantum. Vet Parasitol 44(3–4):175–182. https://doi.org/10.1016/0304-4017(92)90115-p

    Article  CAS  PubMed  Google Scholar 

  55. Soares NM, Leal TF, Fiúza MC, Reis EA, Souza MA, Dos-Santos WL et al (2010) Plasma lipoproteins in visceral leishmaniasis and their effect on Leishmania-infected macrophages. Parasite Immunol 32(4):259–266. https://doi.org/10.1111/j.1365-3024.2009.01187.x

    Article  CAS  PubMed  Google Scholar 

  56. Lal CS, Verma N, Rabidas VN, Ranjan A, Pandey K, Verma RB et al (2010) Total serum cholesterol determination can provide Understanding of parasite burden in patients with visceral leishmaniasis infection. Clin Chim Acta 411:2112–2113. https://doi.org/10.1016/j.cca.2010.08.041

    Article  CAS  PubMed  Google Scholar 

  57. Ghosh J, Lal CS, Pandey K, Das VN, Das P, Roychoudhury K et al (2011) Human visceral leishmaniasis: decrease in serum cholesterol as a function of Splenic parasite load. Ann Trop Med Parasitol 105(3):267–271. https://doi.org/10.1179/136485911X12899838683566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Caldas A, Favali C, Aquino D, Vinhas V, van Weyenbergh J, Brodskyn C et al (2005) Balance of IL-10 and interferon-gamma plasma levels in human visceral leishmaniasis: implications in the pathogenesis. BMC Infect Dis 5:113. https://doi.org/10.1186/1471-2334-5-113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Paswan RK, Bimal S, Kumari A, Sinha P, Rabidas VN, Pandey K et al (2016) Reduced high density lipoprotein concentration modulates increased interleukin-10 and decreased interferon-gamma in visceral leishmaniasis patients. Gen Med 4(2):1000233. https://doi.org/10.4172/2327-5146.1000233

    Article  CAS  Google Scholar 

  60. Carvalho EM, Badaró R, Reed SG, Jones TC, Johnson WD Jr (1985) Absence of gamma interferon and Interleukin 2 production during active visceral leishmaniasis. J Clin Invest 76(6):2066–2069. https://doi.org/10.1172/JCI112209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ghalib HW, Piuvezam MR, Skeiky YA, Siddig M, Hashim FA, el-Hassan AM (1993) Interleukin 10 production correlates with pathology in human Leishmania donovani infections. J Clin Invest 92(1):324–329. https://doi.org/10.1172/JCI116570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Pucadyil TJ, Tewary P, Madhubala R, Chattopadhyay A (2004) Cholesterol is required for Leishmania donovani infection: implications in leishmaniasis. Mol Biochem Parasitol 133(2):145–152. https://doi.org/10.1016/j.molbiopara.2003.10.002

    Article  CAS  PubMed  Google Scholar 

  63. Norata GD, Pirillo A, Ammirati E, Catapano AL (2012) Emerging role of high-density lipoproteins as a player in the immune system. Atherosclerosis 220(1):11–21. https://doi.org/10.1016/j.atherosclerosis.2011.06.045

    Article  CAS  PubMed  Google Scholar 

  64. Kumar GA, Roy S, Jafurulla M, Mandal C, Chattopadhyay A (2016) Statin-induced chronic cholesterol depletion inhibits Leishmania donovani infection: relevance of optimum host membrane cholesterol. Biochim Biophys Acta 1858(9):2088–2096. https://doi.org/10.1016/j.bbamem.2016.06.010

    Article  CAS  PubMed  Google Scholar 

  65. Gabay C, Kushner I (1999) Acute-phase proteins and other systemic responses to inflammation. N Engl J Med 340(6):448–454. https://doi.org/10.1056/NEJM199902113400607

    Article  CAS  PubMed  Google Scholar 

  66. de Carvalho CA, Hiramoto RM, Meireles LR, de Andrade HF Jr (2024) Understanding hypergammaglobulinemia in experimental or natural visceral leishmaniasis. Parasite Immunol 46(1):e13021. https://doi.org/10.1111/pim.13021

    Article  CAS  PubMed  Google Scholar 

  67. Perles L, Barreto WTG, Santos FM, Duarte LL, de Macedo GC, Barros-Battesti DM et al (2023a) Molecular survey of hemotropic Mycoplasma spp. And Bartonella spp. In Coatis (Nasua nasua) from Central-Western Brazil. Pathogens 12(4):538. https://doi.org/10.3390/pathogens12040538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Perles L, Barreto WTG, de Macedo GC, Calchi AC, Bezerra-Santos M, Mendoza-Roldan JA et al (2023b) Molecular detection of Babesia spp. And Rickettsia spp. In Coatis (Nasua nasua) And associated ticks from Midwestern Brazil. Parasitol Res 122(5):1151–1158. https://doi.org/10.1007/s00436-023-07815-5

    Article  CAS  PubMed  Google Scholar 

  69. de Macedo GC, Barreto WTG, de Assis WO, Rucco AC, Santos FM, Porfírio GEO et al (2023b) Hematology and biochemistry of South American Coatis Nasua Nasua (Carnivora: Procyonidae) inhabiting urban fragments in Midwest brazil: differences according to intrinsic features and sampling site. Eur J Wildl Res 69:119. https://doi.org/10.1007/s10344-023-01753-4

    Article  Google Scholar 

  70. Costa CHN, Chang KP, Costa DL, Cunha FVM (2023) From infection to death: an overview of the pathogenesis of visceral leishmaniasis. Pathogens 12(7):969. https://doi.org/10.3390/pathogens12070969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Nicolato RC, de Abreu RT, Roatt BM, Aguiar-Soares RD, Reis LE, Carvalho MG et al (2013) Clinical forms of canine visceral leishmaniasis in naturally Leishmania infantum-infected dogs and related myelogram and hemogram changes. PLoS ONE 8(12):e82947. https://doi.org/10.1371/journal.pone.0082947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Shiferaw E, Murad F, Tigabie M, Abebaw M, Alemu T, Abate S et al (2021) Hematological profiles of visceral leishmaniasis patients before and after treatment of anti-leishmanial drugs at university of Gondar Hospital; leishmania research and treatment center Northwest, Ethiopia. BMC Infect Dis 21(1):1005. https://doi.org/10.1186/s12879-021-06691-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Zijlstra EE, Ali MS, el-Hassan AM, el-Toum IA, Satti M, Ghalib HW (1992) Clinical aspects of kala-azar in children from the sudan: a comparison with the disease in adults. J Trop Pediatr 38(1):17–21. https://doi.org/10.1093/tropej/38.1.17

    Article  CAS  PubMed  Google Scholar 

  74. Caldas AJ, Costa J, Aquino D, Silva AA, Barral-Netto M, Barral A (2006) Are there differences in clinical and laboratory parameters between children and adults with American visceral leishmaniasis? Acta Trop 97(3):252–258. https://doi.org/10.1016/j.actatropica.2005.09.010

    Article  PubMed  Google Scholar 

  75. Maciel BL, Lacerda HG, Queiroz JW, Galvão J, Pontes NN, Dimenstein R et al (2008) Association of nutritional status with the response to infection with Leishmania Chagasi. Am J Trop Med Hyg 79(4):591–598. https://doi.org/10.4269/ajtmh.2008.79.591

    Article  PubMed  Google Scholar 

  76. Benatar JR, Sidhu K, Stewart RAH (2013) Effects of high and low fat dairy food on cardio-metabolic risk factors: a meta-analysis of randomized studies. PLoS ONE 8(10):e76480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Delanaye P, Cavalier E, Pottel H (2017) Serum cretinine: not so simple! Nephron 136(4):302–308. https://doi.org/10.1159/000469669

    Article  CAS  PubMed  Google Scholar 

  78. Li P, Yin YL, Li D, Kim SW, Wu G (2007) Amino acids and immune function. Br J Nutr 98(2):237–252. https://doi.org/10.1017/S000711450769936X

    Article  CAS  PubMed  Google Scholar 

  79. Cipryan L (2017) IL-6, antioxidant capacity and muscle damage markers following high-intensity interval training protocols. J Hum Kinet 56:139–148. https://doi.org/10.1515/hukin-2017-0031

    Article  PubMed  PubMed Central  Google Scholar 

  80. Brancaccio P, Lippi G, Maffulli N (2010) Biochemical markers of muscular damage. Clin Chem Lab Med 48(6):757–767. https://doi.org/10.1515/CCLM.2010.179

    Article  CAS  PubMed  Google Scholar 

  81. Knoblauch MA, O’Connor DP, Clarke MS (2013) Obese mice incur greater myofiber membrane disruption in response to mechanical load compared with lean mice. Obes (Silver Spring) 21(1):135–143. https://doi.org/10.1002/oby.20253

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Air Force Village and the Prosa State Park staffs for the cooperation with the field works, and to the laboratory LABDOC for the support in the hematological and biochemical analyses.

Funding

GCM was supported by the Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (project number SEI E-26/200.295/2025), and ALRR and HMH were supported by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (project numbers 309507/2023-5 and 311769/2023-3 respectively).

Author information

Authors and Affiliations

Authors

Contributions

GCM, ALRR, CEO, WTGB and HMH conceived and designed the study. GCM, WTGB, WOA, ACR and JGBP performed the research. GCM, FMS, NYS and SCCX analyzed the data. GCM, WTGB, and ARS, drafted the initial manuscript. ALRR, GEOP, GBA, AMJ and HMH reviewed and edited the original draft. All the authors approved the final version of the manuscript.

Corresponding author

Correspondence to Gabriel Carvalho de Macedo.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary Material 1

Supplementary Material 2

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Macedo, G.C., Roque, A.L.R., Santos, F.M. et al. Hematological and Biochemical Outcomes of Leishmania Infantum Infection in the South American Coati (Nasua nasua) in an Endemic Area of Visceral Leishmaniasis in Central Western Brazil. Acta Parasit. 71, 37 (2026). https://doi.org/10.1007/s11686-026-01218-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1007/s11686-026-01218-z

Keywords

Profiles

  1. Gabriel Carvalho de Macedo
  2. André Luiz Rodrigues Roque
  3. Carina Elisei de Oliveira
  4. Nayara Yoshie Sano